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Abstract

We study specialized lending in a credit market competition model with multi-dimensional
information. Two banks, equipped with similar data processing systems, possess “hard” signals
regarding the borrower’s quality. However, the specialized bank gains an additional advantage
through further interactions with the borrower, allowing it to access “soft” signals. In equilib-
rium, both lenders use hard signals to screen loan applications, and the specialized lender prices
the loan based on its soft signal conditional on making a loan. This private-information-based
pricing helps us deliver the empirical regularity that loans by specialized lenders have lower rates
and better ex-post performance. Our multi-dimensional information framework enables us to
discern between broader and more precise data, thereby capturing the emerging trend in fintech
lending where traditionally subjective information becomes more objective and concrete. We
finally endogenize the specialized lending with information acquisition, and discuss its various

economic implications.
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1 Introduction

Banks are crucial intermediaries in modern economies, serving as the main conduit between savers
and borrowers. One of their primary functions is to choose in which borrowers to invest, and as
it has long been recognized by the literature (e.g., Broecker, 1990; Riordan, 1993; Hauswald and
Marquez, 2003), competition among informed financial intermediaries in the credit market is central
to the stability and efficiency of financial systems.

Of significant importance, banks hold a diverse array of lending-related information, including
financial data on customers, collateral evaluations, and market and economic trends, not to mention
state-of-the-art data analytics. In practice, many lenders also specialize in certain industries and
companies by providing customized financial services and pricing, often by diligently collecting and
analyzing information about individual firms and sector-specific business practices. Moreover, the
banking industry’s evolution towards richer information categories aligns with the trend of big data
technology, which transforms qualitative or subjective assessments into quantifiable and objective
metrics, known as “hardening soft information” (e.g., Hardik, 2023).

Despite the remarkable technological advancement that could significantly impact the indus-
trial landscape of the banking sector, the prevailing literature on information-based credit market
competition predominantly focuses on binary signal realizations, overlooking the nuances of the
aforementioned intricate economics.! To bridge this gap, our paper introduces multi-dimensional
information into an otherwise classic credit market competition model similar to Broecker (1990),
which allows us to study specialized lending and its equilibrium implications on credit allocation.

We begin by presenting some key empirical facts that motivate our theoretical analyses. Panel
(a) of Figure 1, which we take from Blickle, Parlatore, and Saunders (2021), shows that banks
specialize their lending to specific industries—i.e., they have a “top” industry which accounts for
the largest share of their loans. On average, a bank’s “top” industry accounts for twice as much
of the bank’s lending portfolio as the second more preferred industry. What is more, as shown

to firms in

in Panel B of Figure 1, banks offer better terms—more specifically, lower loan rates
their top industry, and are better at identifying high-quality loans—hence less likely to be non-
performing—within their top “specialized” industry. These salient empirical patterns, which seem
to have strengthened over time since 2012, suggest that specialized banks can “undercut” the
non-specialized opponent lenders in their specialized industries.

As we mention above, the existing literature on bank competition with adverse selection has
predominantly focused on settings with binary signals. There, each lender actively competes only
upon receiving the positive realization, offering interest rates that are outcomes of a completely

randomized mixed strategy. Consequently, the bank strength is mechanically tied to the ex-ante

!One notable exception is Riordan (1993) who studies the setting in Broecker (1990) with N symmetric lenders
whose signal realizations are smooth; see literature review for more details. For the research question of specialized
lenders, asymmetric information technology is crucial.
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(a) Specialized lending (b) Difference in loan rates and performance

Figure 1: Specialization, loan rates, and performance. We plot the average loan portfolio concentra-
tion, measured as the share of C&I lending to one two-digit industry, and the average difference in loan rates
and performance in a bank’s top industry and all other industries. In Panel 1a, data is split into the average
bank’s “top” industry, its secondary industry, and all other industries. A bank’s top industry is defined as
the two-digit NAICS code industry into which a bank has invested the largest share of its portfolio. Panel 1b
plots (left scale) the average difference between the loan rates extended to firms in a bank’s top industry and
those offered to firms in other industries. Panel 1b also plots (right scale) the average difference hetween the
share of non-accruing (non-performing) loans in a bank’s top industry and the same share in other industries.
Source: Blickle, Parlatore, and Saunders (2021).

precision of each lender’s signal, leading to a stark information rent effect under which the stronger
lender charges higher interest rates ez post. This is counterfactual in light of Figure 1b.

Specialization in lending and its empirical regularity shown in Figure la suggest that private-
information-based loan pricing is important in credit market competition. In our model outlined
in Section 2, a specialized bank competes with a non-specialized bank. Each lender has a “hard”
information signal on the loan quality from data processing. Moreover, the specialized lender has
access to an additional signal coming from “soft” information about the borrower, based on which
the lender decides on the offered interest rate. These two signals may represent either two distinct
fundamental states—say “hard” and “soft” respectively—or just one single fundamental state that
dictates the overall quality of the project. Our preferred setting is the former: by emphasizing
the multi-dimensional information sources in credit market competition, later in an extension of
the model, we study an increase in the breadth of the “hard” signal by allowing it to cover more
underlying states.

We assume that, while the “hard” signal is binary and is “decisive” in that each lender makes
an offer only if it receives a positive hard signal, the “soft” signal—which differentiates our paper
from existing models (Broecker, 1990; Marquez, 2002)—is continuous which guides the fine-tuned

interest rate offering. Besides analytical convenience, this loan-making rule of the specialized bank




matches well with the lending practices observed in the real world. Essentially, in our model, the
specialized bank acquires two signals, one being “principal” while the other being “supplementary;”
the former determines whether to lend while the latter affects the detailed pricing terms.?

In Section 3, we fully characterize in closed form the competitive credit market equilibrium with
specialized lending, with the specialized bank’s interest rate schedule decreasing in its soft signal.
In fact, since the successful project’s payoff is capped, our specialized bank—even conditional on a
positive hard signal—withdraws itself from the competition after receiving a sufficiently unfavorable
soft signal. In contrast, the non-specialized bank behaves just like in Broecker (1990) with interest
rate offering fully randomized. Therefore by incorporating both hard and soft information, our
model delivers the key result of private-information-based pricing.?

Our model features a unique credit market equilibrium, which can fall into two distinct cat-
egories depending on whether the non-specialized bank makes zero profits or not as a result of
competition. In the first category of equilibria, the winner's curse dominates and pushes the non-
specialized “weak” bank to earn zero profits—therefore we call it a zero-weak equilibrium. In this
case, the non-specialized bank randomly withdraws from the loan market when receiving a pos-
itive hard signal, which increases the specialized lender’s monopoly power over borrowers. This
information rent enjoyed by the specialized bank pushes it to make less aggressive offers than the
non-specialized bank, as in He, Huang, and Zhou (2023). In the second category of equilibria, the
winner’s curse is less severe and the non-specialized bank makes a positive profit in equilibrium
(therefore always participates upon a positive hard signal)—we call it a positive-weak equilibrium.
The private-information-based pricing effect tends to dominate in this case, as the specialized bank
with less monopoly power makes more aggressive offers to get good borrowers.

In Section 4, we show the latter private-information-based pricing is crucial in delivering the
empirical regularity that loans of specialized lenders have lower rates, which we simply call “negative
interest rate wedge.” First, canonical credit competition models a la Broecker (1990), which feature
the information rent effect only, give rise to the counterfactual implications that the specialized
bank’s loans have higher rates. In contrast, the private-information-based pricing in our model
delivers a lower interest on loans granted by specialized banks, and as discussed earlier, a negative
interest rate wedge is more likely to occur in the positive-weak equilibrium where pricing based
on private information takes precedence (though, we formally show that a positive profit for the

non-specialized bank is not a prerequisite for achieving this result).

2 Alternatively, the principal signal represents the result of a credit screening test, while the supplementary signal
serves the role of internal ratings (of borrowers who are qualified for credit).

3Conceptually, this is similar to Milgrom and Weber (1982), in which the informed buyer who privately observes a
continuum of signal realizations in a common value auction bids monotonically based on its own private information;
see literature review for more details. In addition, one could extend the range of quoted interest rates by borrowers
to include infinity and interpret r = co as “rejection/withdrawal;” this way the lenders in the classic credit market
competition model in Broecker (1990) and Hauswald and Marquez (2003) also have private-information-based pricing.
However, Figure 1b is constructed based on interest rates of granted loans, and therefore loan rejection with 7 = co
cannot help explain the empirical regularity of lower interest rates of loans granted by specialized lenders.




As one of the main applications of our model, we conduct comparative statics of model predic-
tions on information technology. We vary two precision parameters in our baseline model, one for
the hard signals (for both lenders) and the other for the soft signal (only for the specialized lender).
When signal precision increases, either leveling the playing field across two lenders regarding hard
information or strengthening the specialized lender’s soft information advantage—it is harder for
our model to deliver a negative interest wedge. Intuitively, each precision makes the non-specialized
lender relatively “weaker;” this makes a zero-weak equilibrium—in which the information rent effect
tends to dominate—more likely to arise.

The information technology advancement in the past decades is richer than the higher informa-
tion quality (captured by greater signal precision, either hard or soft, in our model). More precisely,
an increasing information breadth/span witnessed in the last decade could be the driving force of
a stronger negative interest rate wedge observed in the data. To this end, Section 4.3 extends our
baseline model to allow for multiple fundamental states.* A hard signal that covers increasingly
more underlying states thus captures the notion of “hardening soft information,” facilitated by big
data aid machine learning technology in recent years. Interestingly, opposite to the implication
of a greater signal precision, an enlarged span of hard information offers non-specialized lenders a
certain edge against their specialized competitors, thus helping explain the time trend of interest
rate wedge documented in Blickle, Parlatore, and Saunders (2021).

We close our paper by studying two extensions in Section 5. First, we show that our equilibrium
characterization is robust to a general information structure. Second, we endogenize the information
structure in the baseline model by considering two ex-ante symmetric banks that compete on two
firms/industries. Lenders can invest in the hard information technology (which has a lump-sum
fixed cost and produces a binary signal of borrower quality in either firm); in addition, they can
acquire firm-specific soft information (which is a continuous signal and costly for each firm) and
hence becoming specialized. We provide conditions that support the “symmetric” specialization
equilibrium where, as in our baseline model, each industry supports one specialized lender and

another non-specialized lender.

Literature Review

Lending market competition and common-value auctions. Our paper is built on Broecker (1990)
who studies lending market competition with screening tests with symmetric lenders (i.e., with the
same screening abilities). Hauswald and Marquez (2003) study the competition between an inside
bank that can conduct credit screenings and an outside bank without such access. He, Huang, and
Zhou (2023) consider competition between asymmetric lenders with different screening abilities

under open banking when borrowers control access to data. Asymmetric credit market competition

“The model with multiple fundamental states, when admits a multiplicative structure, is isomorphic to our baseline
when lenders still receive two signals each covering different ranges of these underlying states, and therefore admits
the same solution.




can also naturally arise from the bank-customer relationship, as a bank knows its existing customers
better than a new competitor does.® In these models, for analytical tractability it is often assumed
that private screening yields a binary signal and lenders participate in bidding only following the
positive signal realization. In contrast to these papers, our paper considers competition between
asymmetric lenders with multiple information sources.

Fundamentally speaking, credit market competition is an application of common-value auctions,
and notably, the auction literature typically allows for general signal distributions (other than
the binary signal in the aforementioned papers).® For instance, Riordan (1993) extends the N-
symmetric-lender model in Broecker (1990) to a setting with continuous private signals. In terms
of modeling, our framework can be viewed as a combination of Broecker (1990) (hard information)
and Milgrom and Weber (1982) (soft information). It is worth highlighting that lenders are each
privately informed with hard information and hence break the Blackwell ordering of two lenders in
Milgrom and Weber (1982).7 However, the economics revealed by a setting with multi-dimensional
information can be fundamentally different, as highlighted by the distinction between information

precision and information span discussed in Section 4.3.

The nature of information in bank lending. Berger and Udell (2006) provides a comprehensive
framework of the two fundamental types of bank lending technology, i.e., relationship lending
and transactions lending, in the SME lending market.® A fundamental difference between these
two types of lending is related to the role played by information as highlighted by Stein (2002).9
Recently, based on Harte Hanks data, He, Jiang, Xu, and Yin (2023) shows a significant rise in IT
investment within the U.S. banking sector over the past decade, particularly among large banks.
They also establish a causal link between communication IT investments and the enhancement of
banks’ capacity for generating and transmitting soft information, which motivates our modeling of

the soft signal as the outcome of interactions with borrowers.

Specialization in lending. There is a growing literature documenting specialization in bank lending;

the early work includes Acharya, Hasan, and Saunders (2006). Paravisini, Rappoport, and Schnabl

5This idea was explored by a two-period model in Sharpe (1990) where asymmetric competition arises in the
second period {with the corrected analysis of a mixed-strategy equilibrium offered by Von Thadden (2004)). A
similar analysis is present in Rajan (1992).

5The early papers on this topic include Milgrom and Weber (1982) and Engelbrecht-Wiggans, Milgrom, and Weber
(1983), and later papers such as Hausch (1987); Kagel and Levin (1999) explore information structures where each
bidder has some private information, which is the information structure adopted in Broecker (1990).

"More precisely, one bidder knows strictly more than the other bidder. In this setting, one can show that the
under-informed bidder always makes zero profit; see also Engelbrecht-Wiggans, Milgrom, and Weber (1983).

8Relatedly, Bolton, Freixas, Gambacorta, and Mistrulli (2016) study the joint determination of relationship lending
and transactions lending. They find that firms that rely more on relationship banking are better able to weather a
crisis than firms that rely on transaction banking, suggesting a higher capital requirement for relationship banks.

% Along these lines, Liberti and Mian (2009) find empirically that greater hierarchical distance leads to less re-
liance on subjective information and more on objective information. Paravisini and Schoar (2016) document that
credit scores, which serve as “hard information,” improve the productivity of credit committees, reduce managerial
involvement in the loan approval process, and increase the profitability of lending.




(2023) show that Peruvian banks specialize their lending across export markets benefiting borrowers
who obtain credit from their specialized banks. Based on data for US stress-tested banks, Blickle,
Parlatore, and Saunders (2021) document that specialization is linked with lower interest rates and
better performance in the industry of specialization, pointing to a strong link between specialization
in lending and informational advantages. Our paper contributes to this literature by providing a
framework that can rationalize these patterns allowing us to understand the economic mechanisms

behind them and their implications more deeply.

Fintech. Our paper connects to the growing literature on fintech disruption.!? Empirical studies
document the use of alternative data in fintech lending, which is consistent with our emphasis on
the increasing span of hard information.!* In particular, Huang, Zhang, Li, Qiu, Sun, and Wang
(2020) show that unconventional data from the Alibaba platform, such as business transactions,
customer ratings, and consumption patterns improve credit assessment. Our paper emphasizes that
the recent development of cashless payments increases the scope of firms that could be assessed by
hard information (Ghosh, Vallee, and Zeng, 2022), and perhaps more importantly, the combination
of payments and big data technology enlarges the span of hard information.

The remainder of the paper is organized as follows. Section 2 presents the baseline model.
Section 2.3 characterizes the credit market equilibrium and Section 4 explores the economic impli-
cations of technology advancement within our framework. We present extensions of the model in

Section 5 and conclude in Section 6.

