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Abstract

We use the term “ratio problem” to describe the omitted variable and measurement
error bias that can arise when a ratio is the dependent variable in a statistical model.
First, we show how bias can arise from the omission of two classes of variables based on
a ratio’s denominator. Second, we show how measurement error in the ratio’s denom-
inator can produce bias. We use an important finding in economics (the “inverse U”
relationship between managerial ownership and Tobin’s Q) as an example to show how
results can be reversed when omitted variables are included. We show that this risk of
bias is pervasive across disciplines, including in public health, where we demonstrate
that the relationship between control measures in China and the incidence of COVID-
19 is reversed when the ratio problem is addressed. We provide empirical tests and
solutions to the ratio problem, and urge caution when applied researchers use ratios as
dependent variables.
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1 Introduction

Statistical models in a range of fields, from economics to public health, can be specified

using ratios, such as Y/n = f(·), where Y represents an output, n is a scale factor, such

as population or the replacement value of assets, and Y/n is a function of various inputs

represented by (·), such as economic factors or responses to a pandemic. Researchers studying

models with inputs and outputs often use ratios as outputs.

In this paper, we examine empirical challenges that applied researchers should consider

when a researcher estimates the parameters of such a model. Specifically, we show that

estimating Y/n = f(·) using linear regression risks obtaining biased estimates simply because

Y is divided by n. In theory, the denominator is not necessarily problematic; in practice,

however, there are statistical concerns whenever the output is a ratio.

We use the term “ratio problem” to describe two challenges – omitted variable and

measurement error bias – that arise anytime a researcher uses linear regression with a ratio

output. Intuitively, the central problem is bias that arises when a right-side input of interest

is correlated with either (i) the reciprocal of the scale factor, 1/n, or (ii) the scaled version of

other right-side input variables. Such correlation can arise either because the input variable

of interest is also scaled by n, or because it is not scaled, but is otherwise correlated with

1/n or the interaction of 1/n with other right-side input variables. Bias can alternatively

arise when the denominator of the ratio is measured with error.

Our key insight is that a researcher examining a ratio as an output variable should test

whether it is necessary to include as regressors 1/n and both scaled and unscaled input

variables, as we discuss below. Some research has elided the ratio problem in the past by

using workarounds: winsorizing, examining only size-based slices of their samples, or includ-

ing fixed effects. We show precisely why these workarounds can fail, by demonstrating the

general, underlying problem they purport to solve. Although many researchers have used

sophisticated techniques to provide ad hoc fixes when specific omitted variable or measure-

ment challenges arise, there is no overarching treatment in the literature of the more general

problem. We provide that treatment.
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We illustrate the ratio problem by focusing on the large literature in law, economics,

and finance investigating whether Tobin’s Q, the market value of a firm’s securities scaled

by their replacement values, is a function of a firm’s corporate governance.1 We also point

to research on COVID-19, where correcting for the ratio problem reverses the sign of every

coefficient in one prominent study finding a relationship between control measures such as

transportation and entertainment restrictions and the incidence of COVID-19.

We focus on the Tobin’s Q literature in corporate governance as an example for scholars

in all disciplines, because it is so clear in this literature that the denominator of the outcome

variable suffers from considerable measurement error (Bartlett and Partnoy, 2020), thus risk-

ing biased regression estimates (see, e.g., Erickson and Whited, 2012; Erickson and Whited,

2006). This literature also illustrates the importance of distinguishing between numerator

measurement error and denominator measurement error. Numerator measurement error

might merely inflate residuals and standard errors, making inference more difficult, yet not

causing bias (Gompers, Ishii, and Metrick, 2009, p. 1068). But denominator measurement

error is a different matter entirely. As we show, the widely-cited “inverse U” relationship

between managerial ownership and Tobin’s Q is reversed when we account for error in the

denominator.

We contribute to the literature by comprehensively documenting the bias that can arise

in any empirical estimation of a production function that models an output as a ratio.

We provide empirical tests of the degree of bias and assess the conditions under which a

logarithmic transformation of a ratio can avoid some of the problems posed by the use

of a dependent variable that is a ratio. (Of course, whether a logarithmic specification is

theoretically appropriate is a separate question.)

Concern about the use of ratios in empirical research has a haphazard pedigree, a line

that winds through various disciplines for more than a century. Pearson (1897) observed that

deflating two uncorrelated variables by a common deflator can result in spurious correlation

between the variables. Many researchers have cited this observation as important given the

widespread use of common deflators to address scale effects and heteroskedasticity. For in-

1Examples include Bebchuk, Cohen, and Ferrell (2008); Gompers, Ishii, and Metrick (2003); Gompers,
Ishii, and Metrick (2009); Duchin, Goldberg, and Sosyura (2016); Schoar and Zuo (2017); and Fabisik et al.
(2018).
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stance, Neyman (1952) provocatively showed how the correlation between storks-per-women

and babies-per-women could suggest that storks influence birth rates.

During subsequent decades, a handful of statisticians confronted various aspects of spuri-

ous correlation arising from deflation. Kuh and Meyer (1955), Madansky (1964), Kunreuther

(1966), and Belsley (1972) explored how spurious correlation with a common deflator arises

when the relationship between the deflated variable and the deflator is not linear through the

origin. Casson (1973) relatedly showed that spurious correlation arises when measurement

error affects the common deflator. More recently, some researchers in various disciplines

have similarly addressed aspects of the statistical challenges of using a common deflator to

address scale effects. For example, sociologists and political scientists have debated whether

deflation is an acceptable method to control for scale effects due to the risk of spurious corre-

lation from a common deflator (See, e.g., Firebaugh and Gibbs, 1985). Similar debates have

occurred in zoology (Atchley, Gaskins, and Anderson, 1976), ecology (Beaupre and Dunham,

1995), and biology (Packard and Boardman, 1988).

Although some researchers have addressed spurious correlation arising from deflation gen-

erally, the literature has not focused on how bias from a ratio regression can arise not only

when inputs are scaled with the same deflator, but also when inputs are not scaled. Kronmal

(1993), while focusing primarily on the challenge of using a common deflator, briefly discussed

problems that might arise when the dependent variable is the only ratio in a specification

(in Section 3.1, with two examples). However, his focus was on diagnosing the problems

associated with a mis-specified, deflated regression model where the theoretical production

function at issue maps right-side inputs to an unscaled output variable.2 Accordingly, Kron-

mal (1993) did not consider the distinct bias that can arise in the setting, common in finance

and economics, when a researcher estimates the parameters of a production function where

the theoretical output variable is itself a ratio that represents an important construct such

as firm performance.

