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Organizational decision-makers need to evaluate AI tools in light of increasing claims that such tools out-
perform human experts.  Yet, measuring the quality of knowledge work is challenging, raising the question of
how to evaluate AI performance in such contexts.  We investigate this question through a field study of a major
U.S. hospital, observing how managers evaluated five different machine-learning (ML) based AI tools.  Each
tool reported high performance according to standard AI accuracy measures, which were based on ground
truth labels provided by qualified experts.  Trying these tools out in practice, however, revealed that none of
them met expectations.  Searching for explanations, managers began confronting the high uncertainty of
experts’ know-what knowledge captured in ground truth labels used to train and validate ML models.  In
practice, experts address this uncertainty by drawing on rich know-how practices, which were not incorporated
into these ML-based tools.  Discovering the disconnect between AI’s know-what and experts’ know-how
enabled managers to better understand the risks and benefits of each tool.  This study shows dangers of
treating ground truth labels used in ML models objectively when the underlying knowledge is uncertain.  We
outline implications of our study for developing, training, and evaluating AI for knowledge work.
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Introduction1

We are experiencing a significant shift in how knowledge is
produced, from focusing on the quality of the human expert to

evaluating modern artificial intelligence (AI) technologies. 
This raises key questions about how we evaluate the perfor-
mance of human experts as compared to AI technologies.  In
this study, we focus on specific AI tools that use machine
learning (ML) classification methods to draw inferences from
training datasets consisting of labeled input–output pairs and
classifies new inputs into predefined output classes.  One of
the challenges with the development of traditional AI tech-

1Nicholas Berente, Bin Gu, Jan Recker, and Radhika Santhanam were the
accepting senior editors for this paper.  Eivor Oborn served as the associate
editor.
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nologies, such as rule-based expert systems, has been that they
often relied on representing experts’ knowledge in machine-
readable form (Forsythe 1993; Hutchins 1995; Star 1989;
Suchman 1987).  This was difficult to achieve due to the tacit
nature of experts’ knowledge (Brown and Duguid 1991, 2001;
Kogut and Zander 1992; Orlikowski 2002).  Today, however,
there is renewed hope among AI creators that they can bypass
capturing tacit aspects of experts’ knowledge because ML-
based AI can implicitly infer how inputs map to outputs.  This
shift in AI technologies has prompted a burgeoning number of
reports that AI can produce higher quality judgments than
human experts (e.g., Grady 2019; Moran 2018; Shoham et al.
2018).

Organizational decision-makers are confronting this exploding
discourse of the promises of ML-based AI and face decisions
about whether and how to incorporate such tools in their
organizations (Faraj et al. 2018; Rao and Verweij 2017).  Part
of assessing the quality of new technologies involves
examining the reported “outperformance” claims by
examining the technical objects and their implications (Knorr
Cetina 1999).  While recent research has begun investigating
how individual users interact with AI tools in practice (e.g.,
Christin 2020; Lebovitz 2019; Pachidi et al. 2021), we believe
it is critical to understand how managers evaluate AI tools as
such evaluations drive their adoption decisions.

To this end, we conducted a field study that focuses on under-
standing how managers in the field of diagnostic radiology
evaluated AI tools for potential organizational adoption.  This
study is based on the growing area of AI development for
medical diagnosis, a field in which experts experience high
degrees of uncertainty.  Diagnostic radiology, in particular,
has been at the cutting-edge of developing AI tools dating
back to the 1980s (e.g., Chandrasekaran et al. 1980).  Early
attempts utilizing rule-based expert systems largely failed,
given technical limitations at that time (Oakden-Rayner
2019), but recent technological advances (especially in ML-
based tools for image recognition) are spurring renewed
interest and investment in diagnostic AI tools.  As a result,
growing numbers of ML-based AI tools claim to outperform
experts and have captured the attention of diagnostic radi-
ology practices worldwide.  Our study follows how managers
within a major U.S. diagnostic radiology department eval-
uated five ML-based AI tools for potential adoption and the
challenges they encountered.  While, in practice, experts tend
to rely on rich know-how (accumulated expertise, rooted in
situated, social, and tacit practices) to gauge their work
quality, managers’ evaluation process for these AI tools
focused primarily on know-what knowledge outputs (explicit
and codified aspects of knowledge) represented in ground
truth labels and summary accuracy measures.  Although
know-what-based measures suggested the AI tools were