2 Model Setup

We first introduce the general model setting in Section 2.1. We then specialize the setting to a

multiplicative structure for uncertainty in Section 2.2, which renders great analytical tractability.

2.1 General Setting

We consider a credit market competition model with two dates, ¢ = 0, 1, risk-neutral agents, and
one good. There are two ex-ante symmetric lenders (banks), indexed by j € {A, B}. In the baseline

model, we consider only one borrower (firm); in the extension, we introduce a second firm.

Project. At t =0, the firm needs to borrow one dollar to invest in a (fixed-scale) risky project

that pays a random cash flow y at ¢ = 1. The cash flow realization y depends on the project’s

10Gee Berg, Fuster, and Puri (2021); Vives (2019), for instance, for a review of fintech companies competing with
traditional banks in originating loans.

U'Examples of alternative data include phone device and spelling (Berg, Burg, Gombovié, and Puri, 2020), mobile
phone logs (Agarwal, Alok, Ghosh, and Gupta, 2020). Along the line of our model with different dimensions of
information, Huang (2023) developed a theoretical framework wherein the importance of information concerning
underlying qualities varies between collateral-backed bank lending and revenue-based fintech lending such as Square.




quality denoted by 6 € {0,1}. For simplicity, we assume that

14+7 when8=1
y = (1)
0 when 6 = 0,

where 7 > 0 is exogenously given, i.e., only the good project has a positive NPV. We will later refer
to 7 as the interest rate cap or the return of a good project. The project’s quality @ is the firm’s

private information at ¢ = 0, and the prior probability of a good project is ¢ =P 0 =1).

Credit market competition. At date t = 0, each bank j can choose to make a take-it-or-leave-
it offer to the borrower firm or to make no offer (i.e., exit the lending market). An offer consists
of a fixed loan amount of one and an interest rate . The borrower firm accepts the offer with the

lowest rate if it receives multiple offers.

Information technology. Although the project qualities are unobservable, banks have access
to information about the borrower’s project quality before choosing whether to make an offer. We
assume that both lenders have access to “hard” data (say financial and operating data), which
they can process to produce a hard-information-based private signal h? for the firm. We call these
information “hard” signals. For simplicity, we assume that these hard signals are binary, i.e.,
W e {H,L}, with a realization H (L) being a positive (negative) signal; and that, conditional on
the (relevant) state, hard signals are independent across lenders. This hard signal structure is the
same as the one in Broecker (1990), and it captures the coarseness with which much of the hard
information is used in practice.!?

Additionally, we endow Bank A with a signal s, which captures the bank being “specialized”
in the firm. This assumption represents the major departure from the existing literature. Our
preferred interpretation of this additional signal is as a soft-information-based private signal, which
is collected after due diligence or face-to-face interactions with the borrower after on-site visits. We
assume that the firm-specific soft signal s is continuous, and its distribution is characterized by the
Cumulative Distribution Function (CDF) ®(s) and probability density function (pdf) ¢(s). Besides
mathematical convenience, the continuous distribution captures soft information resulting from
research tailored to the particular borrower and, therefore, allows for a more granular assessment

of the borrower’s quality.

Remark 1. Endogenous information structure. In our main analysis, we take the lenders’ informa-
tion technologies—specifically, Bank A being the specialized lender—as given. Section 5.2 endoge-

nizes this “asymmetric” information technology in a “symmetric” setting with two firms, a and b,

2oy example, credit scores are binned in five ranges even though scores are computed at a much granular level
and go from 300 to 850.




where Bank A (B) endogenously becomes specialized by acquiring both “hard” and “sof ? signals
of the firm a (b), while non-specialized Bank B (A) only acquires the “hard” signal of the firm a
(b). There, the key difference between hard and soft information is that a lender j only needs to
invest once—say installing IT equipment and software—to get two hard signals, one for each firm,

while soft information needs to be collected individually for each firm.

The information structure is incomplete unless we specify the correlations between the funda-

mental states and the two types of signals, to which we turn next.

2.2 The Setting with a Multiplicative Structure

Our main analysis focuses on the specific setting with a multiplicative structure for the state g,
say 6 = 6,0, with one state being “hard” and the other being “soft.” We generalize this setting to
multiple multiplicative states (characteristics) in Section 4.3; and Section 5.1 shows that the main

results are robust to a non-multiplicative environment.

Hard and soft fundamental states. One major simplification in our main setting is the com-
plete independence between soft and hard signals, achieved by introducing two multiplicative binary

states {0s,0)}, soft and hard, that jointly determine the project’s success f, that is,

1, whents =0, =1,
0= 0,0, = s (2)
0, when either 8, =0 or 05 = 0.

As a result, the prior probability of the state being “1” is ¢ = qnqs, where
@p=P0O,=1) and ¢ =P0;=1).

The conditional distribution of the signals reflects the information technology. As hard infor-

mation signals are binary, without loss of generality we assume that for j € {A, B},
P(hj:Hwh:l) = ay, IP’(hj:Lleh-—-0> = ag, (3)

where 1 —a, and 1 —ay capture the probabilities of Type I and Type II errors, respectively. Implic-
itly we impose that lenders have the same technology to process hard information, an assumption
that we relax later in Section 5.1. The bad-news signal structure in He, Huang, and Zhou (2023)
corresponds to o, = 1 and a symmetric signal structure has o, = g = o € (0.5, 1] as in Hauswald
and Marquez (2003). Our main numerical illustration focuses on the latter case, although the
equilibrium characterization does not rely on any specific structure.

For the continuous soft signal, without loss of generality, we directly work with the posterior




probability of the soft state being good 65 = 1 given the soft signal realization, i.e.,
s =Pr[f; = 1]s] € S = [0,1]. (4)

Recall that the pdf of s is ¢(s), so we have /01 s¢ (s)ds = g, due to prior consistency. Although
our theoretical characterization works for a general density function ¢(-), most of our numerical
illustrations use the specification that Bank A’s soft signal is a noisy version of the underlying
soft state 6, with the signal-to-noise ratio being captured by the precision parameter 7 (for more
details, see Section 3.3).

The specialized Bank A has both hard and soft signals {hA, s} while Bank B only has a hard
signal hf. Throughout we assume that the hard signal is “decisive” for participation: Bank j
participates if and only if it receives hi = H. For the specialized Bank A, the hard signal serves as
“pre-screening,” in the sense that the bank rejects the borrower upon receiving an L signal, while

upon an H signal it makes a pricing decision based on its soft signal s.

Remark 2. Principal and supplementary signals and relation to the literature. The equilibrium loan-
making rule of the specialized bank is practically relevant and new to the theoretical literature.
Essentially, the specialized bank has two signals, one being “principal” which determines whether to
lend, and the other being “supplementary” which helps its loan pricing.'® This is in sharp contrast
to the existing literature mentioned in the introduction where lenders make loan offers randomly
only conditional on the most favorable realization of their (binary) signals. By decoupling the
lender’s ez-post loan assessment from its ez-ante technology strength, our setting naturally delivers
the empirical regularity of lower observed loan rates extended by specialized banks.

Remark 3. Correlated hard signals. One widely-acknowledged aspect of information technology
advancement is that the lenders’ hard information signals become more correlated. For example,
the open banking regulation enables sharing financial data with potential lenders under customer
consent (He, Huang, and Zhou, 2023; Babina, Buchak, and Gornall, 2022), and as a result, lenders’
assessments become more alike. A simple modification of our framework captures this effect.
Suppose that with probability py, € [0, 1], lenders receive the same signal realization h® € {H, L}
and P (h¢ = H |0, = 1) =P (h¢ = L|0, = 0) = o; while with probability 1—pj, each lender receives
an independent hard signal according to Eq. (3). Our main analysis focuses on the baseline model

with pj, = 0, although Section 4.3 considers the comparative statics with respect of p,.

Parametric assumptions. It is useful to introduce notation for the joint distribution of hard
signals. We use subscript {222} to denote the events of the corresponding hard signal realizations.
This subscript takes a value from the set {HH,HL,LH,LL}, where HL says Bank A’s hard

information signal is H and Bank B’s hard information signal is L.

18 AJternatively, the principal signal represents the result of a credit screening test, while the supplementary signal
serves the role of internal ratings (of borrowers who are qualified for credit).




We denote by ppaps the joint probability of any collection of hard signal realization. For
instance, pyy =P (hA = H hB = H) = qpol + (1 —qn) (1 — ad)Q. Similarly, we denote by ppaps

the posterior probability of the hard state being one conditional on the hard signal realization, i.e.,
qrol

) ane2+(1—gn)(I-ag)®’

structure, given the collection of signals {H H, s}, the posterior probability of project success is

tpape = P (Hh, =1 1/1’*, hE ) For example, pgg = Under the multiplicative

]P’(HZl[hA:H,/LB:H,S) = ppy 8 (5)

To ensure that the pre-screening hard signal is “decisive,” throughout the paper we impose the

following parameter restrictions.

Assumption 1. (Strength of the hard signal)

a) Bank A rejects the borrower upon an L hard signal, regardless of any soft signal s:
dh (1 - au)F < (1 - (Ih) Qq. (6)
b) Bank B is willing to participate if and only if its hard signal hB = H:

Qh0uGsT > gy (1 — ) + (1 —qn) (1 — aq); (7)

Assumption 1 says that the hard signal has to be sufficiently strong (informative) to serve as
pre-screening of loan applications for both lenders. Condition (6), states that it is not profitable
for Bank A to participate in competition upon receiving a hard signal L even when the soft signal
reveals that the soft fundamental 8, is good with certainty. This condition implies that Bank B,
which only has the hard signal and is uncertain about the realization of the soft fundamental, also
chooses not to compete upon receiving h? = L. Condition (7) states that upon h? = H, Bank B
is willing to lend at the highest possible interest rate if it is the monopolist lender. This condition
also implies that Bank A, which also receives a soft signal, is willing to lend at the highest interest
rate if it is the monopolist lender upon h? = H if it also observes high enough realizations of its

soft signal.

2.3 Credit Market Equilibrium Definition

We now formally define the credit market equilibrium with specialized lending.

Bank strategies. Given our assumptions, in equilibrium, each lender makes a potential offer
only upon receiving a positive hard signal. Conditional the hard signal, we define the space of
interest rate offers to be R = [0,7] U co. Here, T is the exogenous maximum interest rate imposed
in Section 2.1 and oo captures the strategy of not making an offer. We denote Bank A’s pure

strategy by 74 (s) : S — R, which induces a distribution of its interest offerings denoted by

10




FA(r) = Pr (rA < 7') according to the underlying distribution of the soft signal. (We now take
as given that Bank A uses pure strategy, though we formally prove this result in Proposition 1.)
Below we show that the endogenous support of the equilibrium interest rates offered when making
an offer is a sub-interval of [0,7]. Therefore, with a slight abuse of terminology, we refer to that
sub-interval as the “support” of the interest rate distribution even though loan rejection (r = 00)
could also occur along the equilibrium path.

Bank B randomizes its interest rate offerings conditional on a positive hard signal in equilibrium.
In this case, we use F'2 (r) = Pr (7‘3 < r) to denote the cumulative distribution of its interest rate
offerings. Note that since the domain of offers includes r = oo which captures rejection, it is possible
mMFNm:PQB<mmB:H)gL

The borrower picks the lowest interest rate possible if multiple loan offers are ever available.
For instance, conditional on both banks receiving positive hard signals, if Bank B quotes B,
then its winning probability 1 — F4 (rB ) equals the probability that Bank A with soft signal s
offers a rate that is higher than 72, which includes the event that Bank A rejects the borrower
(r(s) = o00), presumably because of an unfavorable soft signal. Upon ties, which occurs when
r = rB < oo, borrowers randomly choose the lender with probability one half, although the
details of the tie-breaking rule do not matter as ties occur as zero-measure events in equilibrium.
When 74 = r8 = 00, no bank wins the competition as they both reject the borrower.

The following lemma, summarizes the discussion above and shows that resulting equilibrium
strategies in our setting are still well-behaved as established in the literature ( Engelbrecht-Wiggans,
Milgrom, and Weber (1983); Broecker (1990)). The key steps of proof are standard, though we

make certain adjustments due to the presence of both discrete and continuous signals.
Lemma 1. (Equilibrium Structure) Under Assumption 1, in any credit market equilibrium,
1. A lender j rejects the borrower upon W = L for j € {A, B},
2. Upon W = H, the lender may participate:

i) Bank A uses a pure strategy v (s) : S = R which induces a distribution FA (),
i) Bank B offers interest rate based on an endogenous cumulative distribution function

FB(r)y: R — [0,1];

3. The two distributions FJ (.), j € {A, B} share a common support [r,7] (besides oo as rejec-
tion). Over [r,T) both distributions are smooth, i.e. no gap and atomless, so that they admit

well-defined density functions. Al most only one lender can have a mass point al .
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Bank profits and optimal strategies. Conditional on hA = H and s, Bank A’s profit 74 (r |s),

when competing with its opponent lender B by quoting r € [r, 7], equals

™ (rls) = pun [1 —FF (T)] waps(L+7) =1+  par  lpgrs(1+r) =1, forr € [r,7].
S N~
hA=HhB=H A wins hA=H,hB=L

(8)
Bank A can also choose to exit by quoting r = oo, in which case 74 (0o |s) = 0. We then denote
Bank A’s optimal interest rate offering by 7 (s) = arg max,eg n (r |s).

Recall that Bank A cannot observe the realization of Bank B’s hard signal when making an
offer. With probability pz g, both banks get favorable hard signals H, and Bank A wins with
probability 1 — FB(r) if it offers », whereas with probability pyr Bank B receives a low hard signal
and Bank A faces no competition for the borrower. Morcover, whether Bank B participates in the
loan market affects Bank A’s expected quality of the borrower, which is captured by ppps and
pgLs. Importantly, since Bank B randomizes its strategy upon hB = H, from the perspective of
Bank A winning the price competition against Bank B is not informative about borrower quality.

This last observation is in sharp contrast with the problem of the non-specialized Bank B. A
standard winner’s curse ensues because the outcome of competition against the specialized Bank
Aris informative about 6s. More specifically, besides the possibility of competitor’s unfavorable
hard information as mentioned above, the non-specialized lender B who wins the price competition
also infers 4 (s) > 7P so Bank A’s soft information is unfavorable. Taking these inferences into

account, Bank B’s lending profits when quoting r are

n” () = pan [1 - F )] B w6y (14 7) = Ur <0 (9)] + o lownas (L+7) =1 (9)

N e
ht=H B wins hA=L
Bank B’s strategy F'Z(-) maximize its expected payoff
max /7rB (r)dFB (r). (10)

As a standard equilibrium property with mixed strategies, profit-maximizing Bank B is indifferent

between any action on its support.

Equilibrium definition. We now define the credit market equilibrium with specialized lending.

Definition 1. In any industry, a credit market equilibrium between a specialized lender (A) and
non-specialized lender B is a collection of strategies {TA (s); FB ()} such that r4 (s) maximizes
Bank A’s objective in (8) for any s € S, and FZ () solves Bank B’s problem in (10).
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3 Credit Market Equilibrium Characterization

To characterize the credit market equilibrium, we first take the equilibrium non-specialized Bank
B’s profit 78 as given and solve for the other equilibrium objects. Lemma 2 then solves for 7B,

which completes the construction.