2In particular, Kronmal’s analysis focused on a setting where a researcher seeks βx in y = β0+βxx+βzz+ε
but does so by estimating αx in y

z = α0 + αxx + υ. As a result, Kronmal’s concern was on the conditions
when αx would yield an unbiased estimate of the relationship between x and y. As we show, even when
a researcher is interested in the relationship between x and y

z (for instance, in estimating how x predicts
return on assets or Tobin’s Q), αx may be biased absent the adjustments we recommend.
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Unfortunately, both Kronmal (1993) and the earlier research cited above on spurious

correlation arising from the use of a common deflator have largely been ignored in practice.

Although some researchers have acknowledged the potential problems of using ratios as

outcome variables, most have not grappled with the scope of the ratio problem that we

document or how to address it. To the contrary, some researchers have cited Kronmal

(1993) as the basis for avoiding ratios as dependent variables altogether, complicating the

ability to compare results across prior studies (see, e.g., Knight and Rosa, 2011). Similarly,

writing within the strategy literature, Wiseman (2009) noted that a regression of Y/Z on

X estimates an interaction effect between X and Z (a point we discuss below), but did

not examine how this specification also risks omitted variable bias. Additionally, neither

Kronmal (1993) nor Wiseman (2009) examined how measurement error in Z might further

complicate the use of ratios as dependent variables or whether the risk of spurious correlation

persists with a log transformation of a ratio. We address each of these challenges.

In short, researchers have not described the combination of omitted variable and measure-

ment error challenges that result when a researcher estimates the parameters of a production

function that uses a ratio as an output variable. Nor have they set forth tests of the extent

of coefficient bias that can result from the use of ratios in such a context. Our contribution

here is to do both.

2 Omitted Variable Bias

Consider the following regression specification that estimates Tobin’s Q as a function of

x, a corporate governance measure of interest (such as managerial ownership or corporate

governance indices):

MVi
BVi

= β0 + β1xi + εi (1)

where MV/BV is a proxy for Tobin’s Q, MV represents the market value of firm i, and

BV is the book value of assets of firm i. Equation (1) typically includes a vector of control

variables, which we omit for now without loss of generality.
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We show in this section why Equation (1) omits two potentially important variables, and

therefore risks bias in β1. We obtain Equation (2) below by adding two terms to the right

side of Equation (1). We use C to denote a scaled “constant” omitted variable, and ME to

denote a scaled “main effect” omitted variable:

MVi
BVi

= β0 + β1xi + βc
1

BVi
+ βME

xi
BVi

+ υi (2)

where βc estimates the relationship between Tobin’s Q and the reciprocal of BV , βME

estimates a main effect for x scaled by BV , and υ is an error term, where E[υ| x,BV ] = 0.

Note that Equation (2) includes as regressors both a scaled and unscaled variable of interest

(x), along with 1
BVi

.

It is standard in empirical research involving the use of a ratio as an outcome variable

to omit the third and fourth terms on the right side of Equation (2). But omitting these

two terms reflects two potentially important assumptions that arise whenever a ratio is a

dependent variable in a linear regression. Both assumptions involve the ratio’s denominator.

2.1 Two Key Assumptions about Ratios as Dependent Variables

First, omitting βc
1
BVi

reflects an assumption that MV approaches zero as BV approaches

zero. We call 1
BVi

a “constant” variable because including it in Equation (2) allows for MV to

have a non-zero “constant” intercept value as BV approaches zero. In other words, although

both Equations (1) and (2) assume a linear relationship between MV and BV , Equation (1)

requires that this linear relationship between MV and BV pass through the origin, whereas

Equation (2) permits the intercept to vary.

Second, omitting βME
xi
BVi

reflects an assumption that MV is not related to the main

effect, x, except through the interaction of x with BV . We call xi
BVi

a “main effect” variable

because including it in Equation (2) allows for MV to be associated directly with x as a main

effect, separately from the association of x and BV . In other words, although both Equations

(1) and (2) estimate a linear relationship between MV/BV and x, Equation (1) requires that

this relationship involve BV , whereas Equation (2) permits a relationship between MV and

x, independent of BV .
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The intuition supporting the above two points is apparent if we simply re-write Equation

(1) as the following, mathematically identical equation:

MVi = β0BVi + β1xiBVi + εiBVi (3)

Note that Equation (3) is missing a constant term. Accordingly, it reflects an assumption

that the linear relationship between MV and BV passes through the origin. Unlike Equation

(1), and equivalently Equation (3), Equation (2) allows for the possibility that the linear re-

lationship between MV and BV has a non-zero intercept. (Recall that the omitted constant

variable in Equation (1) was a scaled constant; the omitted variable in Equation (3) is simply

a constant, unscaled.)

Note further that Equation (3) is missing a main effect term for x. Accordingly, it reflects

an assumption that MV is not related to x except through the interaction of x with BV .

Unlike Equation (1), and equivalently Equation (3), Equation (2) allows for the possibility

that MV is related to x apart from the relationship between x and BV . (Recall that the

omitted variable in Equation (1) was a scaled main effect; the omitted variable in Equation

(3) is simply a main effect, unscaled.)

Are the assumptions in Equation (1) reasonable? Or does omitting the “constant” and

“main effect” variables lead to bias in β1? We answer this question formally below. But

first we want to illustrate the potential seriousness of the ratio problem with an example,

to show how omitting the constant and main effect terms matters to an important result in

the finance literature.

2.2 An Example: Managerial Ownership and Tobin’s Q

Consider the well-known finding of a non-linear relationship between managerial ownership

and Tobin’s Q, first established in Morck, Shleifer, and Vishny (1988) and confirmed by

McConnell and Servaes (1990). The “inverse U” relationship – Tobin’s Q rises as the per-

centage of the company’s equity owned by management increases, but then declines after a

peak at roughly 40% – has been widely replicated and cited. It is now standard to include

both managerial ownership and its square as control variables in a wide range of studies.
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The “inverse U” papers use a version of Equation (1), with both managerial ownership

and managerial ownership squared as variables of interest. We present the standard re-

gression specification in Equation (4), where Own and Own2 represent the percentage of

outstanding shares owned by managers and that percentage squared:

MVi
BVi

= β0 + β1Owni + β2Own
2
i + εi (4)

We replicate the “inverse U” findings using Equation (4) and updated data. In particular,

we estimate Equation (4) for all firms appearing in Standard and Poor’s Compustat database

from 2010 to 2018 where a firm can be matched with managerial ownership data from

Execucomp.3 Table 1 presents the results.