highly accurate, all five tools performed poorly during inter-
nal pilot studies and left managers searching for explanations. 
Their search ultimately led managers to confront the high
uncertainty involved in evaluating human experts’ knowledge
outputs (know-what) and to recognize that ML-based AI tools
did not capture experts’ tacit knowledge practices (know-
how).  Discovering the disconnect between ML-based AI’s
know-what and human experts’ know-how enabled managers
to better understand the risks and benefits associated with
each AI tool.

Background Literature

Evaluating Professional Knowledge Work

Evaluating knowledge work is at the heart of many profes-
sional fields, yet it is highly challenging since it is far from
objective.  Prior sociology of science and knowledge litera-
ture has established how evaluation of knowledge occurs
through ongoing processes of contestation and negotiation
across and within social groups (e.g., Latour 1987; Pinch and
Bijker 1987; Star 1995).  Thus, experts in knowledge-
intensive fields have been shown to deeply struggle to validate
their novel insights, as shown by studies of scientists in bio-
medical innovation (Dougherty and Dunne 2012; Mengis et
al. 2018) or medical professionals (Lebovitz 2019; Menchik
2014):  struggling amidst the uncertainty they face about the
current state of medical knowledge:  “what is not understood
about the human body and how it functions is far greater than
what is understood” (Northrup 2005, p. 70).  Experts often
acknowledge the uncertainty about knowledge in their given
domain (e.g., Knorr Cetina 1999; Mengis et al. 2018; Rindova
and Courtney 2020; Schön 1983), as in the medical literature
discussing how many potential medical treatments or tests
lack external validation or more reliable measures that can
assess the quality of a given medical outcome (Timmermans
and Berg 2003).

However, evaluating the quality of knowledge work requires
going beyond assessing knowledge outputs, or experts’
“know-what,” to assessing knowledge practices, or experts’
“know-how.”  For decades, organizational scholars have been
investigating the social, tacit, and embodied nature of know-
how in knowledge work (Brown and Duguid 1991, 2001;
Garud 1997; Hutchins 1995; Kogut and Zander 1992).  This
literature builds on sociological insights of Ryle (1949) and
Polanyi (1958, 1966), who disentangle the explicit aspects of
knowledge from the tacit:  aspects of knowledge that are
socially embedded, learned through experiences, tied to the
senses, and cannot be fully articulated.  Accordingly, organi-
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zational research distinguishes between know-what, or
“knowledge as information imply[ing] what something
means” (Kogut and Zander 1992, p. 387), and know-how, or
“accumulated practical skill or expertise that allows one to do
something smoothly and efficiently” (von Hippel 1988, p. 6). 
Scholars studying knowledge in organizations highlight its
situated, social, and enacted nature; they depict know-how as
“rooted in action, procedures, routines, commitment, ideals,
values, and emotions” (Nonaka and von Krogh 2009, p. 636)
and “implicit in our pattern of action and in our feel for the
stuff with which we are dealing” (Schön 1983, p. 49).

Experts in a given field are expected to acquire and demon-
strate the distinct know-how that internally binds that group
(Abbott 1988; Knorr Cetina 1999; Nicolini 2012).  Accu-
mulated professional practices and protocols that constituted
know-how have been documented to be highly difficult to
transfer and master (Leonard-Barton 1995; Szulanski 1996). 
Through “learning-by-doing whereby knowledge about how
to perform a task accumulates with experience over time”
(Garud 1997, p. 84), experts come to adopt their field’s
distinctive know-how, acquiring its unique viewpoint and
speaking its language (Brown and Duguid 1991).  This can
create particular difficulty for evaluating a profession’s know-
how from the outside, since “the art of one practice tends to
be opaque to the practitioners of another” (Schön 1983, p.
271).