3.1 Solve for Pricing Strategies of Lenders

Solve for r4 (s). Following Milgrom and Weber (1982), we start by solving for Bank A’s equi-
librium strategy 74 (s). Suppose that r4 (s) is decreasing, which will be verified later. From Bank
B’s problem, we know that it makes a constant profit 78 from any interest rate quotes; and if
FB (F) < 1 so that it chooses to reject the borrower upon H with some probability, we have B =0.
Then, when Bank B quotes r = 74 (s), conditional on h4 = H Bank B understands that it only
wins the customer when A’s soft signal is below s. Bank B, therefore, updates the belief about the
borrower’s quality accordingly—its posterior for the soft state is fdg td (1) dt.

On the other hand, conditional on h* = L, Bank B wins the borrower for sure. Plugging

rB = r4(s) in Bank B’s lending profits in Eq. (9), we have the following indifference condition:

= {pHH/vLHH /OS to (t)dt +pLH/-LLHqS] (1 +rf (3)) — (puu® (s) + pLu), (11)

B’s lending amount

B’s customers who repay
which holds for any 72 = r4 (s) € [r,7). It immediately follows that

oA () = w5 +SPHH‘I’ (s) +pLu
pupinH fo to () dt + pLapirngs

—1, when se€l31], (12)

where § is the highest realization of the soft signal such that Bank A quotes 714

§ = sup { slrf(s) = T} . (13)

For worse signal realizations, we further define « < § as the threshold such that A (7| z) = 0. It
is worth highlighting that @ = § could occur along the equilibrium path. Then it is straightforward
to show that 7 (s) = for s € [z, 5), and 74 (s) = oo for 5 € [0,2).

As shown in Proposition 1 below, the conjectured strategy 74(s), which is strictly decreasing,

. . 1 . . . . . o . . 5
gives the unique equilibrium. Define its inverse function 8° x(7*), which is also decreasing, as'®

Ay =00y for e [rn7); (14)

14 Recall the convention that sup {0} = inf S = 0.
5The function s*(r) is decreasing even over the entire range R = [0,7] U oo including rejection by quoting cc.
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and when 7 = oo we have s4(c0) = [0,2). Then, the two relevant cutoffs for Bank A’s strategy
can be succinctly written as § = sup sh (7), i.e., the highest signal that Bank A quotes T, and
& = sup s*(00), i.e, the highest signal that Bank A rejects the borrower. It is worth noting that §

may coincide with z, and we take the convention that rA(z) =T

Solve for F2(.). We now turn to Bank B’s strategy. In equilibrium, B’s strategy needs to
support 74 (+) in (12) to be Bank A’s optimal strategy. Bank A’s first-order-condition (FOC) that
maximizes its objective in (8), which balances the lower probability of winning against the higher
payoff from served borrowers, is

dF® (r
PHH <_—_dr—gl> lugps (L +7r)—1] + {])HH [1 —FB (7’)] UHHS +])HL,LLHLS} = 0. (15)

Bank A’s equilibrium strategy 7 (s) satisfies (15) for all s € [3, 1], which helps us pin down F B,

From Bank B’s perspective, by quoting r = r# (s), the corresponding marginal borrower type
(soft signal) is s (r). Writing everything in terms of r; when Bank B marginally cuts its quote by
dr, it gets ¢ (sA(r)) (—s? (r))dr additional borrowers of quality p mrrs™ (r) if there is competition,
which occurs with probability pyg. This gain is exactly offset by the marginal lower payoff from
the borrowers who are already served. Therefore, Bank B’ FOC is

s4(r)

PHH [¢> (SA(T)) (=5 (7“))] [/LHHSA (r(A+r) - 1} = pHH,uHH/O to (t)dt + prapLHgs -

additional borrowers existing borrowers

(16)
Using the expression for pgps® (r) (1 +7) — 1 in Bank B’s FOC (16) in Eq. (15) which captures
Bank A’s FOC, we have

+pHH [1 . (7')] pr s ) +puLpnns?(r) = 0.

sA r
dFB (r) | prapan fy ") 46 (t) dt + prainmgs
dr ¢ (sA(r)) sA' (r)

One can show that the above equation yields the following ODE, which pins down F By

(17)

dr

d PHHUHH [1 —~FB (7‘)] + PHLUHL 0
A pusy
PHHLHE fo ™ téd (t)dt + pLHMLHYS

Here is the intuition behind the differential Eq. (17). At any interest rate r, both lenders are
competing for the same marginal borrowers with quality pip - sA(r), that yield an expected profit
of ppy - s*(r) - (1+7) — 1. This term shows up in both lenders’ optimization conditions, i.e., (15)
for Bank A and (16) for Bank B. We denote by Q’(r) the size of the effective customer base of

14




Bank j € {A, B} when it offers interest rate r. Then,
QMNr) = punpan [1 - FP (7’)] s (r) + prLpmns® (r),

54 ()
QB(r) = ])HH,UHH/O tg (t) dt + pLuprugs-

Q4 and QP differ in that Bank A observes s while Bank B only knows that it gets borrowers with

s < s*(r) (it h* = H) or prior ¢s (if * = L). For Bank A, the marginal effect of price cutting on
Ay

/”;H [%r(%l] , where the division inside the bracket adjusts for the quality of the

soft fundamental of the marginal borrower. Then, Bank A’s optimal pricing strategy must satisf
) p g gy y

customer size is

’ A 7.) !
Q4(r) A A prpst(r) [ 57 (r) }
et i 1+7r)—1] = Yddr & =
[NHHSA(T) ' [MHHS () +7) ] Q—@—L papsi(r) (L+r) -1 Q)
MC on existing borrowers s4(r)
MDB on marginal borrowers
(18)
which is equivalent to Eq. (15)). On the other hand, for Bank B, which does not observe s, the
marginal effect on customer size is ;}%—E%i%%), implying an optimality condition of
QP'(r) A B pE s (r) QB(r)
—_—t s“(ry(1+r)—1) = r)dr = ,
oAy [pans ) (L) 1] g i A T =1 Q)

MC on existing borrowers
MB on marginal borrowers

(19)
which is exactly Eq. (16).1® Combining (18) and (19), we have:
[Q%)]’
Lt 1B A A
k] (7) . Q (T) d |:Q (T)/S (7‘):| :0, (20)

2= QR T ar | QP()

which is exactly our key ODE in Eq. (17).
The boundary condition FZ (r) = 0 defines the lower-end support of the offered interest rate.

Combining this bound with the ODE in Eq. (17) one can derive

10t () dt

1—FB (@)=
) qs

, for r € (r,7) (21)

6Readers might notice the important difference between the two lenders’ marginal effects of cutting their prices
on the quantity. For Bank A which observes the soft signal realization directly, its pricing decision should not affect

A ’
its quality; this is why we scale Q* frst by s and then take derivative, i.e., [%‘T(r%)] . In contrast, without observing

s directly, Bank B’s price cutting affects its inferred quality of the borrower (that it wins over Bank A). Therefore
we take the derivative of QZ(r), which includes the quality of its borrowers, and then scale by the quality of marginal
horrowers to avoid double counting.
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Figure 2: Equilibrium strategies s (r) for Bank A (left) and FB (r) for Bank B (right). In
both panels, strategies under 7 (i.e., positive-wealk equilibrium) are depicted in red with “4+” markers while
strategies with 7y (i.e., zero-weak equilibrium) are depicted in blue. In the zero-weak equilibrium, Bank A
(but not Bank B) has a point mass at 7o while in the positive-weak equilibrium, Bank B (but not Bank A)
has a point mass at 7. Parameters: g5, = 0.8, ¢; = 0.9, oy, = ag = a = 0.7, and 7 = 1.

as we have focused on the interior of the strategy spzlmce.17 It is clear that FB(r) < 1 for r € [r,7),
because FB (77) = q% fslA (- )=s tp(t)dt < 1; and Bank B’s strategy on the boundary 7 depends on
whether it is profitable in equilibrium: it either places a mass of 1 — F' BF—) = qls fos top(t)dt >0
on 7 if 78 > 0, or quotes r = oo (i.e., withdraws) if 75 = 0. Finally, we observe that parameters
on the hard signals do not enter FB(-) in (21) directly; but as shown later they do affect F' B()

indirectly via the endogenous lower bound r.

Illustration of lenders’ pricing strategies. Figure 2 illustrates the equilibrium strategies for
both lenders for two cases, 78 > 0 and 78 = 0 indicated by the subscripts “+” and “0,” respectively.
The exogenous parameter that drives the different profits for Bank B is the interest rate cap T,
which we denote by 74 > o depending on the equilibrium type. As one would expect, the greater
the borrower surplus the higher the lender’s profits. For ease of exposition, both figures are plotted
against interest rate r, so that the left panel is the inverse function s4(r) of Bank A’s quoting
strategy 74(s) (which is decreasing), while the right panel plots FB(r) which is Bank B’s CDF
for its interest rate offerings. We also plot the corresponding cutoff signals 8, at which Bank A’s
strategy hits 7, and 2, at which Bank A exits.

While we discuss the equilibrium strategies in more detail after providing a full characterization
of the equilibrium, Figure 2 highlights a key difference between the two types of equilibrium that
can arise, one with 78 = 0—the zero-weak equilibrium as the weak bank earns no profits—and

the other with 78 > 0—the positive-weak equilibrium as the weak bank earns positive profits. As

YIn deriving (21) we have used the fact that the two lenders share the same hard information technology. This
implies that the identity of the lender who receives high/low hard signal is irrelevant and hence prypiLy = PHLUHL.
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shown in Figure 2, in the case in which 78 = 0, Bank A has a point mass at Ty (corresponding to
s € (zg,80)) but Bank B does not, while in the case of 7B = 0 the opposite holds. This reflects
the competition at the interest rate cap and it is the exact manifestation of point ¢) in Lemma 1

(otherwise, lenders will undercut each other at this point).

3.2 Solving for the Equilibrium Profit of Bank B

In the last step, we solve for the equilibrium profits for Bank B, 7B, which then pins down the
entire equilibrium. Define sﬁE as the soft signal realization under which Bank A quotes 7 and
breaks even (therefore the superscript “BE"). Formally, using 7A(+) given in (8) and using the

strategic response of Bank B in Eq. (21),'8 SEE is the unique solution to the following equation

BE
SA
o ; to (t) dt _ ; —
nt (7" lsﬁE) = PHHIQ——?—(—)—— : [MHHsﬁE (1+7) - 1} +pHL [.UHLSEE (1+7) - 1] =0, (22)
8
which admits a unique solution inside the interval (0, 1).1% We define ng following a similar logic
as follows. Consider the case in which Bank B quotes the maximum rate 7. Then, the potential
winner’s curse implies that Bank B only wins the borrower when either Bank A’s hard signal is
hA = L or its soft signal is sufficiently unfavorable, i.e., s < ng . The break-even condition for

Bank B uniquely defines ng , as follows.

BE

SB
0=n"F) =pun [MHH (/0
BE

Lemma 2 below shows that the relative ranking between sz™ and sﬁE fully determines 7% and

+prupoags (L+7)—1].  (23)

tgb(t)dt) (1+7) — @ (s57)

% in equilibrium, with both being fully characterized explicitly. Intuitively, the equilibrium crucially
depends on which lender quoting 7 hits zero profits first when the soft signal goes down from the
top. If sﬁE < ng then Bank B hits zero profit first, and this supports the equilibrium of 7B =0

with § = sB%; otherwise we have 7B > 0 with § = s5PF.

Lemma 2. Given sﬁE defined in (22), the equilibrium Bank B profit is

BE
SA -
B = max { [PH]JMHH/O t (t) dt +]9LHMLHqs} (1+7) - (PHH‘I’ (8§E) + pLH) ,0} .

When sBE < sBE we are in the positive-weak equilibrium in which the weak Bank B makes a

ositive profit. and © = § = sBE. Otherwise, when sBE > sBE we are in the zero-weak equilibrium
p ¥4 ) A 3 B A q

8 Technically speaking Bank A quotes 7~ so that 1 — F® (T_) = ;15_ f;ﬁE to (t) dt, as (21) requires r € [1, 7).

YNote 74 (FIsﬁE) as a function of s5F is strictly increasing. Moreover, we have A (TISEE = 0) < 0 and
a (T IsﬁE = 1) = pun [pan (1+7) = 1]+ pur [pa (1+7) — 1] > 0; the latter is implied by that Bank A is willing
to make an offer given h* = H.
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where Bank B earns zero profits, with x < § = ng.

To understand the result, note that ng is the highest soft signal under which Bank A’s offer
hits 7, given 78 = 0.20 Moreover, recall that SEE is the level of soft signal under which Bank A
just breaks even when quoting 7. Then if ng < sﬁE , Bank A hits zero profit first, implying that
it will lose money upon receiving a soft signal s = ng < sﬁE . Combining these two pieces, we
know that quoting 7 at ng , under the assumption of 78 = 0, must be off-equilibrium for Bank A.
Therefore in equilibrium 7% > 0 and Bank A withdraws itself upon s < z = § = sBE. If on the
other hand ng > SEE , we are in the alternative scenario where § = ng and 72 = 0; Bank A who

is making a positive profit at ng will keep quoting 7 for s < ng , until s < z upon which it exits.

3.3 Credit Market Equilibrium

We now present the main result of our paper. The credit market equilibrium, which is fully
characterized analytically, not only helps us understand the observed pattern on interest rates
when some lenders are specialized but also allows us to study the implications of the evolution of

information technologies.

Credit market equilibrium characterization. The next proposition summarizes the credit

market equilibrium with specialized lending.

Proposition 1. (Credit Market Equilibrium) In the unique equilibrium, Bank A follows a
pure strategy as in Definition 1. In this equilibrium, lenders reject borrowers upon a low hard signal
realization b = L for j € {A, B}. Otherwise (i.c., when hi = H ), their strategies are characterized

as follows, with the equilibrium 7B given in Lemma 2.

1. Bank A with soft signal s offers

min n?tpun ®(s)tpLn - 1,7 for s €[z, 1],
r(s) = '

prapEH [, t(O)AAPLHILHE S (24)

00, for sel0,x).

The equation pins down r = r4(1). If s € (8,1} where § = sup sA(F), rA() is strictly

decreasing with its inverse function s*(-) = rACD (),

20Note that (23) can be rewritten as s5° = arg,¢ g sup r (snP = 0) = pup®)tpsn —1>F5.
I’HHI‘HH(.];) tp()dt ) +pLrrLHYs

(Recall we take the convention that argsup § = inf S = 0.)
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2. Bank B makes an offer with cumulative probability given by (1ixy =1 if X holds)

wsA (e
1 I ) byt

FP (r) = s :
L d(t)dt
1-— 1{7r’3::0} . _________fo fi(,) [, fOT ro=T7.

(25)

When 78 = 0, FB (F) = FB(77) is the probability that Bank B makes the offer (and with
probability qisf(f té (t) dt it withdraws by quoting rB = o0); when 8 > 0, FE(F) =1 and
there is a point mass of (—11: [Stg (t)dt at 7.