Table 1

(1)
MV
BV

Own 0.0199∗∗∗

(0.00374)

Own2 -0.000260∗∗

(0.0000960)

Constant 1.830∗∗∗

(0.0139)

Observations 15,672

Robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The positive coefficient on Own and the negative coefficient on Own2 are consistent with

past findings of an “inverse U” relationship, as is shown in the plot of the fitted values in

Figure 1. In unreported results, windsorizing managerial ownership at 1% and 99% within the

data produces identically signed coefficient estimates for Own and Own2. The relationship

between managerial ownership and Tobin’s Q might be linear and positively sloped at low

percentage ownership levels, but the influential finding in the literature is the inflection point

3As is typical in this literature, we use Compustat data to estimate Tobin’s Q as the market value of
assets divided by the book value of assets, where the market value of assets is computed as the book value of
assets plus the market value of common stock less the sum of the book value of common stock and balance
sheet deferred taxes (see, e.g.,Gompers, Ishii, and Metrick, 2009).
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at higher ownership percentages, causing both management ownership and its square to be

widely used as regressors in empirical finance (see, e.g., Bebchuk, Cohen, and Ferrell, 2008).4
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Figure 1: Predicted Values of Q As a Function of Managerial Ownership - Equation
(4). Shaded region represents 95% confidence intervals.

A very different picture emerges if we add the omitted “constant” and “main effect”

terms to Equation (4). Note that Equation (4) omits βc
1
BV

, and instead assumes that the

linear relationship between MV and BV has a zero intercept. Equation (4) also omits two

main effect terms, and instead assumes that MV is not associated with Own and Own2,

except through an interaction with BV. Equation (5) adds these terms:

MVi
BVi

= β0 + β1Owni + β2Own
2
i + βc

1

BVi
+ βME1

Owni
BVi

+ βME2
Own2

i

BVi
+ εi (5)

Using the same data as in Table 1, Column (2) of Table 2 presents coefficient estimates

based on Equation (5). The contrast to the previous estimates from Table 1, set forth here

in Column (1), is stark. Note that in Column (2), the coefficient estimates for both 1
BVi

and
Own2

i

BVi
are positive, while the coefficient estimate for Owni

BVi
is negative. Moreover, the

4The original papers finding an “inverse U” relationship did not incorporate firm fixed effects (as is
common in more contemporary corporate governance studies). We discuss the use of firm fixed effects below
in note 7.
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coefficient estimate for Own2, the variable driving the “inverse U” result in Column (1), is

smaller in Column (2).

Table 2

(1) (2)
MV
BV

MV
BV

Own 0.0199∗∗∗ 0.0165∗∗∗

(0.00374) (0.00398)

Own2 -0.000260∗∗ -0.000162
(0.0000960) (0.000104)

1
BV

83.01∗∗∗

(4.757)

Own
BV

-5.632∗∗∗

(0.878)

Own2

BV
0.0931∗∗∗

(0.0237)

Constant 1.830∗∗∗ 1.759∗∗∗

(0.0139) (0.0144)

Observations 15,672 15,672

Robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

In Figure 2, we use the new estimates in Column (2) to re-plot the fitted values of Tobin’s

Q against management ownership. The “inverse U” disappears.
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Figure 2: Predicted Values of Q As a Function of Managerial Ownership - Equation
(5). Shaded region represents 95% confidence intervals.

We demonstrate formally below why Equation (4) produces biased estimates for Own

and Own2. Intuitively, the omitted variables added to Equation (5) reduce the statistical

bias in Equation (4) in two ways. First, adding the “constant” term reduces the coefficient

bias that arises from the assumption that MV approaches zero as BV approaches zero. In

Equation (5), MV is permitted to be non-zero as BV approaches zero, and the coefficient for

1
BVi

indicates that MV indeed is positive as BV nears zero. In contrast, because Equation

(4) omits this “constant” term, its coefficient estimates for Own and Own2 reflect the extent

to which those variables are correlated with 1
BVi

. That correlation is a source of bias.

Second, adding the “main effect” variables (both first-order and squared terms) reduces

the coefficient bias that arises from the assumption that MV can be related to Own and Own2

only through the interaction of BV with those variables. In Equation (5), MV is permitted

to be related directly to Own and Own2, and the coefficients for Owni

BVi
and

Own2
i

BVi
indeed reflect

MV being negatively associated with Own and positively associated with Own2 (without

any interaction with BV ). In contrast, because Equation (4) omits the “main effect” terms,

its coefficient estimates for Own and Own2 reflect the extent to which those variables are

correlated with Owni

BVi
and

Own2
i

BVi
, respectively. That correlation also is a source of bias.
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In sum, the net impact of the omitted variable bias in this example is as follows. β1,

the coefficient for Own in Equation (4), is biased upward. The coefficient for Own declines

when the omitted variables are included, in Equation (5), and the coefficient for Owni

BVi
is large

and negative. In contrast, β2, the coefficient for Own2 in Equation (4), is biased downward

when the variables are omitted. Most strikingly, when the omitted variables are included,

in Equation (5), the coefficient for the second-order “main effect” variable,
Own2

i

BVi
, not only is

large, but has the opposite sign (positive) as the negative coefficient for Own2 in Equation

(4).

As we show in Section 4 below, when we use a logarithmic transformation, the “inverse U”

becomes an “actual U.” Putting aside the question of whether a logarithmic transformation

is theoretically appropriate, we show empirically that the ratio problem with respect to this

example is so serious that, when the omitted variables are included, the well-documented

relationship between managerial ownership and firm value turns out to be the opposite of

the one that researchers have widely assumed.

Of course, omitting the “constant” and “main effect” variables does not always bias the

coefficients in a regression that uses a ratio as the dependent variable. Moreover, even if

omitting these variables leads to bias, the bias may not be economically meaningful. We

turn next to this question: when is it reasonable for a researcher to omit these variables?

2.3 Tests for Omitted Variable Bias

We now present tests to assess when it is reasonable to omit the “constant” and “main

effect” variables from a regression with a ratio as the dependent variable. We begin by

examining the conditions under which omitting these variables does not lead to any bias.

Second, we describe a test for the magnitude of bias. Finally, we consider a more general

matrix approach. We conclude this section with an illustration of our general matrix test

based on the example of the relationship between managerial ownership and Tobin’s Q.
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2.3.1 A Test for Zero Bias

Omitted variable bias depends on how omitted variables affect the error term in Equation

(1). Obtaining an unbiased estimate for β1 in Equation (1) requires cov(x,ε) = 0.

Combining Equations (1) and (2), we observe that εi =βc
1
BVi

+βME
xi
BVi

+υi. Accordingly,

in order to obtain an unbiased estimate for β1 in Equation (1), the following must be true:5

cov(x, ε) = 0

cov(x, βc
1

BV
+ βME

x

BV
+ υ) = 0

βccov(x,
1

BV
) + βMEcov(x,

x

BV
) = 0 (6)

Thus, Equation (1) provides an unbiased estimate for β1 only when Equation (6) holds,

meaning that one of the following must be true:

βc = 0 and βME = 0, or (6a)

βccov(x,
1

BV
) = −βMEcov(x,

x

BV
), or (6b)

cov(x,
1

BV
) = 0 (6c)

Equation (6) highlights the narrow set of conditions when omitting the “constant” and

“main effect” variables poses no risk of bias in estimating for β1 in Equation (1). Although

the circumstances under which condition (6b) is likely to hold are not intuitive, there may

be theoretical and empirical reasons to believe that either condition (6a) or (6c) apply in

a particular research setting. For instance, x and 1
BV

may simply be orthogonal. Likewise,

there are settings where it is plausible that both βc and βME equal zero.