When describing the process of professionalization, Abbott
(1988, p. 40) shows how experts work to establish and protect
their tacit “professional knowledge system” and hold mem-
bers accountable for their ability to acquire and demonstrate
know-how practices defined by that system (e.g., how to
structure problems, evoke rules of relevance, apply abstract
inference).  Focusing on know-how aspects allows profes-
sionals to gain legitimacy and ward off potential occupational
challenges seeking to over-simplify the rich know-how
practices.  Bechky (2003) showed how engineers in a cross-
disciplinary context were able to “maintain their status as
experts” (p. 735) since key aspects of engineers’ knowledge
(their workmanship, tricks of the trade, and  tribal knowledge)
were not represented in their central knowledge outputs (e.g.,
technical blueprints and drawings).  Instead of being
evaluated based on know-what outputs, their professional
value hinged on their ability to demonstrate and enact their
know-how by using the outputs within larger practices of
problem solving and communication.

Thus, the know-what of knowledge work is difficult to eval-
uate or even characterize due to the uncertain nature of
knowledge in many professional contexts.  Instead, more tacit,
situated, and social aspects of professionals’ knowledge are

central to evaluating the quality of the knowledge work. 
However, today, increasing numbers of AI tools are being
designed for and adopted by organizations in knowledge work
contexts, raising the important question of how is the quality
of these tools being evaluated?

Evaluating the Performance of AI Tools 

Generally speaking, evaluating the performance of AI
involves assessing its ability to produce the correct output for
a given input.  The AI tools in this study are image recog-
nition and classification models that use ML-based models to
detect and learn patterns between inputs and outputs in pre-
labeled data sets in order to assign new inputs to predefined
output categories (Bechmann and Bowker 2019; Provost and
Fawcett 2001).  These tools are designed using neural net-
works that are trained to discover probabilistic relationships
among features of the input and output data and generate a
series of relative weights that can be applied to future data
inputs.  Measuring the quality of this type of AI model
involves calculating how often the model’s predicted outputs
match the label defined as accurate in the data set reserved for
model validation (Kohavi and Provost 1998).  This calcula-
tion is often represented by a metric called the “Area Under
the receiver operating Curve,” or AUC,2 and plotted on a two-
dimensional graph (see example in Appendix B).  The AUC
summarizes a model’s success and error rates, plotting its
relative rate of false negatives (excluding an input from the
correct class) and false positives (assigning an input to an
incorrect class) (Provost and Fawcett 2013).

These output-based performance measures are central to
assessing the performance of ML-based AI tools and are
frequently cited to indicate the tool’s quality.  For example,
machine learning competitions are typically judged by com-
paring submitted models’ AUC values3 and measuring them
against the baseline performance of human experts in that
domain.  Researchers and media outlets often report how AI
models today are generating lower error rates than humans,
claiming, for instance, that “many consider [image classi-
fication] solved—the error rate is incredibly low at around
2%” (Gershgorn 2017).  In the context of medical diagnosis,
for example, the creators of an AI tool for detecting lung
cancer (Ardila et al. 2019) reported their model’s AUC of
0.944 and suggested that this highly accurate model is likely
to transform patient care.

2“AUC” and “ROC” (Receiver Operator Curve) are commonly used
interchangeably in practice.