The proof for Proposition 1 mainly covers two issues. First, we prove that the FOC conditions
used in the equilibrium construction detailed in Section 3 are sufficient to ensure global optimality.
Second, somewhat surprisingly, thanks to the endogenous adjustment of 78 and r, we never need
to “iron” a la Myerson (1981) at the interior part of the range for equilibrium interest rates. In
fact, in our model, Bank A never bunches its quotes—except at 7 when the zero-weak equilibrium
ensues. (This is consistent with point 3 in Lemma 1 that states that Bank B will undercut if Bank

A bunches at some interior interest rate.)

Properties of credit market equilibrium. Figure 3 illustrates the main properties of the
credit market equilibrium with specialized lenders. For the purpose of exposition, we assume that

Bank A’s soft signal s is obtained from observing a noisy version of s, i.c., 85 + €, so that
s =E[0:]0s +¢]. (26)

Here, € ~ N (0,1/7) indicates a white noise, with the precision parameter 7 capturing the signal
to noise ratio of Bank A’s soft information technology.

The top two panels in Figure 3 plot both lenders’ pricing strategies conditional on making
an offer; they are different presentations of Figure 2, with Panel A plotting Bank A’s r4(s) as a
function of s (instead of its inverse function s4(r)) and Panel B plotting the density dF B /dr for
Bank B. As we explained above, r(s) decreases in s—that is to say, when the specialized Bank A
receives a more favorable soft signal about credit quality, it bids more aggressively with a lower rate
to win the borrower over the competitor Bank B. This strategic response to exploit the competitor
bank is weakened when the private assessment of credit quality is low, leading Bank A to scale
back. In fact, Bank A rejects the borrower when s < z. In contrast, as shown in Panel B, the
competitor Bank B randomizes as it only observes the hard signal.

Panel C plots the two soft signal cut-offs for Bank A, i.e., § at which it starts quoting 7 and =
at which it starts rejecting the borrower. Panel D plots the expected profits—E(74) and 78—for
two lenders. Both panels are plotted against the exogenous interest rate cap 7.

Recall that 7, which is the return of the good project, captures the surplus in competition. Thus,
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Figure 3: Equilibrium strategies and profit. In the top two panels, we plot equilibrium strategies for
both lenders. Panel A depicts 7(s) as a function of s and Panel B plots dFf B(r)/dr for as a function ;
strategies with 7, are depicted in red with markers while strategies with 7o are depicted in blue. Panel C
depicts Bank A’s thresholds 8 = sup s4(F) and x = sup 5"(00), and Panel D depicts the expected profits for
two lenders. Parameters: ¢, = 0.8, ¢, = 0.9, ay, =aq=a =07, and 7 = 1.

a higher total surplus gives rise to less fierce competition, and as a result, both lenders—including
the weak lender B—are making profits upon a favorable hard signal H. This immediately explains
Panel D, which shows that 7P turns strictly positive for sufficiently high 7. Put differently, the
model features a positive-(zero-) weak equilibrium when 7 is relatively high (low).

For a better illustration, consider the competition at interest rate 7. In the positive-weak
equilibrium (high 7’s), the non-specialized Bank B places a point mass on this interest rate, enjoying
some “local monopoly power” in competition as it is the only lender when Bank A rejects the
borrower upon s < § = z. This is possible because when the project’s surplus (captured by 7) is
sufficiently large, the nonspecialized Bank B is still profitable by quoting 7 despite the winner’s
curse.2! In contrast, in the positive-weak equilibrium (low 7’s), the specialized Bank A is the
monopolistic lender who places a point mass on this interest rate (when s € (z,8), as shown in

Panel C) while the nonspecialized Bank B withdraws.

21'Bank B who quotes 7 gets the borrower too if Bank A receives an unfavorable hard signal h”* = L. Despite this
winner’s curse, the surplus is sufficiently high so that the nonspecialized Bank B is still profitable by quoting 7.
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4 Economic Implications on Information Technology Advancement

We now discuss the model’s implications from the perspective of information technology. We first
show that the private-information-based pricing featured in our model generates the empirical
regularity observed in Figure 1b. We then extend our baseline multiplicative setting with two
states to the one with many states, and show that the expanded scope of hard information, which
is distinct from an enhanced quality of hard information, aligns more consistently with the time-

series pattern displayed in Figure 1b.

4.1 Specialized Lending: Loan Performance and Interest Rate

An econometrician observes the granted bank loans that are accepted by borrowers. Put it differ-
ently, the loans that we use to calculate loan quality and interest rates are already on the book of
lenders who won the bidding competition.

In our credit market competition setting, when Bank A makes a loan offer (r4 < 00), it would
be accepted by the borrower if rd < rB < 0, ie., either there is no offer from Bank B (when
e = L), or Bank A’s rate is lower. Therefore the theoretical counterparts of the objects of interest
in Figure 1b are i) the (better) performance of the loans granted by the specialized lender relative

to those granted by the nonspecialized lender:

E[6:1|rA<7~Bgoo]—E[6=1|rB<7~Agoo]>0, (27)

quality of A’s loan quality of B’s loan

and ii) the (lower) interest rates of granted loans charged by the specialized lender relative to those

by the nonspecialized lender:

Ar=E [7'AI A < B < oo] —-E ['}'B

B <t < oo} < 0. (28)

interest rate of A’s loan interest rate of B’s loan

In Figure 1b, we plot the within-bank differences; it is the wedge of loan qualities or rates in
the same bank’s specialized and non-specialized industries. They indeed match the theoretical
counterparts in (27) and (28): once we endogenize the information acquisition decisions in Section
5.2, the Bank A who specialized in industry a also serves as the non-specialized lender in industry
b (which plays the same role as Bank B in industry a).

The positive loan quality wedge in (27), i.e., better-informed lenders are with higher quality
loans, is driven by the information advantage of specialized lenders and hence a robust prediction
of any information-based models. The following analysis thus focuses on the interest rate wedge

(28) between two lenders.
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4.2 Information Rent vs. Private-information-based Pricing

We now discuss two important economic forces in typical credit market competition models that

drive the interest rate wedge (28).

Canonical models: information rent In canonical credit competition models a la Broecker
(1990), information technology is parameterized as the signal precision, which captures the lenders’
ability to screen out uncreditworthy borrowers. Within this framework, the most natural way
to capture “specialized lending” is by imposing asymmetric screening abilities, along the line of
Marquez (2002); He, Huang, and Zhou (2023). Specifically, let lender j € {A, B} receive a signal

regarding § with the following binary distributions
P(h =Ho=1) =P (W =L|g=0) =d,

with o > of so that the specialized Bank A has a higher precision than the nonspecialized Bank
B.22 As emphasized in the Introduction, here only quantity decisions (i.e., whether to lend or not)
are based on the signal realizations while pricing decisions (offered interest rates) are randomized.
~ As Bank A’s private signal is more precise, the weak lender B is more concerned about the
winner’s curse, i.e., picking up a “lemon” that is assessed as L and rejected by the competitor lender.
This in turn results in an information rent and monopoly power for Bank A: when a?—aPf >0is
sufficiently large, Bank B randomly withdraws even after receiving a favorable signal hB = H, in
which case Bank A is a monopolist.
This economic force, which we term as information rent, drives the specialized Bank A to have
a higher loan rate than Bank B, opposite to the empirical regularity documented in Figure 1b.
Proposition 2, combined with empirically relevant primitives calibrated in Appendix A.3,%3 implies
that in canonical models Bank A’s loans would have higher rates even when aB 1 a?. Presumably,
the information rent effect is stronger when the gap in information technology, i.e., at—af >0is
larger.?* The formal theoretical result in Proposition 2 therefore allows us to argue that canonical

models generate counterfactual empirical implications on rates.

22T)is setting is nested in our model by shutting down the soft information possessed by Bank A, either simply
setting the space of soft signal to be degenerate S = {gs} or shrinking the breadth of soft information (to zero) as
modeled in Section 4.3), and allowing for asymmetric hard signal informativeness among two lenders.

“Z3We calibrate ¢ and « based on two empirical moments in the U.S, banking industry. First, according to this
Federal Reserve report the non-performing loan (NPL) ratio is about 2%; second, Yates (2020) reports that that the
approval rate for business C&I loans ranges from 55% (small firms) to 80% (large firms). Matching to these two
moments in Appendix A.3 we show that the implied parameters violate ¢ < 1 - a+a? in Proposition 2. For instance,
taking an approval rate of 70%, we obtain ¢ = 0.9629 and «a = 0.716, which violate ¢ < 1 — o + o®. Note that our
conclusion is independent of the parameter value of 7, which is harder to gauge. (One could set T = 36% according
to the usury law in many states that caps interest rates, but it only applies to consumer loans.)

21 Although we have not been able to prove this claim formally, it is confirmed in all of our numerical exercises.

22




Proposition 2. (Counterfactual Prediction in Canonical Models) Suppose that at = «
and of 1+ «. Then (28) holds (so that the interest rates of loans granted by the stronger bank
are lower than those by the weaker bank) only if 1—% < g < 1—a+a® The empirical relevant

parameters on q and a, as shown in Appendiz A.3, violate this condition.

Private-information-based pricing By introducing Bank A’s informed rates offering, our
model naturally generates the empirical regularity that “specialized banks feature lower observed
rates” shown in Figure 1b. As illustrated by Panel A in Figure 2, the specialized Bank A who
receives a more favorable soft signal about credit quality bids more aggressively (i.e., offers a lower
rate) to win the borrower over the competitor Bank B. In fact, Bank A rejects the borrower when
its soft signal falls below a certain threshold (i.e., s < z). In a positive-weak equilibrium, Bank B
then enjoys some “local monopoly power” by having a point mass at 7 and is the only lender when

Bank A rejects the customer upon s < z.%8

A special case of uniformly distributed soft signal To establish the robustness of our main
result, in Proposition 3 we present an interesting special case where the two aforementioned effects—
information rent and private-information-based pricing—equalize, and the lenders have the same
interest rates on their granted loans. This special case corresponds to degenerate hard information

and a uniformly distributed soft signal.

Proposition 3. (A Special Case of Uniform Distribution in Our Model) Suppose that
the hard signals are degenerate (either at=af =1 or %), and the soft signal follows a uniform

distribution s ~ U [0,1]. When T = co, we have Ar =0 and 7% = 0.

There are two important implications of this proposition. First, starting from this benchmark,
any tilting toward the new force of private-information-based pricing—e.g., tilting more masses
toward favorable soft signals—would generate the desired empirical regularity. Second, although
our numerical examples show that Ar < 0 often arises in positive-weak equilibria, 72 > 0 is not
necessary: the previous point provides one counter-example with 78 = 0 (under degenerate hard

information.)

Information technologies and interest rate wedge We now study the comparative statics
of the interest rate wedge Ar with respect to information technologies in our model, which are
captured by two distinct parameters: the hard signal precision « that affects both lenders equally,

and the soft signal precision 7 that benefits only the specialized lender.

25Tn contrast, in canonical models, even if the weak bank may earn rofits given a high borrower surplus (say large
Y P g g

g,7), it never enjoys the “local” monopoly power—the strong bank never withdraws upon H while the weak bank

never has a point mass at 7 (as the signal only determines participation).

23




Panel A: Interest Rate Wedge Ar Panel B: Bank A’s Cutoffs
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Figure 4: Interest rate wedge and equilibrium strategies. Panel A and Panel C depict Ar =
E [1‘Al rA < rB < oo] -E [TB] rBrd < oo] as a function of o and 7. Panel B and Panel D depict Bank
A’s strategy cutoffs § = sup s(F) and 2 = sup s (c0) as functions of o and 7, where § is in dashed line and
 is in solid line. The positive-weak equilibrium arises when o or 7 lies below certain value so that § and =z
diverge. Parameters: 7 = 0.45, ¢, = 0.8, ¢ = 0.9, 7 = 1 (top two panels) and oy = ag = = 0.7 (bottom
two panels).

Figure 4 plots the interest rate wedge and Bank A’s two cutoffs as a function of the informa-
tion technology parameters. The general pattern is that when information technology improves—
regardless of a (Panel A and B) or 7 (Panel C and D)—the credit market competition is more
likely to be in the zero-weak equilibrium where the nonspecialized Bank B is sufficiently “weak”
and hence makes zero profits. This is intuitive because i) a higher hard signal precision o levels the
playing field on hard information and hence effectively enlarges the soft information advantage of
the specialized bank, and ii) a higher soft signal precision 7 directly boosts the specialized bank’s
soft information advantage. Since the effect of private-information-based pricing tends to dominate
in a positive-weak equilibrium, a sufficiently low information technology helps deliver a negative
interest rate wedge, as shown in Panel A and C in Figure 4.

The comparative statics of increasing o or 7 seems inconsistent with Figure 1b. There, we
observe not only a negative interest rate wedge but also its discernible decreasing trend over the
years, during which we witness remarkable advancement in information technology in the banking
industry. We, however, believe that conducting comparative statics on precision parameters (ev or

) is an overly simplified approach and overlooks the numerous recent crucial innovations in infor-
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mation technology. As we show next, our model, once incorporating multi-dimensional information,
enables us to investigate alternative comparative statics, thereby providing a more profound insight

into the observed pattern.

4.3 Information Span and Hard vs. Soft Information

A generalization with multiple characteristics To provide a framework for studying the
relative importance of hard information versus soft information, consider the following simple ex-
tension of the main model. Suppose that the success of the project ¢ depends on N characteristics,

again in a multiplicative way:

N
0=1] b (29)
n=1
For each n € {1,---, N}, we assume that {6,} follows independent Bernoulli distributions, i.e.,

0,, = 1 with probability ¢, € [0,1]. When N = 2 the specification in Eq. (30) degenerates to the
baseline model in Section 2 with hard and soft states (i.e., 8 = 61 and 65 = 03).

Suppose that, as the baseline model in Section 2, lenders can only access one hard signal and
(potentially) one soft signal. More specifically, we assume that there exists a threshold N} such
that the signal collected from hard information is about characteristics below Nj, while the signal

collected from soft information is above. That is to say,

Oy, B
H’\-\ r—-ﬁb\
N Ny, N
0=T]6n=1]0~- Il 0n (30)
n=1 n=1 n=Np+1

The relative ranking of characteristics plays no role in our analysis, and it is clear that our previous

analysis in Section 2.3 applies to the general case of N > 2 and N < N, once we specify

Ny N
qn = H Gn, and g5 = H Gn- (31)
n=1 n=Np-+1
This is because 0y, as a sufficient statistics of {8,;n € {1, , Nu}}, takes the value of 1 with proba-

bility g; a similar statement holds for 6 which is a sufficient statistics of {6,,:ne{Ny+1,--+,N 1
Given this, the extension maps exactly to the multiplicative setting in Section 2.2.

Now we take the hard characteristics cutoff N ,71’ as a parameter. When N ,? varies, say IV, ,7 = Np+
N, with N, € Z, the information content covered by the hard signal varies.?8 Fixing the borrower
quality 8; the larger the N, the greater the hard signal’s information content, as 9) = H::QILN” 6,

covers more characteristics of the borrower. This way, the relative importance of the hard signal

can be parameterized by Ny, which is directly linked to g, and gs as suggested by Eq. (31).

®For NJ € [0, N] to be well defined we require —Np < Ny <N — Ni.
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To operationalize this idea, it is notationally more convenient to work with a continuum of
characteristics. Consider the limit of the discrete characteristics outlined above with n € [0,2].
Suppose that the success probability of characteristic n is Pr(6, = 1) = elnan)dn 1 with ¢, €

(0, 1).27 Then, given independence, the prior probability of project success is

ah qs

2 Np, 2
q = exp (/ In qndn) = exp </ In qndn> - exXp (/ In qndn>. (32)
0 0 Np,

Our baseline model, similar to Eq. (31), can be recovered by setting ¢, and ¢s as in Eq. (32).