With regard to the latter, recall that Equation (1) assumes the relationship between the

numerator and the denominator of the ratio is a linear one that goes through the origin; in

other words, the assumption is that βc = 0. Many ratios, such as percentages and rates, are

5In deriving Equation (6), note that cov(x, υ) = 0 given the assumption that E[υ|x,BV ] = 0. More
precisely, cov(x, υ) = E[xυ] − E[x]E[υ]. Focusing on the second half of this equation and using the law of
iterated expectations, E[υ] = Ex[Eυ[υ|x]]. Because [υ|x,BV ] = 0, it is also true that [υ|x] = 0 (Wooldridge,
2010, p. 18); therefore, Ex[Eυ[υ|x]] = 0. Likewise, by the law of iterated expectations, E[xυ] is equal to
Ex[Exυ[xυ|x]], which is equivalent to [Ex[xEυ[υ|x]]. Because the inner term is zero, [Ex[xEυ[υ|x]] = 0.
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likely to satisfy the first part of condition (6a), because the numerator will approach zero as

the denominator approaches zero. Moreover, the second part of condition (6a) is satisfied if

βME = 0, which holds when x has no association with the numerator that is independent

from the denominator.

Consider an experiment that examines the percentage of questions answered correctly

by students who were treated with a tutorial program relative to students who were not.

When a student answers zero questions, it is obviously impossible for the student to have

any correct answers (meaning βc = 0). It is also impossible for the tutorial treatment to

affect the number of correct answers that is separate from the number of questions that a

treated student answers; the treatment effect, if any, must work through its interaction with

the number of questions answered (meaning βME = 0). Accordingly, condition 6(a) would

hold.

However, condition (6a) is unlikely to be satisfied in many other contexts. For instance,

βc 6= 0 is common in economics. Tobin’s Q is an obvious example: as Bartlett and Partnoy

(2020) describe, firms often have positive MV even when BV is near zero. Other examples

of ratios whose numerator is often not zero as the denominator approaches zero are return on

assets, debt-to-equity, and working capital (current assets/current liabilities). Firms often

have positive net income but near-zero book value of assets, debt with zero (or negative) book

value of equity, or positive current assets but zero or near-zero current liabilities. Moreover,

economic and financial ratios commonly describe abstract concepts such as firm performance,

profitability, or credit risk, where there is no clear mathematical relationship between the

numerator and denominator, linear or not.

Likewise, βME 6= 0 can hold even if βc = 0. Consider a study examining the effect of the

size of a city’s police force on the number of homicides per capita. When the population is

zero, so too will be the size of the police force, suggesting βc = 0. However, βME might be

non-zero. For instance, a change in the size of a city’s police force could affect the number of

homicides, even after controlling for city population (see, e.g., Marvell and Moody, 1996).6

6We discuss in Section 4 why using a log transformation of a ratio also solves some of the above problems.
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Our point here is to set forth a formal test for demonstrating that the zero bias conditions

for ratios as dependent variables are satisfied. The straightforward solution: use Equation

(6) to test whether these conditions hold.

2.3.2 A Test for the Magnitude of Bias

Second, we use the standard omitted variables framework to show how a researcher can test

the economic magnitude of any bias that results from omitting βc
1
BVi

or βME
xi
BVi

. In the case

of a bivariate regression such as Equation (1), β1 can be estimated by the following:

β̂1 =
cov(x, MV

BV
)

var(x)
(7)

where β̂1 represents the estimate of β1 in Equation (1).

Assuming that conditions (6a), (6b), and (6c) of the preceding test do not hold, we know

that Equation (2) should be used to estimate β1, which we now denote as βT1 for its “true”

value. To calculate the bias in β̂1, we substitute the right-side of Equation (2) for MV
BV

in

Equation (7):

β̂1 =
cov(x, β0 + βT1 x+ βc

1
BV

+ βME
x
BV

+ υ)

var(x)

= βT1 + βc

(
cov(x, 1

BV
)

var(x)

)
+ βME

(
cov(x, x

BV
)

var(x)

)
(8)

According to Equation (8), the bias in β̂1 will equal the sum of the second and third terms

above: a “constant” bias term plus a “main effect” bias term. The “constant” bias term is

equivalent to a linear projection of 1
BVi

on x, multiplied by the coefficient βc in Equation (2).

Likewise, the “main effect” term is equivalent to a linear projection of x
BVi

on x, multiplied

by the coefficient βME in Equation (2).

In other words, the magnitude of the bias arising from the omission of the “constant” and

“main effect” variables depends on the linear relationship between each of these variables
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and x, scaled by the size of their coefficients in Equation (2). Note that the net bias depends

on the sign of each term: same signs magnify the bias; opposite signs offset.7

We now have both a test and an intuitive explanation of the degree of bias that arises

from the use of a ratio as a dependent variable. Bias is greatest where: (a) both 1
BVi

and

x
BVi

are correlated with the dependent variable, (b) x is correlated with both 1
BVi

and x
BVi

,

and (c) the resulting “constant” term and “main effect” terms have the same sign.

2.3.3 A More General Matrix Approach

Finally, we generalize from the above bivariate framework so that we can test for bias when

there is more than one regressor of interest, as with the example of the relationship among

Tobin’s Q and both managerial ownership and its square. Equation (9) describes this more

general version of Equation (1):

Y = Xβ + υ (9)

7 This same approach also illustrates why using the common fixed effects estimator does not necessarily
eliminate bias in β̂1. Consider, for instance, Equation (1) with the addition of firm fixed effects:

MVit
BVit

= β0 + βi + β1xit + εit (F1)

where βi represents a firm-specific intercept. As is well known, we can obtained an estimate of β1 in the
fixed effects model through de-meaning the variables in Equation (F1):

MVit
BVit

− MV i
BVi

= (β0 − β̄0) + (βi − β̄i) + β1(xit − x̄i) + (εit − ε̄i)

¨MVit
BVit

= β1ẍit + ε̈it (F2)

where ¨MVit

BVit
, ẍit, and ε̈it represent de-meaned variables for each firm i. Similarly, adding firm fixed effects to

Equation (2) and de-meaning variables within firm yields:

¨MVit
BVit

= βT1 ẍit + βc
1̈

BVit
+ βME

ẍit
BVit

+ ϋit (F3)

where βT1 is the true, unbiased estimate for β1 in Equation (F1). Applying the same procedure utilized in

Equations (7) and (8), the bias in β̂1 is thus equal to:

β̂1 =
cov(ẍit, β

T
1 ẍit + βc

1̈
BVit

+ βME
ẍit

BVit
+ ϋit)

var(ẍit)

= βT1 + βc

(
cov(ẍit,

1̈
BVit

)

var(ẍit)

)
+ βME

(
cov(ẍit,

ẍit

BVit
)

var(ẍit)

)
(F4)

In short, as in Equation (8), the bias in β̂1 will likewise equal the sum of a “constant” bias term plus a “main
effect” bias term.
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where Y represents a vector of outcomes, X represents a vector of regressors (including a

constant) that omits 1
BVi

and x
BVi

, and β represents a vector of coefficient estimates for the

variables in X.