3Examples can be found at https://www.kaggle.com/competitions.
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These performance measures are then further amplified (and
simplified) as they are cited and incorporated into further
academic and economic analyses (e.g., Autor 2015; Dhar
2016; Frey and Osborne 2017; Seamans and Furman 2019;
Shoham et al. 2018).  For instance, researchers predict occu-
pational automation trends by analyzing a prominent dataset
(curated by the Electronic Frontier Foundation) that aggre-
gates the highest AUC measures reported for various AI
problem domains (e.g., image recognition, speech recognition,
language translation) (Felten et al. 2018; Seamans and
Furman 2019).  Similarly, Frey and Osborne (2017) build on
AUC measures published by AI research communities when
explaining the assumptions underlying their analysis,
including claims that, “today, the problems of navigating a car
and decipher handwriting are sufficiently well understood” (p.
259).

Finally, journalists and media outlets cover these economic
and technical reports and further incorporate and simplify the
message of AI accuracy measures.  These stories often con-
centrate layered technical arguments and research into
attention-catching headlines and brief, flashy conclusions. 
For instance, a recent New York Times article (Grady 2019)
was titled “AI Took a Test to Detect Lung Cancer.  It Got an
A” and communicated the tool’s accuracy in the first sen-
tence:  “Computers were as good or better than doctors at
detecting tiny lung cancers on CT scans.”  Nature published
an article titled “Rise of Robot Radiologists,” which reported
the performance of an AI tool as “significantly more accurate
at predicting cancer—or the absence of cancer—than prac-
tices generally used in clinics” (Reardon 2019, p. S55).
  
Output-based accuracy measures clearly play a pivotal role in
evaluating the performance of modern AI tools and under-
score the need for deeper understanding of how these
measures are evoked and interpreted in practice.  Today, ML-
based AI tools are being developed for growing numbers of
knowledge work contexts, such as in criminal justice (Angwin
et al. 2016; Christin 2014), human resource departments (Van
Den Broek et al. 2020; Weissmann 2018), law enforcement
(Waardenburg et al. 2018; Walch 2019), and sales depart-
ments (Pachidi et al. 2021).  While some organizational
research has begun focusing on how individual experts are
perceiving and using AI-generated knowledge outputs in their
daily work (Knorr Cetina 2016; Lebovitz 2019; Pachidi et al.
2021), we know little about how modern AI tools are being
evaluated for potential organizational adoption to begin with. 
In response to this growing need, this study investigates how
managers form evaluations of ML-based AI tools in the con-
text of making medical diagnoses, bringing to light the stifling
challenges that arise and the consequences of their evaluation
practices for AI adoption.

Research Design and Methods

Research Setting

We conducted an 11-month qualitative study investigating
how managers formed evaluations of AI tools across multiple
sections of a department of diagnostic radiology at a tertiary
hospital in the United States (Urbanside).  Diagnostic radi-
ology is a medical specialization whereby highly trained
physicians use medical imaging technology (e.g., x-ray, CT-
scan, MRI) to provide diagnostic and treatment recommen-
dations to patients and their team of physicians.  The AI tools
being evaluated at Urbanside were ML-based classification
models based on image recognition technologies; they ana-
lyzed medical imaging files as inputs and generated outputs in
the form of disease classifications or image segmentation
files.  Because of the regulatory restrictions in the U.S. at the
time of the study, the AI tools were not designed to actively
learn or dynamically adapt after implementation.  Instead, a
“frozen” version of a trained model was submitted for regu-
latory approval, which could then be deployed into clinical
settings.  Any model tweaks or improvements required addi-
tional rounds of regulatory approval and re-implementation. 
Details of the five tools analyzed in this study are summarized
in Table 1.