To study the relative importance of hard information, note when the hard information cutoff

N, varies we can define g} and g7 as follows so that ¢ = ¢)/¢¥ still holds:
q; ql

q = exp (fON” In q,,,dn) - exp (f]]\\,if’+/\7" In q“,dn> - exXp (ff%’thNn In qn,dn> . (33)

qh qs

Information span and hardening soft information The framework developed here allows
us to investigate the concept of “hardening soft information.” Introduce a new parameter 1, which

summarizes the span of hard information in a more succinet way: (the Greek letter 7 corresponds

to the letter h)
'Nh’*'N1
7 = exp </ ] (—lngy) dn) . (34)
N

h

The information span 7 is a monotone (decreasing) transformation of N,; and the model parame-

terized by 7 admits the solution given in Section 2.3 with a modified prior pair {q}, q7}:

_
qZ:T;, and ¢ = ¢sm. (35)

Note that 1 > 1 if and only if N,) > 0, i.e., when the hard signal encapsulates more characteristics.
All else equal, the larger 7, the broader the span of hard information, and the greater the hard
signal’s information content (and capturing more of information that was soft previously).

Our model, by incorporating multi-dimensional information, highlights the distinction between
the information span 7 and information technology parameters (say «). The former measures the
scope/breadth of hard information while the latter measures the quality of hard information. Both
are significant parts of the astonishing technological advancement in the past decades but with
important differences. When the computer was introduced, it was faster and easier to process and

compile bank statements. This improvement in processing made inforimation more precise but did

27We have Pr(f, = 1) < 1; this is because e )" =~ 1 + Ing, - dn < 1 if g € (0,1).
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Panel A: Banks A's Strategy: s*(r) Panel B: Banks B’s Strategy: FZ(r)
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Figure 5: Equilibrium strategies s (r) for Bank A (left) and FB () for Bank B (right). In both
panels, strategies under 1, (i.e., positive-weak equilibrium) are depicted in red with “4” markers while
strategics with 1 (i.c., zero-weak equilibrivin) are depicted in blue. In the zero-weak equilibrium, Bank A
(but not Bank B) has a point mass at Ty while in the positive-weak equilibrium, Bank B (but not Bank A)
has a point mass at 7. Parameters: # = 0.36, ¢, = 0.8/1, ¢s = 0.99, a, =g = = 0.7, and 7 = 1.

not change its scope much. However, the use of “big data”, a distinctive trend in information
technology during the last decade, has changed what can be inferred from hard information (think
of Amazon predicting consumer preferences). In fact, as many scholars have argued, big data
technology has expedited the process of “hardening soft information” by converting subjective or
qualitative data (soft information) into more objective or quantifiable (hard) metrics; for recent
evidence in the banking industry, see for example in Hardik (2023). By incorporating multi-
dimensional information, our model allows us to study the distinction between these two economic
forces, which, as we explain shortly, have distinctive economic implications regarding credit market
competition.

Figure 5 plots two lenders’ equilibrium strategies as a function of r, when we vary n. Similar
to Figure 2, we pick two levels of 7 so that one generates a zero-weak equilibrium while the other
generates a positive-weak equilibrium. We observe that a higher 7, i.e., when hard information span
gets broader, a positive-weak equilibrium ensues (ved lines with markers). In contrast to Figure 2
where we vary the exogenous good project returns, 7 is fixed in Figure 5. Given a higher n, the
endogenous lower bound r adjusts downward, and more fierce competition leads to a wider range

of observed interest rates. We explain the intuition in the next section.

Economic implications of information span 7 To understand the comparative statics of n,
consider two polar cases. When 7 | gn, which corresponds to the case of Ny = —~Nj, < 0 so the
entire vector of characteristics is collected by the soft signal, our model is reduced to Milgrom and

Weber (1982) so that only one of the two competing lenders is informed (has soft information). In
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this limiting case, the nonspecialized Bank B is totally uninformed and hence earns zero profits in
equilibrium. In contrast, when 1 1 ;}:, which corresponds to the case where N, = 2 — N > 0 so
the entire vector of characteristics is collected by the hard signal, our model is reduced to Broecker
(1990) so that two banks who are competing on hard information are symmetric. From Broecker
(1990) we know that both banks are making positive profits when T is large enough.

The numerical example in Figure 5 is consistent with the above discussion on the two limiting
cases. In fact, the next proposition formally establishes a desirable monotonicity, so that a positive-

weak equilibrium arises if and only if when 7 is sufficiently high.

Proposition 4. (Monotonicity of Information Span) There exists a cutoff /i such that when
n >, we are in the positive-weak equilibrium with 78 > 0 and while when n < 7 we are in the

zero-weak equilibrium with B =0,

Figure 6 plots the model implied interest rage wedge against the information span 7 (Panel A),
together with Bank A’s two endogenous cutoffs (§ and z, Panel B). We observe a different pattern
from the one that emerges by changing information technology parameters (o and 7) in Figure 4,
as the interest rate wedge turns negative when 7 rises. This is easy to understand given Proposition
4, since a higher 7 gives rise to positive-weak equilibria where the private-information-based pricing
effect tends to dominate the information rent effect (Section 4.2).

The striking difference between the information span n and signal precision parameters (say
o or 7) is worth highlighting. Take the hard information in our model as an example. As we
have emphasized, o measures the quality of hard information while 5 captures the scope /breadth
of hard information, and the latter has increased dramatically in the past decade—e.g., Amazon
uses consumers’ footprints to predict their preferences, reflecting the trend of “hardening soft
information” where qualitative or subjective data are converted to objective or quantifiable (hard)
metrics. A greater hard information precision «, which leads to an opposite prediction regarding
interest rate wedge as shown in Figure 4, will miss this empirically important effect of “hardening

soft information.”

4.4 Correlated Hard Signals

For a further illustration of the potentially different aspects of information technology advancement,
Panels C and D in Figure 6 provide comparative statics with respect to the correlation p, € [0,1] of
hard signals across two lenders. Recall from Remark 3 in Section 2.2 that our model can be easily
extended to allow for correlated hard signals, as follows: with probability pp, € [0, 1] lenders receive
the same binary signal realization h¢ € {H, L}, while with probability 1— p,, each lender receives an
independent binary hard signal. This captures the recent technology trend that the lenders’ hard

information signals become increasingly correlated; for instance, open banking regulation studied
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Figure 6: Interest rate wedge and equilibrium strategies. Panel A and Panel C depict Ar =
E [TA‘ rt < B < oo] -~ E [rB| rB < i < oo] as a function of n and py. Panel B and Panel D depict Bank
A’s strategy cutoffs § = sup s”(7) and 2 = sup s (co) as functions of 7 and pp, where § is in dashed line
and 2z is in solid line. The positive-weak equilibrium arises when 7 exceeds a certain value or p;, falls below
a certain value. Parameters: 7 = 0.36, ay = ag=a = 0.7, 7 =1, p, = 0, ¢ = 0.8/n, ¢s = 0.9n (Panel A
and B) and g5 = 0.8, ¢s = 0.9 (Panel C and D).

in He, Huang, and Zhou (2023) and Babina, Buchak, and Gornall (2022). We provide a detailed
analysis of this extension in Appendix A.6.

We observe in the bottom two panels on Figure 6 that a larger pj leads a zero-weak equilibrium
more likely to occur, hence is unable to generate the desired empirical regularity of Ar < 0. In
the extreme case in which p, = 1, the hard signal becomes a public signal, and Bank B who
becomes effectively uninformed ends up with zero profit (Milgrom and Weber, 1982). It is also
worth mentioning that, from the perspective of our model, the economic implications of pp, which
is more about data sharing, are qualitatively similar to that of changes in signal precision studied

in Figure 4 but opposite to the ones focusing on information span investigated in this section.

5 Model Extensions and Discussions

In this section, we consider several model extensions, including general information structure as

well as endogenous information acquisition before engaging in the credit market competition.
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5.1 General Information Structure

The multiplicative setting has two key advantages in our main model. First, it captures the com-
monly observed lending practice; for example, the computer-based hard information signal is usually
used as pre-screening and decisive for loan granting, while the soft information collected by the spe-
cialized bank tailors interest rate terms (see Remark 2). The multiplicative structure, by makin)g
the “hard” state decisive in project success, makes such lending strategies more likely to arise in
equilibrium. In addition, the multiplicative structure also makes it tractable in introducing multi-
ple characteristics as in Section 4.3, which allows us to analyze the breadth of different information
technologies. However, our solution method applies beyond the multiplicative setting.

In this part, we solve for the credit market equilibrium under a general information structure.
We impose two major assumptions. First, conditional on the project’s state 0, signals are indepen-
dent across hard and soft and across lenders. Second, lenders only participate when the hard signal
realization is H, with parameter restrictions in the same spirit as Assumption 1 but tailored for
the general information structure. We keep the presentation minimal in the main text and provide
a detailed analysis in the Appendix A.8.

Consider a general soft signal z ~ ¢, (z) for z € [z,Z] where both z and Z can be unbounded.
Denote by ppaps (2) =P (9 =1 khA, hB, z) the posterior probability density for § = 1, i.e., the state
of the project being successful. Without loss of generality, we assume that up g (2) strictly increases
in z (as we can always use pg g (2) as signal; recall the posterior s serves as the signal in the baseline
model given in Section 2). This implies that just as in the baseline, there exists 2 at which Bank A
starts to quote ¥, and z, below which it starts rejecting borrowers. Let Tipaps =P (9 =1|hA KB )

denote the posterior probability of § = 1 based on hard signals.

Denote further by ppa,s (z) = P (hA, z, h,B) and Ppaps =P (h", hB>, andlet o) =P (hi = H|0 =

for j € {A, B}, and ¢, (2|0 = 1) be the density of z conditional on § = 1. The following proposition
summarizes the credit market competition equilibrium with specialized lenders under this general

information structure.

Proposition 5. (Credit Market Equilibrium under General Information Structure) Lender
j € {A, B} rejects the borrower (by quoting v = 00) upon hi = L; when hi = H, lender j may

make offers from a common support [r,T] (or reject) with the following properties.

1. Bank A who observes a soft signal z offers

) 7rB+f; paE @ADLy
min 3 = pg—
S pun () (AL Ty

— 1,?} , for z € 24,7 (36)

00, for z €|z, 2).
This equation pins down r = r4(%), 2 = sup {z crA(z) = F}, and zy = sup {z i (z) = oo}.
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2. Bank B makes an offer by randomizing its rate according to:

i 2 (r _ =
F5 () & [1- 270 g (10 = 1) at], for velT

L= Lgpncgy {1- 2 [1- [fo. (0 =1)dt]},  for r=T

3. The endogenous non specialized Bank B’s profit 78 is determined similarly to Lemma 2, with

detailed expression provided in Appendiz A.S.

Proposition 5 shows that the simple equilibrium structure does not depend on our multiplicative
setting. Following the same logic as in the baseline model, lenders’ customer quantities change
proportionately with interest rates in equilibrium. To see this, when cutting interest rate at r €
[r,7), both lenders are competing for the same marginal borrowers, whose revenue should equal a
unit loss from each lender’s existing customer base so that lenders are indifferent and use a mixed
strategy. For the existing customers, only the good type of customers who repay the loan matter.
As a result, as long as soft and hard information are independent conditional on the project being
successful, their effects on equilibrium strategies are separable, and a simple characterization as in

Proposition 5 ensues.

5.2 Information Acquisition and Endogenous Specialization

Although the information structure is likely to be fixed in the short run, in the long run banks
choose what type of information they want to have about borrowers. For example, banks can invest
in equipment that allows them to analyze their existing transaction data more efficiently (hard
information), or spend resources gathering information about specific borrowers (soft information).
In this section, we look at the lender’s information acquisition problem and derive conditions under

which the information structure we study in the previous sections is an equilibrium outcome.

Setting and information acquisition technologies We introduce another borrower firm—
which we call b—in addition to the borrower firm a in our baseline model. We may equally interpret
a and b as different industries.

There are two types of technologies that respectively relate to “hard” information and “soft”
information. For the “hard” information technology, a lender j invests once in equipment at a cost
of K, which allows the lender to process data (say financial and operating data) and produce a
hard information based private signal hg € {H, L} for each firm i = a, b, independently (across two
lenders and two firms). This captures the idea that hard information is collected via standardized
and transferable data such as credit reports and income statements, so once the I'T equipment,
software, and APIs are installed, credit analysis is easy to implement on multiple firms and the

information generated is also standardized and coarse.
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For the “specialized/soft” information technology, a lender needs to collect soft information on
firms one by one. Due to symmetry, we omit the indexation for firm ¢ from now on. Lender A
specializes in firm a if it spends ks to acquire a soft information based private signal s, whose
smooth distribution is characterized by the CDF ®(s) and pdf ¢(s) for s € S = [0,1]. If a bank
wants to acquire soft information about both firms, it needs to pay 2x.

We are interested in the following equilibrium: Bank A (B) endogenously specializes in firm
a (b)—i.e., acquires both hard and soft signals on firm a (b)-—and competes with the other non-
specialized Bank B (A) who only acquires hard signal on firm a (b). The baseline model analyzed
in Section 2.3 is the subgame for either firm following the equilibrium information acquisition

strategies.

Incentive compatibility conditions Banks are making their information acquisition decisions
simultaneously. Moreover, we assume that information acquisition is observable when banks enter
the credit market competition game. This implies that a lender’s deviation from the proposed
equilibrium information acquisition will lead to a different information structure in the credit market
competition. Hence, to examine the incentives of banks to acquire each type of information, we
need to define the bank’s lending profits in all possible subgames following a deviation.

Denote by H; (I h 1 ol I 1"3) the expected lending profits of bank j in industry 4 when the

A
information structure in industry i is given by (I roIS, I f;,), where IJ}-L and I7 take value of
one if bank j acquired hard information and soft information in industry 4, respectively, and zero
otherwise. The symmetry on industries implies that a bank’s expected lending profits in industry

i only depend on the information structure in that industry and not on the industry itself, i.e.,
I (15, 13, I 1) = TG (24, L3 T, I (38)

Therefore, we drop index i from the expected lending profits. What is more, we focus on Bank A’s
incentives in what follows since the no deviation conditions for banks A and B are symmetric.
Bank A can deviate along three dimensions: it can choose not to acquire hard information,
it can choose not to acquire soft information about industry @, and it can choose to acquire soft
information in industry b. Bank A’s incentives to deviate along these dimensions will depend on
the costs of acquiring information. As one would expect, the lower the cost of acquiring hard
information, the more likely Bank A has incentives to acquire hard information and not deviate
along this dimension. For deviations along the soft information dimension, the cost of acquiring
soft information has to be low enough such that it is worth acquiring soft information in industry
a and having an informational advantage over Bank B in this industry but high enough such that
it is not worth acquiring soft information in industry b to stop being the less informed lender. This

intuition can be formally stated in the following incentive compatibility constraints. Bank A does
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not want to deviate by

1. not acquiring hard information
W (= 1,04 = 1,1 = 1,15 = 0) — Ty (Th = 0,73 = 1,1} = 1, I = 0)+
M (I = 1,15 = 0,1} = 1,1 = ) =T (15 = 0,13 =0, = 1,1} = 1) 2k (H)
2. not acquiring hard information nor soft information in industry a
Mo (14 =113 =1,1 = 1,13 = 0) — T4 (15 = 0,15 =0, = 1, I} = 0)+

Il (I" = 1,15 =010 =1,I} = 1) T4 (J,’g = 0,15 =0,I% =1,I% = 1) > kp + ke (NI)

3. not acquiring soft information in industry a
W (=105 = 1,1 = 1,15 =0) ~ Ty (T = 1,1 = 0, I = L,I5 =0) > i (S0)

4. and, acquiring soft information in industry b
Ma (15 =105 = 1,1 = 1,1} = 1) = Ta (1= 1,15 =0,Th = 1,1 = 1) <k (NSD)

Consistent with the intuition above, Constraints (H) and (NI) impose an upper bound on £y, so
that Bank A has incentives to acquire hard information. Analogously, Constraints (NI) and (Sa)
impose an upper bound on ks so that Bank A wants to acquire soft information in industry a,
while Constraint (NSb) imposes a lower bound on &, to assure Bank A does not want to acquire

soft information in industry b.