In such a generalized setting, the multivariate analog to Equation (2) is Equation (10):

Y = Xβ + Zγ + υ (10)

where Z represents an additional vector of omitted variables and γ represents a vector of

coefficient estimates for the variables in Z. For present purposes, we confine Z to be a vector

of variables that includes 1
BVi

and x
BVi

. We assume E[υ|X,Z] = 0.

We can estimate the vector β in Equation (9) as β̂ = (X
′
X)−1X

′
Y . To estimate the

bias that arises from the omission of Z from Equation (9), we substitute the right-side of

Equation (10) for Y and denote βT as the “true” β from Equation (10), so that:

β̂ = (X
′
X)−1X

′
(XβT + Zγ + υ)

= βT + (X
′
X)−1X

′
Zγ (11)

Accordingly, the vector β̂ will be biased in the amount of (X
′
X)−1X

′
Zγ.8 We can now test

the amount of bias by calculating this amount for each coefficient estimate in β̂.

Assume that δ is a K×M matrix where (i) K represents the number of included variables

in X and (ii) M represents the vector of coefficients for the k-th included variable from all

linear projections of the m omitted variables in Z on the full set of included regressors in

X. Recall from Equation (10) that γ denotes the (M × 1) vector of coefficients associated

with the omitted variables in Z. Therefore, the bias in the coefficient of the k-th included

regressor is:

Biask = γ1δk,1 + γ2δk,2 + ...+ γMδk,M =
M∑
j=1

γmδk,m (12)

8That (X
′
X)−1X

′
υ = 0 follows from the assumption that E[υ|X,Z] = 0.
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Finally, we apply this generalized test in Equation (12) to the “inverse U” example, in

which the regression specification omits both a “constant” variable, 1
BVi

, and two “main

effect” variables, Own
BVi

and Own2

BVi
. Recall that including these three variables significantly

reduced the coefficient estimate for Own2, the variable responsible for the “inverse U” rela-

tionship. In our generalized framework, these three variables are the vector of variables in

Z, and the coefficient estimates for these variables are γ1, γ2, and γ3, respectively, in the

vector γ.

In Table 3, we present the coefficient estimates from the linear projections of each variable

in Z on the full set of regressors in X, which includes Own and Own2.

Table 3

(1) (2) (3)
1
BV

Own
BV

Own2

BV

Own 0.000238∗∗∗ 0.00350∗∗∗ 0.0379∗∗∗

(0.0000113) (0.000213) (0.00681)

Own2 -0.00000401∗∗∗ -0.00000968 0.00191∗∗∗

(0.000000293) (0.00000550) (0.000176)

Observations 16,778 16,778 16,778

Robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We then use these data to construct δ, as shown in Table 4.

Table 4

(1) (2) (3)
m1 m2 m3

k1=Own 0.000238 0.00350 0.0379

k2=Own2 -0.00000401 -0.00000968 0.00191

Note that the coefficients in Table 4 are relatively small. Accordingly, the bias should be

small so long the coefficients for γ1, γ2, and γ3 are small. However, recall from Table 2

that γ1 (the coefficient estimate for 1
BVi

, or βc) was estimated to be approximately 83.0.

Consequently, the upward bias in Own is driven primarily by γ1δ1,1 and the downward bias
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in Own2 is driven by γ1δ2,1. The full estimates for bias using the test in Equation (12) are

as follows:

BiasOwn = 0.0002383(83.009) + 0.0035015(−5.63) + 0.0379096(0.093) ≈ 0.0035

BiasOwn2 = −0.00000401(83.009)− 0.00000968(−5.63) + 0.0019109(0.093) ≈ −0.0001

Accordingly, a researcher who used the above tests to calculate bias would see immedi-

ately that a regression examining the relationship between managerial ownership and Tobin’s

Q should include the omitted “constant” and “main effect” variables in order to avoid signif-

icant coefficient bias. The source of the bias is primarily the failure to include the “constant”

term, βc
1
BVi

.

3 Measurement Error

Next we turn to measurement error. Measurement error presents special problems in a linear

regression that uses a mismeasured ratio as the dependent variable. Indeed, as we show

below, measurement error in a ratio that is a dependent variable poses a kind of omitted

variable problem, but one that is thornier than the omitted variable problem discussed above.

Our central insight in approaching measurement error in this context is to distinguish

sharply between error in the numerator and error in the denominator of a ratio that is used

as an outcome variable. Error in the numerator can be addressed by standard techniques.

Error in the denominator cannot.

Moreover, the problems associated with measurement error in the denominator of a ratio

that is used as a dependent variable apply even if the omitted variable problems discussed

in Section 2 do not. Accordingly, measurement error in the denominator of a ratio that is

used as a dependent variable merits special attention.

We are not the first to address the special problems of measurement error implicated by

the use of ratios. For instance, a large literature within the Q-theory of investment examines

the bias that can arise because a mismeasured proxy for Q is used as a regressor (see, e.g.,

Erickson and Whited, 2012; Erickson and Whited, 2006). Researchers, however, have not
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examined the bias that can arise when these same proxies for Q are used as outcome variables,

as is common in corporate governance research, on the assumption that measurement error in

an outcome variable will not bias any slope coefficients (see, e.g., Gompers, Ishii, and Metrick,

2009). Likewise, those researchers who have examined the problem of a mismeasured ratio

that is an outcome variable have focused on settings where a researcher deflates all variables

in a regression by a common deflator that is measured with error. For instance, Briggs (1962)

examines how measurement error in a common deflating variable relates to the problem

of spurious correlation between variables that share the common deflator. Casson (1973)

similarly examines how measurement error in a common deflator might lead to inconsistent

estimates.

Our approach is more general. We illustrate why the nature of bias that results from

measurement error in a ratio that is used as an outcome variable—and relatedly, the proper

mode for addressing it—differs depending on whether the measurement error appears in the

numerator or the denominator. Although empirical researchers often address potential bias

arising from measurement error in the numerator of a ratio that is an outcome variable, we

are unaware of any papers that address the distinctive bias arising from measurement error

in the denominator.9

3.1 Measurement Error in the Numerator of a Ratio

When measurement error affects the numerator of a ratio that is an outcome variable, one can

adopt the standard approach to addressing measurement error in an outcome variable, which

assumes that measurement error is additive. Under this approach, a researcher concerned

that measurement error is correlated with a regressor of interest can address this concern by

finding an acceptable proxy for this error and adding it as a control.