Deviation payoffs. Our goal is to show that there exist costs #;, and s such that the conditions
above hold for some parameterization. To do so, we need to characterize the deviation payoffs. We
provide the expressions for 14 (I Z, I, I g, 1 %) in Appendix A.7.

Note that an uninformed bank will make zero profits (Milgrom and Weber, 1982; Engelbrecht-
Wiggans, Milgrom, and Weber, 1983), i.e,

M (1= 0,15 = 0,1} = 1,1} =0) =T0a (1} = 0,15 = 0,1 = 1,1} = 1) =o.

Then it follows that Constraint (NT) is equivalent to the participation constraint of Bank A. More-
over, this condition implies that for any cost of acquiring soft information s, such that (Sa) is
satisfied, we can always find a cost of hard information #; small enough to satisfy (H) and (NI).
Therefore, there will be an equilibrium with specialized lenders as long as x5 satisfies the bounds
imposed by (Sa) and (NSb). For this to be the case, it is enough to find parameters such that the
benefits from acquiring soft information to become the more informed lender are greater than the
benefits from acquiring soft information to stop being the less informed lender. This is confirmed
in Figure 7 in Appendix A.7, which depicts the range of information acquisition costs tp and Kg
so that the conjectured information structure with a specialized lender and the ensuring lending

competition indeed form an equilibrium.
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6 Concluding Remarks

One of banks’ main roles in the economy is producing information to allocate credit. In this paper,
we show that the nature of information produced by banks affects the credit market equilibrium
and the degree of competition among banks. More specifically, we explore how multi-dimensional
information determines credit market outcomes in the presence of specialized lenders.

By considering soft and hard information, we can explain empirical patterns in bank lending
specialization unexplained by canonical models where information technology is solely characterized
by signal precision (one-dimensional). Moreover, our model with multiple sources of uncertainty
and information allows us to differentiate between the quality and breadth of information. This dis-
tinction is crucial in understanding the changing landscape in the credit market due to technological
advances related to data gathering and processing that lead to the hardening of soft information.

From a modeling perspective, including a continuously distributed signal within a credit market
equilibrium enables us to examine private-information-based pricing, a practically pertinent aspect
with crucial importance for the banking sector. Furthermore, by incorporating both soft and hard
information—which reflects potentially many more underlying states—among asymmetric lenders,
our paper markedly advances the field of auction literature involving such lenders in which each
lender possesses private information (in contrast to Milgrom and Weber (1982) where one bidder
knows strictly more than the other). We fully characterize the equilibrium in closed form and

anticipate broader applications based on our framework and the solution methodology.
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A Technical Appendices

A.1 Credit Competition Equilibrium
Proof of Lemma 1

Proof. Point 1 directly follows from Assumption 1. In this proof, we show that the distributions of
interest rate offered are well behaved. We postpone the proof of Bank A using a pure strategy to
the second point discussion of Lemma 3 which shows the monotonicity of 4 (s).

Specifically, we show that the two lenders’ interest rate distributions have the following prop-

erties:

a) they share the same lower bound r > 0 and the same upper bound 7 in their supports;
b) they have no gaps in their supports;

c) they have no mass points except that one of them can have one at 7.

Note that Property b) implies Property a), because if a bank’s interest rate offering has a larger
lower bound or a smaller upper bound interest rate than its competitor’s, this is one example of
gaps in the first bank’s support.

To show Property b), suppose that, say, the support of I B has a gap (r1,72) C [r,7].2® Then
F4 should have no weight in this interval either, as any 74 (s) € (r1,72) will lead to the same
demand for Bank A and so a higher » will be more profitable. At least one lender does not have a
mass point at 7y (it is impossible that both distributions have a mass point at 71), under which its
competitor has a profitable deviation by revising 71 to » € (r1,r2) instead. Contradiction.

To show Property c), suppose that one distribution, say FB has a mass point at 7 € [r,7). Then
Bank A would not quote any r (s) € [#, 7 + €] and it would strictly prefer quoting r4 = f—e instead.
In other words, the support of F4 must have a gap in the interval [7,7 + €]. This contradicts with
Property b) which we have shown. Finally it is impossible that both distributions have a mass

point at 7.

A.2 Proof of Proposition 1

Proof. This part proves that Bank A’s equilibrium interest rate quoting strategy as a function of
soft signal 74 (s) is always decreasing; this implies that the FOC that helps us derive Bank A’s

strategy also ensures the global optimality.

28T same argument follows if the support of F 4 has a gap in the conjectured equilibrium, and then for Bank
B, any quotes within the gap lead to the same demand of the same posterior quality of customers, where Bank B
updates its belief from Bank A’s strategy.
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Write Bank A’s value II4 (r, s) as a function of its interest rate quote and soft signal, in the
event of h = H and s. (We use 7 to denote the equilibrium profit but II for any strategy.) Recall

that Bank A solves the following problem:

maxII4 (r,s) =  pyn [1 —FB (7)} s (1+7) =1+  pur  (purs(@+7)—1] (39)
r S S’
hA=HB=H 4 wins hA=HhB=L

with the following FOC:

dFEB (r)
dr

0= Hf (r(s),s) =pHH {— } s (1 +7r) =1 +pun {1 — FB (r)} S  +PHLUHLS.

customer return MDB of customer

customer
lost customer

(40)

One useful observation is that on the support, it must hold that ppggs (1 +r) —1 > 0; otherwise,

prns(1+7)—1 < pgys(1+7)—1 <0, implying that Bank A’s profit is negative (so it will exit).

Lemma 3. Consider s1, sy in the interior domain with corresponding interest rate quote 71 and

ro. The marginal value of quoting ro for type s = s1 is

82 — 81

prmss (L4+rg) —1 {pHH [1 _ FB (7'2)] LHH +PHLMHL}

2 (rg, 81) =

and its sign depends on the sign of sy — 3.
Proof. Evaluating the FOC of type s1 but quoting ro:

dFB (r
_E(_Zl} st (L+7rg) — 1 +ppu [1 N (7"2)} WHHS1 + PHLIHLS1-

12 (r9,81) = pun [—
(41)

FOC at type sg yields

dF5B (rg)

2 (ro, 82) = prn [— o

] lppas2 (1 +re) — 1] +pun [1 - FB (7‘2)] pHHES2 +pPHLRHLS2 = 0,
or
dFEB (ry) PHH [1 - FF (7“2)] WHHS2 + PHLIHLS?

42
dr prn (pse (1+r2) — 1] (42
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Plugging in this term to (41), TI2 (rg, s1) becomes

_pEEsi(1+me) — 1

pagse (1+mr) —1

_ [S _ bkHHES1 (1 -+ ‘I“2) -1

HH HS2 (1 + 7‘2) -1

PHH {1 ~ FB (7’2)] MHH + PHLUHL
LEH H S2 (1 + 7‘2) -1

{PHH [1 ~ F5 (7"2)] WHHS2 + ]?HLMHLS2} +pHH [1 ~ FB (7“2)] WHHEST + PHLIVHLS1

' 32} {pHH [1 o (7’2)} BHH + pHLMHL}

:(82—81)' ’

which is the claimed marginal benefit of quoting ro for type s1. Its sign depends on sz — s1 because

the denominator is positive as we noted right after Eq. (40). O

Lemma 3 has three implications. First, as long as 4 () is (strictly) increasing in some segment,
then Bank A would like to deviate in this segment. To see this, suppose that 71 > r3 when 51 > s2
for s1, so arbitrarily close. Because Lemma 1 has shown that Bank A’s strategy is smooth, rg is
arbitrarily close to r1. Then Hf (r3,81) < 0, implying that the value is convex and the Bank A at
s1 (who in equilibrium is supposed to quote r1) would like to deviate further.

Second, the monotonicity implied by Lemma 3 helps us show that Bank A uses a pure strategy,
thereby completing the proof of Part 2 in Lemma 1. To see this, for any s; > sz that induce
interior quotes r1,7o € [r,T), however close, in equilibrium we must have sup rA(s1) < infri(sq)
by monotonicity. Combining this with Part 3 of Lemma 1, i.e., the induced distribution FA(-) is
atomless except for at 7 and has no gaps, we know that Bank A must adopt a pure strategy in
the interior of [r,7), or for s < 8. Finally, the following argument shows pure strategy for s < &
i) randomize over s = 0 is a zero-measure set; and ii) on s > § Bank A can either quote 7 or co,
which, generically, gives different values (and hence rules out randomization).

Third, if 74 () is decreasing globally over S, then the FOC is sufficient to ensure global opti-

mality. Consider a type s; who would like to deviate to 7 > ry; then
7
T4 (¥, 81) — 4 (r1, 81) = / VTA (rys1)dr.
I8

Given the monotonicity of r(s), we can find the corresponding type s (r) for r € [r1,7]. From

Lemma 3 we know that

PHH [1 —~FB (7’)] BHH + PHLIHL
paps(r) (1+7) -1

I (r,81) = (s (r) = 51)
which is negative given s (r) < s1. Therefore the deviation gain is negative. Similarly we can show

a negative deviation gain for any # < r1.

Next we show that 14 (-) is single-peaked over the space of S = [0, 1].
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Lemma 4. Given any evogenous n° > 0, r4(.) single-peaked over S = [0,1] with a mazimum

point.
Proof. When r € [r,7), the derivative of 74 (s) with respect to s is

Mi(s)<0,and M] (s)<0 Ma(s)70, butM}(s)<0

pra® (S) | PHHUHH [/0 tp (t)dt — s® ()| + PLHMLHYs — (WB + PLH) BHHS

drt(s)
ds (prapms [ 6 (8) dt + pruprmds)’

As [y té (t)dt < s® (s), the first term in the bracket M; (s) <0, and
My (s) = —prapur® (s) <0.

For My (s) = pLHULHYs — (7TB + pLH) L HS, it has an ambiguous sign, but is decreasing in s. This
implies that Mj (s) + Ma (s) decreases with s. It is easy to verify that Mi(0) + M2(0) > 0 and
My (1) + M(1) < 0. Therefore r(s) first increases and then decreases, therefore single-peaked. [J

Suppose that the peak point is §; then Bank A should simply charge » (s) =7 for s < & for
better profit. This is the standard “ironing” technique and we therefore define the following ironed

strategy formally (here, we also take care of the capping » < 7):

P4 e (8) = sup min (TA (t) ,F) .
t€fs,1]
By definition 77, ., (s) is monotonely decreasing.
We now argue that in equilibrium, 7B and r adjust so that r (-) is always monotonely decreasing
over [z,1]. (Since we define 74 (s) = oo for s < z, monotonicity over the entire signal space [0,1]

immediately follows.) There are two subcases to consider.

1. Suppose that # = 7. In this case, rA (s) in Eq. (12) used in Lemma 3 and 4 does not apply
to s < § because the equation is defined only over the left-closed-right-open interval [r,7).
Instead, 7% (s) in this region is determined by Bank A’s optimality condition: as rA does
not affect the competition from Bank B (which equals I B (7)), Bank A simply sets the
maximum possible rate r4 () = 7 unless it becomes unprofitable (for s < z). (This is our

zero-weak equilibrium with 77 = 0, and there is no “ironing” in this case.)

2. Suppose that # < 7; then bank A quotes 7 for all s < 8. But this is not an equilibrium—Bank
A now leaves a gap in the interval [7,7], contradicting with point 3) in Lemma 1 (there, we

rule out gaps in equilibrium). Intuitively, Bank B always would like to raise its quotes inside

40




[#,7] to 7; there is no “ironing” in this case. (This is our positive-weak equilibrium with
7B >0.)

O

Proof of Lemma 2

Proof. First, we argue that equilibrium § = argsup, {s rA (s) > 7‘} either equals 55 A or sB E To
see this, if 78 = 0, we have § = § BE by construction. If 78 > 0, then Bank B always makes an

sA(7')=.§+ d
offer upon H, i.e., FB (F) = 1. We also know that FB (77) =1— L’———QTM

A must reject the borrower when s realizes as close to 0 and § > 0. Hence, I’ B (r) has a point

< 1, because Bank

mass at 7. It follows that F4 (r) is open at 7: § = x and 74 (7‘A (3) |§) = 0, which is exactly the
definition of §§E and so § = §le
Now we prove the claim in this lemma. In the first case of §gE < §2E , we have § < §3E and

sBE "
JoA te()at > o 1oty
4s Is
FB (7). The definition of §5% says that Bank A upon § $52F breaks even when quoting r <§ﬁE ) =7

IN 1” t(t)dt

thus Bank A’s probability of winning when quoting 7 = 7 is at most =1-

and facing this most favorable winning probability —iL-——q—————— Then upon a worse soft signal
5

§§E < §EE , Bank A must reject the borrower because offering 7 leads to losses, which rules out

§= §gE . According to our earlier observation of § = §gD or sﬁE we have § = §§E and 78 > 0 in

B

this case, where 72 could be characterized from Eq. (11) at 7 =T7.

In the sccond casc of §8F > 3BF

when quoting r® = 7 is at most <I> (”BE) > ®(8) =1 — FA(F~). The definition of §gE says

that Bank B breaks even when quoting P = 7 and facing this most favorable winning probability

$ ( glj) Then if the competition from A were more aggressive, say 1 — I’ A (F) = (ABE) Bank

B would make a loss when quoting 7, so § = §§E

we have § < $8F and thus Bank B’s probability of winning
) B

cannot support an equilibrium. Hence, in this
case, § = §gE and 7 = 0. From the definition of .§EE , Bank A’s equilibrium break-even condition

0 = o/ (7|a), and the fact that §8Z > $B% in this case, we have

SRE v
to(t) dt ~BE - sBE =
o —Prnto" o) [;LHgsﬁE (1+7) — 1] + pHL [l"HLSEE (1+7)- 1]

ds
ABL
pHH /0 P (t) d [MHHCE (1 + T) — 1] + PHL [/LHLiI) (1 + T) e 1]
4BE
=t . Aq il wrpz (1+7) — U+ por [prre (L+7) = 1]
Hence, x < SBE <3§ ABE = 4. O
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A.3 Proof of Proposition 2 and Calibration

Lemma 5. For any r € [r,T), we have

FB(r) ot dFB(r)/dr _cﬁ
FA@Y — aB’ dFA(r) Jdr — of

i.e., Bank A offers higher interest rates than Bank B in the sense of F.O.5.D..

Proof. For any r € [r,7), lenders’ profit functions are

™ = pun (1 ~FB (7')) rp (r+1) =14+ pur lpar(r+1) = 1], (43)
B gets H wins B gets L

o = pyn (1= FA@) w0+ 1) =1+ pra [pon (0 +1) ~ 1. (44)
A gets H wins Agets L

These two equations imply that

FB(r)  pgmlpga(r+1) =1+ pgrlpgs (r+1) = 1] — o’

= . 45
FA(r)  pawlpas (r+1) = U +pow lpow (r+1) = 1] — 78 (45)
And, evaluating Eq. (43), (44) at r = r and using F4 (r) = FZ (r) = 1 gives lenders’ profits:
7 (r) = pyu lpan (0 +1) = 1 +pap lpar (0 +1) = 1],
7P (r) = pun lprm (0 + 1) = Y+ pra [uem (0 +1) = 1)
Using these in Eq. (45), we have
A —
FP(r) _ (pumpnn +purpns)(r—1) P (h =H,0= 9) _at
FA(r) ~ (puppun +poaprn)(r—r) PP =H0=g) oFf
Here, FB (r) = %;-‘FA (r) ilﬁmediately implies that ;—il'—l—;;—%% = —2—; O

Lemma 6. E {7‘*“ rd < B < oo} >E [TB‘ rB < rd < oo] is equivalent to the following inequality

P (JfA = H) o JLFB (r)dr+prn [LFA(r)rdF? (r) ~ PHHT 2 (FB (7‘_))2
prn [1 = FB (7) + £ (FB ()] + prs
P (:L‘B = H) ‘[;FB (r)dr+pun f;FA (r)yrdFB (v) —pHH-Q%';y (FB (7“))27’
pun |[FP (7) = s (BB (7)?] + prerF® (7) |
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Proof. The expected rate of a lender’s loan is

PHH jf [1 ~FB (1")] rdFA () + pan [T rdFA(r)
~—~— &aL Uy

B gets H ; B gets L
E [T'A' 'I'A < TB < oo} = B A :r_vms gets , (46)
pun fy (1= FP (r)]dFA (r) + pur
bai Jr [1 - (T)} rdFB (r) + ppg [l rdFB (r)
A gets H - M A;:;L -
ge .
E [TB’ T‘B < TA < OO] s B wins (47)

PHH f; [1 — FA (7“)} dFB (r) + pLHFB (7_)

In the first step, we rewrite the equations as functions of dF'B (1) and dr which are continuous

at 7. Using integration by parts and Lemma 5, we have

/TF rdFA (r) = rFA (1)

7 T T O.’B v
- [ Preyar =T [ FAG)ar =7 -2 [ 5P @

In the last step, although Lemma 5 does not apply at r = T, it is of zero measure. Similarly, the

probability of Bank A winning in competition is

/IT [1 — FB (r)] dFh (r) = /FdFA () — B (r) dFA (r)

Jr

r

Nl;\i

= 1-— {FB (F) —
N~
integration by parts
T a,B
1-FBF) + / — FB (r)dF" (r)

~—~— Jr o
_QB -
=27

FA (r)dFB (7‘)}

FA FB

=1-FB(F) + %—; (PP (7"))2 :

and thus the probability of Bank B winning is the residual
Tl PA )] dFE () = PP (1) - S (8 )
[ =m0 = ) - g (17 )
Similarly,

/: FB () rdFA (r) = /77 FB(ryrdFA (r) + FEB(7)7 [1 — 4 (T—)]

FA(r)rdF? (r) + FB(7)T (1 = —a—gFB (7‘))

«

1~
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Plug these terms into Eq. (46) and (47), and we have

P (0 = H) JTrdFA(r) = pun JT FP (1) rdFA ()

PHH [1 — FB(F)+ £5 (FB (T))Z] +PpHL

P (h" = H) g—f} ],_T FB(r)dr +pun /ZFA (r)yrdFB (r) — PHHT’Q% (FB (T))
pin 1= F5 (7) + £ (F ()] + s

IE['I‘A‘T'A <P < oo] =

2

- -

for Bank B,
P (hB = H) [T rdFB (r) = pyy [} F* (r)rdF® (r)
PHH [FB (7) — &5 (FP (F))Q] +pLu FB(T)

P (h = H) [T F (r) dr + pian JT P () rdE (1) = panr i (F2 () '
pisr [FP (7) = £ (PP ()] + puin P (7)

E [7‘3‘7‘3 <A < oo} =

—=F —

Therefore, E [7"4[ rd < rB < oo] >E [TB { rB < rd < oo] is equivalent to the stated inequality. O

Lemma 7. In the case of ¢ > 1—}:?, when B 1 a?, there exists o threshold & (aA> < a?t so that

when of > & (ch) we have FB (F) = 1.

Proof. Let of = a®* — ¢. Bank B’s profit could be pinned down by setting r =77,

8 =puu [1 —FA (F”)] g F+1) = 1)+ pog lpen (T+1) — 1]
2 pa(pen (F+1)-1)
FA(FT)<1

= q(l—aA) (o:A—c>T~(1_(1)C"A (1‘ (a’Aﬁe))

:(1—~aA)o:A[q7’"—(1—Q)]—e[q(l—aA>T+(1aq)a'A}.

(1—a)ad [gF-(1-q)]

Hence, when ¢ < A=At (i=gar

or equivalently, when

) (1-o*)at [gF— (1 - q)]
:” ’(aA>:aA— g1 —aMT+ (1 —-qat’

we have 78 > 0 and FB (7) = 1. O

Proof of Proposition 2
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Proof. There are two cases depending on whether ¢ < 11?, i.e., whether the project has a negative
NPV at prior.
The first case of ¢ < 1+_ is easier. When a? 1 o and a? —af = o (q - ) Bank B’s signal

distributions and strategies approach that of Bank A except at 7 =7 (Lemma 5):
Byt FA(r) forany r€lr,7), and FE(F)<l= FA (7).

Then from Lemma G,

F B[l <o <o pan [PP @)= 4 (FP0)] +pus® 0
TE[P P <rA <ol pyy |1 - FE(R) + 5 (FP (7)) + pi

1
< 5PHH * PLH _ 1

T
5PHH + DHL

N
RHS set FE(7)=1

LA

where the last inequality holds because the ratio is increasing in F' B (7). Hence, E [7 r < rB < oo] >
E [ -B ’ rB<rd < oo] always holds in this case.

Now consider the second case ¢ > 17=. When af = af, since E [ Ai rA < rB < oo] decreases
while E {TB I rB<rd < oo] increase in F' B ( ), it is sufficient to show that the equivalent inequality
in Lemma 6 holds under FZ (7) =1, ie.,

B

P (hA = H) —2—; ‘]Z_'FB (rYdr + puH szA (r)rdFB (r) — pupTos
PHH%} +pHL
P(hB:H) ffFB(T)dT‘*‘pHHfTFA(T)TdFB (T)“pHH';%T (1)
< = ; 48
PHH (1 - ) +pLH

where both the LHS and RHS are positive. When ¢ > —11—, recall that Lemma 7 shows F'Z (F) = 1
as af — o under ¢ > FE +_ and so the inequality is also necessary.

Denote by N & f FB(r)dr>0,and M £ T'QQF [ FA(r)rdFB (r). M > 0 because

; 7 B B 7 B 2 B
" hAy B 7 oA By = O By 00 [T FE())  _a
[ P eyrar (7")<7‘/£F (r) dF (T)—?"/L‘ © R (r) dF (r)_r——aA/L_d< : >_r2aA.
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Collect terms in the key inequality (48), we have

P aB aB
{ [PHH <1 - ———) +pr| (PrH + PHL) pup=—r +puL | (pue + o) ¢ N

20(A 20 A
CMB QB
<pHH [pHH (1 - 55—) +pLy — <PHH2 — +PHL>} M (49)
Let af = a” — e and calculate the coefficients. Note that as of = o/ — ¢, we have pgyr, —pPLH =

(2 — 1) €.2° The coefficient on the LHS of (49):

oB
prE |1— oA +pry

DHH € € DHH €
= (2—-— + o+ PLH> (prE +pHL) <1 - a_A> - <]—~ ~ goabHE t pHL) (pHn +pLH)

B B
« (84
(pre +pHL) —7 = <]7HH§J; + PHL> (pam +pLm)

2 2
PHH PHH o

€ €
g—1)e+ Yo APHH o APLHPHH — SAPLHPHL

The coefficient on the RHS of (49):

of o € o
pup |paE {1 — +pLg — | pHH = +pHL || = —Pirg — paH (PHL — PLH)
204 2a4 as

€
= EZP%IH —pun (29 —1)e€

Plug the coefficients back into the inequality (49), so we need to show that

PHH € €
(29— 1)e+ APHH S—{PLHPHH — EKPLHPHL} N

€ 9
0< {a—,;pHH —puH (29 — 1)6} M- { o

_ [(2(1 1) ])ZH] pan (N —2M) n <_;_

N
PLHPHH + pLHPHL) EE

2
29We have prL = qa ( aB) +(1-q)a” (1 - o/‘) and pLy = (1 - a'A) o +(1-g)a? (1 - aB) and then
?)

therefore pur — pLu = ¢ ( -a®)+(1—q) (a'B - a") = (29 ~ 1)e.
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Note that

FA (r)rdFB (r))

Ir

7 B B 7
_ B . =« a =B (. B
_/EF (r)dv~2<r—2—a—A—?/ﬁF (ryrdF (7’))

2

= oB oB oB T (FB (7))
— FB o o ___/ S 2

/7 (r)ydr—2 Uy 2aAr+aA 7 5 dr

Therefore, one sufficient condition is

24 (1—q)(1—a)
0g 1> P _ 4o +(1-q)(1-0a)
(6 (67

collecting terms, it requires ¢ > 1 — a + o?. Since 1 — a + o? increases in a for a € (%, 1) , this
imposes a simple condition that prior needs to be sufficiently good and information technology o

cannot be too high. (W

Calibration For calibration, we rely on two empirical moments in the U.S. banking industry to
gauge the magnitudes of ¢ and a. First, this website on Federal Reserve reports the NPL ratio
to be about 2%; second, Yates (2020) shows that the approval rate for business C&I loans is from
55% (small) to 80% (large).

We gauge ¢ and a from the limiting case where Bank B’s information technology o approaches
that of Bank A, i.e., o — a® = a. Depending on the primitives, Bank B may either make zero
or positive profit in the unique equilibrium, which we call zero-weak or positive weak in analogous
to our main equilibrium characterization with multi-dimensional information.

Recall that in the beginning of proof of Proposition 2 we have shown that condition 77) fails
in the zero-weak case (i.e., if and only if ¢ < ﬁ? where Bank B makes zero profit). Therefore we
only need to consider the positive-weak case.

In this case lenders are symmetric: upon H each lender makes interest rate with randomized

strategy, with a winning probability of 0.5. Therefore we can write down the NPL ratio and
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approval rate of, say Bank A,

27_P(9:0|r‘4<7’3<oo)_ (1~q)[(1—”2a—)2+a(1~—a)]
0T P(rA <78 < 00) “(1—(1)[—(kza—)z+or(1—a')}+q[%2+az(1~(x)},

szP’(hA :H> =qga+(1-q)(l —«),fory e [0.55,0.80].

which allows us to solve for the pair (¢, ). For instance, when y = 0.7 one can solve for ¢ = 0.9629
and o = 0.716, which satisfies the proposed sufficient condition ¢ > 1 — a + a?. The same result
holds for y = 0.55 (so that ¢ = 0.9771 and o = 0.5524) or y = 0.8 (so that ¢ = 0.9349 and
a = 0.8449).

A.4 Proof of Proposition 3

Proof. Based on the credit competition equilibrium in Proposition 1, the expected rates of a lender’s

issued loan are:

pn i [L=F2 (7 07)] A (0@ dt+ pry [z ()9 ()
PAlA B <o) = B = A wins hB=L
¢ [ ’ s ] pum fy [1 — FB (TA (75)_>] ¢ () dt + pur [ (L) dt

prn [ ® () r () dFP (r(t)) + pu [, v () dFE (r (1))
N~ —— S
E [,rBITB A< OO} _ h=H B wins A=
- PHH f; @ (t)dFB (v (t)) + pLuFB (T)

Note that when the positive weak equilibrium arises, F'Z (r (s)) has a point mass of size 1 — F B (77)
at 7 or r4(3).
We show that E [7'AITA <rB < oo] =E [TB‘TB <rt < oo] in the benchmark case with the

following conditions,
a). The soft signal is uniformly distributed s ~ U [0,1].
b) Each lender receives a perfect hard signal, hi =, for j € {4, B}.
c) ¥ — oo.

With the above simplifications, we have

M) =2, FPr()=1- 5
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and

B e S
7

A.5 Proof of Proposition 4

Lemma 8. sB% (n) decreases in n .

Proof. Conditional on 72 = 0, we show that Bank A’s quote 74 (s;m) decreases in 7 for any s with

r4 (s;m) < 7. Rewrite v (s;7m) as defined in Eq. (12) to incorporate 7

T8 +ph® (s,n) +pl
\B/pHH ( 7 Pry

F>7‘A(s;77): Ul ;70 S ] ’,77 7 77_1'
Pl Jo teEn)dt + py gy pds

V BE
It is useful to rewrite fos B t¢(t,n)dt as a function of the direct soft signal z, whose distribution
is irrelevant of 7. Under MLRP, s strictly increases in z and we denote z = S ~1(s). The CDF of s,
z then satisfies ® (s) = &, (S~ (s)) = f‘gﬁl(s) ¢, (v) dv. Taking derivative on both sides, the PDF
of z satisfies (51 (5))
¢, (S (s
= LEZAD 50
3= g | (50)
B
Using this term, we show that [, ‘B {gh(t, n)dt is independent of 7.
s(r) S=1(s(r)) St 2(r)
/ to (t) dt = / S (v) Eé'z—(——ﬁ—))—Sl W) dv = / S (v) ¢, (v)dv.
Jo Jz S’ (v) S

BE
Now we discuss the key terms’ monotonicity in n. In the denominator, py yh g fos B tp(t,n)dt

is independent of 7. To see this, let zB B=g- ( gﬂ) and we have

n ZBL—S (gL)
p?iH/LHH / S (vin) ¢= (vin) dv

=P (6] = 1,1y = bl = H)P (6] = 1,25 < 25"
P (O] = )P (W = A = H 0] =1) - PO = )P (2] <257 |07 = 1)
P (0] = ) PO = 1) P (W) = Ky = H |0 = 1)P (2} < 257 |07 = 1),

‘1"1—0577 qngs info technology, independent of 5
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which is independent of 1. Note that this argument does not depend on the specific realizations of

n

" Wb, za. Hence, p] pp} g, which is from another set of signal realizations Ry =L,h} =

signals h
H, is also independent of 7.

In the numerator, pJ; ;@5 (s;7) decreases in 7. To see this, as 7 goes up, the composition of hard
versus soft fundamental changed—q¢} goes down while ¢7 goes up, while the information technology
or the conditional distribution of signals remain the same. Hence, it’s less likely to receive favorable
hard signals H and low soft signals (below a certain s), and so p};;®s (s;7) decreases in 1. The
last term p] ; = o (1 — &) is independent of 7.