9In their innovative paper examining measurement error in Tobin’s Q, Erickson and Whited (2006)
likewise examine how measurement error in the numerator of Q may pose a quantitatively different risk
of bias than measurement error in its denominator. However, their research focused on the use of Q in
empirical tests of the Q-theory of investment, in which a proxy for Q is used as a regressor, implicating
the risk that measurement error in the proxy will bias coefficient estimates towards zero. In contrast, we
examine the bias that arises from measurement error in the numerator and denominator of Q when it is used
as a dependent variable – a research setting that Erickson and Whited do not investigate given that they
assume that “measurement error [in a dependent variable] does not bias any slope coefficients” (Erickson
and Whited, 2006, p. 28).
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To illustrate, a researcher considering the effect of x on MV/BV , where MV is measured

with error, µ, might estimate the relationship between x and observable MV ∗/BV , where

MV = MV ∗ + µ, as follows:

MV ∗
i + µi
BVi

= β0 + β1xi + υi

MV ∗
i

BVi
= β0 + β1xi + υi −

µi
BVi

(13)

Is the additive measurement error (υi − µi
BVi

) in Equation (13) a concern? The answer is

typically no. Any additive measurement error will lead to bias in β1 only if x is correlated

with µi
BVi

. A researcher can correct any such bias by including as a regressor an observable

proxy for µ (or µ
′
), scaled by BV , as in Equation (14):

MV ∗
i

BVi
= β0 + β1xi + β2

µ
′
i

BVi
+ υi (14)

where E[υ| x,BV, µ′ ] = 0

We can estimate the bias in β1 that arises from omitting β2
µ
′
i

BVi
using the same omitted

variables technique we used in Section 2: assume β̂1 is the estimate of β1 in Equation (14)

that lacks an estimate for β2
µ
′
i

BVi
(i.e., assume a simple bivariate regression of

MV ∗i
BVi

on x)

and then substitute the full right side of Equation (14) for
MV ∗i
BVi

. Denoting βT1 as the “true”

estimate for β1 in Equation (14) we find that:

β̂1 =
cov
(
x, β0 + βT1 x+ β2

µ
′

BV
+ υ
)

var (x)

= βT1 + β2
cov
(
x, µ

′

BV

)
var (x)

(15)

As Equation (15) shows, additive measurement error simply requires the standard “correction

vector” for a single omitted variable, as in Greene (2008). The estimate β̂1 must be reduced

by the coefficient for β2 in Equation (14) multiplied by the linear projection of µ
′

BV
on x.

Adding
µ
′
i

BVi
as a covariate in Equation (14) eliminates bias in β1 when x is correlated with

µ
′

BV
.
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Measurement error in the numerator of a dependent variable ratio can be addressed using

the above approach if the denominator is measured precisely, or is simply a constant, because

measurement error is additive. However, different problems arise when there is measurement

error in the denominator.

3.2 Measurement Error in the Denominator of a Ratio

We illustrate the challenges posed by measurement error in the denominator of a ratio that

is used as an outcome variable by returning to Tobin’s Q. We use MV/BV as an illustrative

example for clarity, but the same analysis applies equally to any ratio.

As Bartlett and Partnoy (2020) describe, Tobin’s Q, as conceived in Tobin (1969), had

the replacement value of assets, RV , in its denominator. The original rationale for using

RV was powerful and intuitive: investment arose in Tobin’s macroeconomic model when

the market value of a firm’s assets was greater than their replacement value. However,

because RV was difficult and costly to observe, researchers began shifting in the 1980s from

attempting to estimate RV directly to using BV as a rough approximation. Researchers

also began to use this proxy for Tobin’s Q as an outcome variable for studying the effect of

corporate governance on firm value. Indeed, Gompers, Ishii, and Metrick (2009) call Q the

“workhorse” of large-sample valuation studies and follow the convention of estimating it as

MV/BV .

The shift from RV to BV in the denominator of Tobin’s Q was problematic because book

value is a poor measure of replacement value. For example, book value does not include many

intangible assets. Additionally, the accounting assumptions that are associated with book

value, including the requirement to record many assets at cost, cause book value to diverge

from replacement value. Most problematically, the reasons why BV can differ from RV are

generally endogenous to a firm; Bartlett and Partnoy (2019) demonstrate that measurement

error in using BV rather than RV is correlated with common regressors used in corporate

governance research.

When using the market-to-book proxy for Q as an outcome variable, researchers have

attempted to correct for any bias arising from measurement error in BV by turning to the

standard approach discussed in Section 3.1. For example, Wernerfelt and Montgomery (1988,
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p. 247) use a variation of Equation (1) and note that the proxy for Tobin’s Q “leaves intan-

gible assets out of the denominator, thus overstating the relative performance of firms with

large investments in intangibles.” As a “partial correction,” they include in their regression

specifications a control for “estimates of a firm’s current marketing and RD expenditures,

divided by the replacement cost of physical assets.” Such a control variable would be appro-

priate if the measurement error were in the numerator of the proxy for Tobin’s Q.

Unfortunately, the standard approach does not work when measurement error is in the

denominator. The contrast between approaches is apparent when we substitute BV mea-

sured with error for RV in the denominator of Tobin’s Q. We start with a specification

that resembles Equation (1), but with RV , the replacement value of a firm’s assets, in the

denominator.

MVi
RVi

= β0 + β1xi + υi (16)

We assume that Equation (16) poses none of the omitted variable biases discussed in

Section 2. For example, suppose from that framework that βc = 0 and βME = 0. The prob-

lems we are about to describe arise exclusively from measurement error in the denominator

alone.

Assume BV measures RV with error µ, such that RV = BV + µ. Substituting for RV

in Equation (16), we obtain:

MVi
BVi + µi

= β0 + β1xi + υi

MVi
BVi

= β0 + β0
µi
BVi

+ β1xi + β1
xiµi
BVi

+ υi + υi
µi
BVi

(17)

Note the complications that arise when a researcher is concerned that measurement error in

the denominator is correlated with a regressor of interest, as in Wernerfelt and Montgomery

(1988). Obtaining an unbiased estimate for β1 requires including in the model not only a

proxy for µi
BVi

but also for xiµ
BVi

. With this additional term, β0 estimates both the intercept

and the coefficient for the proxy for µi
BVi

. Likewise, β1 estimates both the coefficient for xi

and for the proxy for xiµi
BVi

. Finally, the error term is now υi + υi
µi
BVi

.
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These complications arise because, as suggested by Equation (3), β0 in Equation (16)

estimates the linear relationship between MV and RV , and the coefficient β1 estimates the

linear relationship between MV and the interaction of x and RV . By substituting BVi + µi

for RV and then using MV/BV as our outcome variable, recovering an unbiased estimate

for β0 and β1 requires including the terms µi
BVi

and xiµi
BVi

whenever µ is correlated with x.