Taken together, 4 (s;7) decreases in 7 for any s with r4 (s;m) < 7 conditional on 7B = 0. This

applies to the special case of ng , which is defined as

ng = argsup {3 A (s,n; 7B = O) > F} .
8

Specifically, for any 11 < 75 with 74 (ng (m),m; 78 = O) =7 and 74 (ng () ,ma; w8 = O) =T,
we have 74 (ng (m) ,me;nP = O) < 7 because 14 (s;7) decreases in 7. As 74 (s;n) also decreases

in s, thus sB7 (1) < sBF (n1). Therefore, s5” (n) decreases in 7). O

Lemma 9. s5% (n) decreases in .

Proof. Rewrite the definition equation of s5% (1) (22) to incorporate 7

SBE
- A Lo (tm)dt _ ; _
x (sﬁE,n> = p}'{H—fg—q—(———)—— [u}{”{sﬁE 1+7)— 1] + 9l [u}’”sﬁﬂ (1+7) - 1] =0,

8

We first analyze the key terms’ monotonicity in 7. Note that

g h v
PZHZﬂo:Z’ﬂL(1~(_]L)<1*a)2:(1—a)2+'q',“(2a—1)’
N 1 n

o)
_— -‘%a B a?

wor (L B) (1) a2+t (-1 (1-af

qhn
PhLHHL = ’71“1’(1 - a)

all decrease in 1. On the other hand, both p};;, = o (1 — «) and

sBE 2BP=5-1(sEF) 2BE g1 (v)
to (6) dt ‘ S(v) ¢, (v)dv J NORL (v)dv z
Jo 7)( ) — Jz " (v) ¢ (V) _Jz ¢ (V)U _ / F(v)dv (51)
qs {s qs Jz
BE
) SAT tg(t)dt , , .
are independent of 7, where Eq. (51) expresses =2 p as a function of the direct soft signal z

with ¢, (2) satisfying Eq. (50) and f defined as the PDF of z conditional on 6, = 1.
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With the above observations, 74 (SEE , 17) decreases in n:

O (sﬁE 77) o' z
) YPy n _BE =
0> on ~On (/z fw) dy) [MHHSA (L+7) 1]
v - +

on A4 on
N~ R i

z o - (", ul -
+phy </ f W) (ll/) Ihin  (BE 1+7)+ 0 (Pruiise) sEP(1+7).
Z

In addition, T (SEE ,77) increases in SEE :

or# (sﬁE, 77)

BE BE BE -
0< BB =phpsa ¢ (SA ) [/—tT};HSA (1+7) - 1]
5% 40 (6) dt
+ p}{H“?{H =2 7 +7)7I7{LM1I7{L (1 "*‘T)
. . . . BE Ot BE, onA BE’
By the implicit function theorem, we then have a;f,‘? = (;;\ n) / Ul agjfE n) > 0. 0

Proof of Proposition 4

Proof. Recall from Lemma 2 that the equilibrium is positive-weak (zero-weak) if sBE < sBF (sBE

awv

SEE .} This combining with Lemma 8 and Lemma 9 complete the proof.

A.6 Derivation of Correlated Hard Signals

Another aspect of information technology advancement is that the lenders’ hard information signals
become more correlated. Formally, with probability pp, lenders receive the same signal realization
h¢ e {H,L} and

P(h¢=H|fp=1)=P(h*=L|0=0) = q;

with probability 1 — pj, each receives an independent hard signal according to Eq. (3).

With more correlated hard signals or a higher pj, lenders are more likely to agree on the
customer quality and so more likely to compete (the event of HH ). In terms of inference, the
posterior upon disagreement (that comes from the uncorrelated part of the assessment) is still the
prior g;,.3° Taken together, competition becomes fiercer, because lenders are more likely to compete

but not more concerned about the winner’s curse.

30Upon competition (H H), lenders are less sure about a good quality borrower, i.e., pun (pr) decreases in pp.
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A.7 Information Acquisition

In this part, we first characterize lending profits and then provide a numerical illustration that the

specialization equilibrium would arise.

A.7.1 Lending Profits

We characterize lending profits as a function of information acquisition, Il (I h 1 ho I IS3> (we

focus on Bank A due to symmetry.) We omit the case where there is an uninformed lender.

=115 =1, Ig = 1,1 = 0 (Specialization). This is the equilibrium that we focus on—each
lender has a hard information signal and only Bank A has a soft signal s. Bank A’s expected
lending profit before signal realizations is thus

1

14 (Iﬁ =1,15=1Ik=1,I} = O) :/ x (rA (s)is) ¢ (s)ds,

r

where 74 (7“4 (s)‘ s) is the profits for given signal realizations H and s and is given in Eq. (8).

Using the equilibrium strategies in Proposition 1, we have

min{s,8} o t t) dt
- (7‘A (s)’S):]JHH' 0 <Sq, )(z}()(

S
+ ("TB +pLH) . — —pyL, for s > z.
gs

The expression shows that Bank A earns the information rent from soft signal. Bank A observes

s, while Bank B may only negatively update the prior gs when winning the competition that
min{s,8} (S—t)d)(t)dt

qs :

In this case, Bank B’s profit Ilg <Iﬁ =1,15 = 1,]% =1,I;= O) = 7P is given in Lemma 2.

By symmetry, Ia (I = 1,13 = 0,1} = 1,1 = 1) =g (I =115 = LI = 1,1} = 0) = .

s < s (r); this is reflected in the terms (IE- and =2

I}A =0,I5 = 1,II§ =1,I§ = 0 (Asymmetric technology). In this case, Bank A only collects
soft information while Bank B only collect hard information in industry a. This case is nested in
the previous case of specialization (/ ﬁ =1I5=1I g, = 1,I% = 0), by reformulating Bank A to

have an uninformative hard signal, e.g.,
P(n*=H|0n=1) =P (n" = H|6, =0) =1

Ii}\ =1, =0, Ig =1,I§ = 0 (Hard information only). In this case, both lenders only acquire

hard information, i.e., investing in IT and data processing that are applicable to both industries.

The credit competition corresponds to Broecker (1990) with two lenders. Lenders are symmetric
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and the lending profit of, say Bank A, is
0,4 (Ih’ =1,I% = O,I’EL; =115 = O) =max {pry (LngsT —1),0}.

The “max” operator arises because either both lenders withdraw with positive probability (zero

profits), or both lenders make profits and neither has a point mass at 7, i.e., I J(F) =1

Il},‘& =115 =1, Ig = 1,14 = 1 (Acquire all information). In this symmetric case, each lender
invests in both information technologies and receives both the hard and soft signals. We characterize
the credit market equilibrium based on Riordan (1993) who consider the competition between two
lenders each with a continuous private signal. Here, each lender additionally has a binary signal
that represents the hard information. Following the modeling of Riordan (1993), we work with the
direct soft signal z. Specifically, let z and Z denote the realization and the random variable of the

soft signal respectively, and let
F(z)=P(Z<z0,=1), G(2)=P(Z <2]0,=0)

denote the CDFs of Z conditional on the underlying state ,, with the corresponding PDFs denoted
by f and §. Introduce p (2) = P (85 = g| S) as the posterior belief, which is s in our baseline model.

A lender only bids when the hard signal is H and the soft signal z > z. Let R(z) =7 (2) +1
denote the equilibrivin gross rate quote. Given competitor’s strategy R (z), the lending profits from

any R is then

7 (R|2) = [prnpnnp (2) F (¢ (R) + purpmip (2)] B
~pun (1= p(2) G (R) + u(2) F (¢ (R))] ~ pus, (52)

where ¢ (R) the signal such that the other bank offers R. The first order condition w.r.t. R is

ar (R(t)]2)

5 = [PHHHHH,U' (2) F (t) + prpuLp (2)]

dt

- {papnnp () F O R = pun [(1= 1 (@) 50+ (2) [ (0]} 7.

The equilibrium strategy satisfies

on (R(t)|z) 0
at i=z B
By syminetry, we have
dt 1
dR R (t)
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These two conditions imply

pra (1= p1(2) §(2) + paup(2) f (2)
p (%)

panpnf (2) R(z) + (PHHMHHF (2) +PHLMHL) R (z) =

or equivalently,

a{[prnnnnf () +puran) RE}  puy (1= 5(2) 5) + punn () 2)
dz B 1 (2) '

Integrating over z, we have

[ I’IIII(1—,“'(t))!L(Z’B)““PUHH(")JF("') dt + constant

R(z) =% . . (54)
prapaHF (2) + prLpiHL

The unknown constant is pinned down by the boundary condition = (7 + 1]z) = 0: Upon the

threshold signal z, a lender quotes the maximum interest rate 7 + 1 and makes zero profit,

0= [punpunp (@) F (x) + pupmip ()] ¢ +1) = pun [(1 = p(@) G (@) +p(2) F (2)] = par.
(55)
Then a lender’s lending profit is

"2

ma(Th =15 =L =105 =1) = [ n(R@I2) [0 () +(-6)5()]d

T

where R (z) is given by Eq. (54) and (55), profit m (R (), 2) is given by Eq. .

A.7.2 Specialization Equilibrium

Figure 7 shows the region of information acquisition costs x;, and ks to support the specialization
equilibrium, so that one of the bank endogenously becomes the specialized bank in one industry by
acquiring both soft and hard information while the other is non-specialized by acquiring the hard
information only. In sum, we need sy to be sufficiently small while k, to lie in an intermediate

range.

A.8 General Information Structure

In this extension, we focus on the well-behaved structure (i.e., smooth distribution of interest rates
over [r,7) and decreasing 7 (2)) and show that the lender strategies in Proposition 5 correspond

to an equilibrium.

Proof of Proposition 5
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Existence of Specialization Equilibritm given xy;, and sy
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Figure 7: Specialization Equilibrium This plot depicts the incentive compatibility constraints
where Bank A does not want to deviate from the specialization equilibrium. Parameters: 7 = 0.36,

pp=20,g,=08,¢ =09, oy, =0ag=0a =07 and 7 = 1.

Proof. Bank A’s strategy

In the region of z € (2,1] that corresponds to 74 (2) € [r,7), r(:) is strictly decreasing so

the inverse function z4(\) = TA(_l)(-) is properly defined. Bank B’s lending profit when quoting

r€lr,F)is
B ZA 7.)
(1) = Pun / pag &) (L+r) =1} ¢, (t|HH)dt + Pry | (1 +7) -1
~— Jz e 2 |2
BA=H “~e~— | repay hA=L | repay
B wins
z4(r) 24 (r)
=(1+r) / paa (t) paa () dt +Drplry| — / pan (1) dt —Pry (56)
z Jz

Bank A’s equilibrium strategy v (z) for z € [, 1] is such that Bank B is indifferent across r € [r, ).

Hence,
B’s lending amount

4 z
7B +/ pum () dt+Dry
z) = 3 = —1, where
/ par (t) - paE (t)dt +Prylipy
Z

A

B’s customers who repay
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In addition, 74 (z) = 7 for z € [2s, 2) and Bank A rejects the borrower when z € [z, 2,), where
25 satisfies
s (TA (25) =T

zm) =0.
This completes the proof of Bank A’s strategy in Proposition 5.

Bank B’s strategy

Bank A’s offered interest rate r4 (2) upon z € [2,%] maximizes

o (14(2)] 2) = pun (2) [1 = F7 ()] [ (2) (4 0) = 1|+ pu (2) | (1) (L 1) = 1
| —

hB =H A wins repay hB =L repay

The FOC w.r.t. 7 is

4P ) b
— 2 pan () [ (2) (L 1) = Wt pan (2) [L= FP ()] o (2) + o, (2) e (2) = 0

[ —— profit upon winning existing customer
Awinning prob

Bank A’s optimal strategy r (z) satisfies this first order condition,

d|FB (r4 (2
l [F Elr ( ))]pHH (2) [,LLHH (2) (1 + 74 (z)) - 1] (58)

+prm (2) [1 ~FB (TA (Z)>] pru (2) +puL (2) paL (2) -

0=-—

From Eq. (57) about r4 (), we derive the following key equation by taking derivatives w.r.t. z,

d?’A (Z)
yA

] +pun (2) [ (1 (2) + 1) o (2) = 1] = 0.

B: texisting customer revenue

{ / pru () ppu () dt +DryBry

B: tmarginal customer return

Plug this equation into the FOC (58), and we have

[ ()] {

dz /: pan () pun (t) dt +ﬁLHIZLH] = pun (2) [1 —FB (7‘)] prw (2) +puL (2) par (2),

which is equivalent to

] { L FB (7,/& (z)) } B paL (z) puL (2) . (59)

dz f; pra O vy O dt+Poplion [ [f; prg () ppy () dt + ﬁLH‘ﬂLHr
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Since signals are independent conditional on the state being 6 = 1, the right-hand-side equals
gP (HL|0 =1) ¢, (2|0 =1)
: Y
[fg qP(HH|0 =1) ¢, (t|0 =1)dt +pLHMLH]

IP’(hB:L|0_—-1>d{ 1 1

CP(AB=H[0=1)dz | [qP (HH[0 = 1), (|0 = 1)dt +PLyFiLy

Then the solution F'Z (rA (z)) to the ODE (59) satisfies

1- FE (r4(2)) ~ IP’(hB:Ll():I){ 1

T —— +Const.
J; nmn (8) pun (8) dt +BryBoy P(h8 = H|0=1) | [] pan () pun (t)dl -‘rpLH;“LH:l

Using the boundary condition F'B (TA (z) = z) = 0, we solve for the constant

Const 1 1
onst = .
P@=1)P(hE=Ho=1)
Therefore,
ZA r . j—
P () = 1 ~ J; O e () prrm (8) dt + PruTipy
P(hB=H|0=1) PO =1)P(hB =H|0=1)
_ | PO=1)P(HH|0=1) [ ¢, (t]0=1)dt+P(0=1)P(LH|0 =1)
“P(RE=H|0=1) PO =1)P(hB =H|0=1)

P(h*=H|0=1 ()
:IP’Eh,B:Hlezlg [“/E ¢z(tl0=1)dt].

Bank B’s profit 78
Now we are left with one unknown variable 7 in Eq. (57). Similar as in the baseline model, the
equilibrium could be positive-weak or zero-weak, depending on whether Bank A upon soft signal
realization ZEE or Bank B breaks even when quoting 7. We define zf\?E and ng as
A __ —
o= (L) o () i lo

+pap (257) [ (255) (1 +7) - 1]
B

{1 - /ZEE b2 (80 = 1)‘”] : [MHH <Z§E> (147) - 1]

]
BE B

; “B ~ e -
0=n" ('T'; Z§E> 2/ pug () pan () (L+7)dt - / puu (8) dt + Py [Bpy 1 +7) = 1]
2

2
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Equilibrium #Z is then
q

BE

23 P Za
WB:nlaX{/ PHH (t)/.LHH (t) (1+7")dt- / PHH (t)dt—i—ﬁHL [EHL(1+7‘_)—1],0}.
Jz Jz

When ZEE > ng, equilibriun is positive weak with a8 >0,and 3 =2, = ZEE; when sz < ng,

equilibrium is zero weak with B = 0, and ng = 2> zp. |
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