We can calculate the bias in β̂1 when µi
BVi

and xiµi
BVi

are omitted from Equation (16). As

above, we define βT1 to be the true coefficient for β1 if these variables were included; βT1 will

also be the true estimate for β1 in Equation (16) if a researcher could observe RV . Assuming

E[υ|x,BV, µ] = 0, the bias in the estimate of β̂1 would therefore be as follows:

β̂1 =
cov
(
x, β0 + β0

µ
BV

+ βT1 x+ βT1
xµ
BV

+ υ + υ µ
BV

)
var (x)

= β0
cov
(
x, µ

BV

)
var(x)

+ βT1

(
1 +

cov
(
x, xµ

BV

)
var(x)

)
(18)

The correction vector for β̂1 is thus a function of the covariance of x with two omitted

variables, µ
BV

and xµ
BV

, rather than simply one, µ
BV

.10

In short, measurement error in the denominator of a ratio that is an outcome variable

requires adjustments that are more challenging than simply adding a single right-hand side

proxy for this measurement error. Given the complexity of measurement error in this context,

we next investigate the logarithmic transformation as an alternative.

4 Logarithmic Transformations of Ratios

Researchers commonly use logarithmic transformations when ratios are dependent variables,

citing outliers as one justification. For example, financial ratios such as the market-to-

book proxy for Tobin’s Q often have skewed distributions because many firms have very

low measures of book value (Erickson and Whited, 2012). Accordingly, it is common for

researchers to use the natural log of MV/BV (see, e.g., Gompers, Ishii, and Metrick, 2009).

10As in note 4, because E[υ|x,BV, µ] = 0, the law of iterated expectations dictates that cov(x, υ) = 0
and cov(x, υ µ

BV ) = 0.
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Equation (19) is a representative specification in the finance and economics literature; it

is the same as Equation (1), except that the dependent variable is expressed in logarithmic

terms:

ln

(
MVi
BVi

)
= β0 + β1xi + εi (19)

Equation (19) does more than simply address non-normality. It also avoids many of the

problems discussed in Sections 2 and 3. The reason is obvious: the ratio ln(MV/BV ) is

mathematically equivalent to ln(MV )– ln(BV ), and Equation (19) is therefore equivalent to

the following:

ln(MV ) = β0 + β1xi + ln(BV ) + εi (20)

Note that Equations (19) and (20) avoid some, but not all, of the problems posed by Equation

(1). First, they avoid the “main effect” problems. Recall that in Equation (1) MV was

assumed not to be related to x except when interacted with BV . In Equations (19) and

(20), ln(MV ) is assumed to be related to x independent of any interaction with ln(BV ). As

a result, β1 is a true main effect coefficient, and the omitted variable problem described in

Section 2 disappears.

Note that Equations (19) and (20) also do not assume a linear relationship between

ln(MV ) and ln(BV ) passing through the origin. Therefore, they also avoid the “constant”

problem associated with Equation (1). The additive nature of the logarithmic specification

avoids some of the ratio problem.

Finally, Equations (19) and (20) avoid the denominator measurement error problem dis-

cussed in Section 3. Instead, they present only the standard measurement error problems

associated with a non-ratio dependent variable (or, equivalently, the numerator of a ratio).11

However, Equations (19) and (20) also impose a new and problematic assumption: that

there is a one-to-one linear relationship between ln(MV ) and ln(BV ). Although researchers

often overlook this important assumption, it is apparent from Equation (20), where the

11As in Section 3, assume that RV = BV + µ, where µ represents measurement error in using BV as a
proxy for RV . MV/RV is therefore equivalent to MV/(BV +µ). If we further define φ to be BV/(BV +µ),
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coefficient of ln(BV ) is fixed at 1.0. In other words, Equations (19) and (20) assume that

the elasticity of MV with respect to BV is exactly one. We suspect most researchers would

find it surprising if a 1% increase in a firm’s book value always corresponded to an expected

1% increase in market value. In any event, it is possible to test this assumption empirically,

and also to calculate the extent to which this assumption creates bias.

We test this assumption and examine its implications with an example, returning to the

“inverse U” relationship between managerial ownership and Tobin’s Q. First, we replicate

the results of McConnell and Servaes (1990) using the same updated data from Table 1, but

with a logarithmic transformation of the dependent variable. Equation (21) describes the

specification.

ln

(
MVi
BVi

)
= β0 + β1Owni + β2Own

2
i + εi (21)

Table 5 presents the coefficient estimates.

Table 5

(1)
ln
(
MV
BV

)
Own 0.00652∗∗∗

(0.00138)

Own2 -0.0000609
(0.0000353)

Constant 0.462∗∗∗

(0.00513)

Observations 15,672

Robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

MV/RV would also be equivalent to φ(MV/BV ). Thus, measurement error affects Equation (19) as follows:

ln

(
φi
MVi
BVi

)
= β0 + β1xi + εi

ln

(
MVi
BVi

)
= β0 + β1xi + εi − ln(φ)

In short, measurement error is additive and poses the ordinary challenge of classical measurement error.
That is, if φ is correlated with x, adding a right-hand side regressor to proxy for measurement error can
address any bias in β1.
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Note that the positive coefficient for Own and the negative coefficient for Own2 remain con-

sistent with the original finding of an “inverse U” relationship between managerial ownership

and Tobin’s Q. Figure 3 illustrates this conclusion by presenting a plot of the fitted values

from these regression estimates against firm-year levels of ownership.
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Figure 3: Predicted Values of Ln(Q) As a Function of Managerial Ownership (Elasticity
= 1.0). Shaded region represents 95% confidence intervals.

Now we relax the assumption that the elasticity of MV with respect to BV must be one.

In Equation (22) we allow the elasticity to depart from 1.0 by estimating it directly:

ln

(
MVi
BVi

)
= β0 + β1Owni + β2Own

2
i + β3 ln(BVi) + εi (22)

Note that Equation (22) is mathematically equivalent to a specification with ln(MV ) alone

as the dependent variable and a coefficient for ln(BVi) of (1 + β3). Either specification will

generate the same coefficient estimates for Own and Own2.

Table 6 shows how dramatically the results have changed.
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Table 6

(1) (2)
ln
(
MV
BV

)
ln
(
MV
BV

)
Own 0.00652∗∗∗ -0.00806∗∗∗

(0.00138) (0.00140)

Own2 -0.0000609 0.000200∗∗∗

(0.0000353) (0.0000350)

Ln(BV) -0.0799∗∗∗

(0.00236)

Constant 0.462∗∗∗ 1.135∗∗∗

(0.00513) (0.0205)

Observations 15,672 15,672

Robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

As Column (2) shows, the coefficients of Own and Own2 have changed signs. Figure 4

plots the fitted values against Own.
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Figure 4: Predicted Values of Ln(Q) As a Function of Managerial Ownership (Elasticity
Estimated). Shaded region represents 95% confidence intervals.

The relationship between ln(MV/BV ) and managerial ownership is now an “actual U,”

not an “inverse U.” (When we re-estimate the coefficients in Column (2) of Table 6 using
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ln(MV ) as the dependent variable, we confirm that the coefficients and standard errors for

Own and Own2 are unchanged, as expected, and that the coefficient for ln(BV ) is 0.92, or

-0.08+1.)

What accounts for this different result? The culprit is in the third line of Table 6, where

the coefficient estimate of ln(BV ) is -0.08 (or, equivalently, the elasticity of MV to BV is

approximately 0.92; obviously, 0.92 is not 1.0). In this example, the elasticity assumption of

1.0 in Equation (19) was wrong.

The problem here, as in our earlier discussion, is that Own is strongly negatively as-

sociated with ln(BV ) while Own2 is strongly positively associated with ln(BV ). It is the

logarithmic variant of the above denominator problem. As a result of the associations be-

tween the variables of interest and the denominator of the ratio, the coefficient estimate for

Own in Column (1) is biased upward, whereas the coefficient estimate for Own2 is biased

downward. As noted above, given the prevailing assumptions about the relationship between

managerial ownership and Tobin’s Q, this particular instance of the ratio problem has echoed

throughout the literature. We suspect that this example is the tip of an iceberg of statistical

bias in the economics literature, arising from the correlation of variables of interest with the

denominators of ratios that are used as dependent variables in linear regressions.

Indeed, we close by referencing our findings, in a separate paper, that the results of

an important COVID-19 paper are reversed when we address the ratio problem. In their

2020 study published in Science, Tian et al. (2020) found that the suspension of intracity

public transport and closure of entertainment venues in China were associated with overall

containment of COVID-19 cases, averting hundreds of thousands of cases during the first 50

days of the epidemic. Their study exploited the variation across cities in the adoption and

timing of these control measures, which allowed them to study the effect of their adoption

and timing on COVID-19 cases. Notably, the variable of interest in this study was the natural

log of a ratio: the number of COVID-19 cases reported by each city during the first week of

the epidemic, scaled by the product of a city’s population and the number of individuals in

the city arriving from Wuhan (in millions) between January 11 to January 23.

Tian et al. assess transmission control measures cross-sectionally using a log-linear re-

gression and conclude that control measures are associated with a striking reduction in

28



COVID-19 cases, which is one reason the study has been so widely cited and influential.

The study also finds timing is important: cities that acted more quickly had significantly

fewer cases. However, given their regression framework, this findings rest on an assumption

that both the elasticity of COVID-19 cases to a city’s population and to a city’s Wuhan

inflows are exactly 1.0.

Using the data and code from Tian et al., we replicate their log-linear regression results

identically, as shown in columns (1) in Table 7. In column (2), we relax the 1.0 elasticity

assumptions by adding the natural log of population and Wuhan inflow as covariates. This

modified framework estimates the elasticities of COVID-19 cases to population and Wuhan

inflow rather than assuming each is 1.0.

The impact of relaxing the 1.0 elasticity assumptions is dramatic. As column (2) of Table

1 shows, the coefficient estimates are reversed for every covariate. Moreover, AIC and R2

indicate significantly improved model fit. Based on these data, the timing of restrictions on

intracity transit and closing entertainment venues had the opposite association: rapid imple-

mentation was associated with more COVID-19 cases, not fewer. Column (2) additionally

highlights the central reason why these results are so different: the estimated coefficients

for the natural log of population and Wuhan inflow are 0.484 and 0.079, respectively. (For

log-linear estimates one must add 1.0 to each estimate from Table 7.) As we illustrate in our

other paper, the failure of the 1.0 elasticity assumptions is critical because a city’s adoption

of COVID-19 control measures was correlated with both its size and its Wuhan inflows, thus

biasing the estimates found by Tian et al.
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Table 7

(1) (2)
Tian Original Tien Corrected

Arrival Time 0.271∗∗∗ -0.0640∗

(0.0782) (0.0252)

Suspension of intracity public transport
Implementation -12.71∗∗ 6.997∗∗∗

(4.625) (1.445)

Timing 0.463∗∗ -0.237∗∗∗

(0.171) (0.0532)

Closure of entertainment venues
Implementation -3.411∗∗ 0.802∗

(1.181) (0.362)

Timing 1.510∗∗∗ -0.286∗

(0.433) (0.134)

Log(population) -0.516∗∗∗

(0.0680)

Log(Wuhan inflow) -0.921∗∗∗

(0.0169)

Constant -1.176 3.182∗∗∗

(1.930) (0.642)

Observations 296 296

All variables are defined in Tian et al. (2020). Arrival Time is the arrival time (in
days) from the date of the first case in the first infected city (Wuhan) to the date
of the first case in each newly infected city. Suspension of intracity public transport
- Implementation is whether a city suspended inter-city bus service; Suspension of
intracity public transport - Timing is the number of days with which a city suspended
inter-city bus service; Closure of entertainment venues - Implementation is whether
a city closed entertainment venues; Closure of entertainment venues - Timing is the
speed with which a city suspended inter-city train service; Log(population) is the log of
a city’s population; and Log(Wuhan inflow) is the log of the number of phones tracked
as moving from Wuhan to each city between January 23 and February 15. Standard
errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

In sum, researchers who want to use a logarithmic-transformation of a ratio as an outcome

variable should include a control for the log of the denominator. Failure to do so will impose

an assumption that the elasticity of the numerator with respect to the denominator is exactly
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1.0. If this elasticity is not 1.0 and a covariate is correlated with the denominator, the

coefficient estimates may be biased, potentially severely.

5 Conclusion

In some contexts, the use of a ratio as an outcome variable poses little risk of omitted variable

bias or measurement error. For instance, a researcher might have good reason to believe that

both βc and βME are zero, and might likewise believe that the denominator of the ratio is

not measured with error. Some types of ratios, including percentages, might satisfy these

conditions. And of course, because the covariance of a constant with a variable is zero,

dividing by a constant will also be safe (i.e., it necessarily satisfies condition (6c) discussed

in Section 2.3.1).

But many ratios are problematic. In epidemiology and economics, for example, it is

typical that βc 6= 0 and βME 6= 0. Even with rates and percentages, it can be difficult to

rule out the possibility that measurement error affects the denominator.

Bartlett and Partnoy (2020) address some concerns about ratios by focusing on the misuse

of Tobin’s Q as an outcome variable representing firm value. In this paper, we extend this

work formally. We demonstrate that the previous critique was not merely historical or

theoretical. Our overall message is one of caution: researchers using statistical techniques

should scrutinize with care, and suspicion, regressions with ratios as dependent variables.
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