Methods

Data Sources.  We followed a grounded approach to theory
development which involved iteratively analyzing data during
and throughout the observational period (Charmaz 2014;
Glaser and Strauss 1967).  The primary data for this study is
11 months of ethnographic observations (Van Maanen 1998)
within Urbanside spanning January to November 2019. 
Observations focused primarily on how Urbanside managers
assessed AI tools for potential adoption in their respective
sections (chest imaging, breast imaging, pediatric imaging,
and neuroradiology).  In all, 23 managers were included in
our data collection.  In this study, managers refer to board-
certified diagnostic radiology physicians who were actively
shaping the assessments of AI in their subsections.  Their
roles are similar to manager-professional “hybrids” described
in prior organizational research (Croft et al. 2015; McGivern
et al. 2015), as they serve dual roles including both
managerial and clinical components.  The specific manager-
professional hybrid roles of this study’s managers include
department chairs, junior and senior diagnostic radiologists
formally leading AI research projects or testing AI vendor
tools, as well as medically trained AI specialists working on
diagnostic AI projects.  Most of the managers in this study
performed diagnostic radiology work on a daily or weekly
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Table 1.  Comparing Five AI Tools Being Evaluated at Urbanside 

Tool Name

Urbanside

subsection of

Radiology

Department

Nature of the Tool’s Diagnostic

Task

Measure of the Performance

of the Diagnosis Task

Tool

Source Tool Design

Brain Tumor

Segmentation

tool 

Neuro radiology

section

• Generate segmentation labels for

three regions of a brain tumor on

MRI (entire tumor, tumor core, and

enhancing tumor core) that can be

used to calculate precise volumetric

measurements.

• Context:  Physicians pay attention to

changes in the size and shape of

tumors for making diagnoses and

treatment recommendations.

Focusing on changes at the edges

of each region helps assess tumor

development.  High variation in brain

tumors’ appearance, shape, and

properties make judging its borders

on MRI challenging.

• No absolute measure of

performance, little possibility

to increase certainty using

additional testing.

• No single method serves as

the agreed-upon standard;

multiple methods are utilized

depending on the purpose of

the exam and produce

inconsistent results.

• Highly subjective and variable

interpretations across different

radiologists.

Open

source 

Cascade of convolu-

tional neural networks

that take four separate

MRI imaging sequence

files as input and

generates three

segmentation labels. 

These labels are com-

bined into a single

output that is displayed

to the user as a visual

overlay over the original

MRI images.

Bone Age tool

Pediatrics

Imaging

• Classify a child’s hand x-ray to a

specific numeric value (number of

years and month) and classify

whether that value is considered

“normal” or “abnormal.”

• Context:  Skeletal age, compared to

a child’s chronological age, is critical

for managing growth disorders in

children.  To assess the stage of a

child’s growth development, a hand

x-ray is compared against a medical

atlas containing a series of images

to identify the closest match.

• No absolute measure of

performance, little possibility

to increase certainty using

additional testing.

• Multiple standards and

methods are available;

physicians use different

medical atlases and analytical

approaches within and across

hospitals.

• Highly subjective and variable

interpretations across different

radiologists and within the

same radiologist at separate

times of observation (De

Sanctis et al. 2014).

Research

group not

affiliated

with

Urbanside

Convolutional neural

networks that take a

single hand x-ray image

as input and first

generate a classification

of the number of months

and number of years

and then assign a

“normal” or “abnormal”

classification.  These

outputs are presented to

the user in an auto-

populated report

template.

Breast Mammo

tool 

Breast imaging

section

• Segment abnormal regions on a

mammogram image and classify

each region to a “malignant” or

“benign” output.

• Context:  Mammography screening

is the most popular tool for early

breast cancer detection.  Typically

abnormal regions are identified by

analyzing and integrating numerous

sources of medical information and

inputs.  When a region is judged as

likely to be malignant, the patient is

often recommended for biopsy or

additional imaging to make the final

diagnosis.

• Highly subjective and variable

diagnosis and follow-up

recommendations across

radiologists (Duijm et al.

2009).  Up to 12% of breast

cancers in the U.S. are missed

during initial mammography. 

Of the 9-10% of patients

recalled for additional imaging,

less than half are found to

have breast cancer (Lehman

et al. 2017).

• Professional standards sug-

gest the use of additional

imaging modalities (MRI,

ultrasound), performing

biopsies, or obtaining long-

term patient records.

Research

group

affiliated

with

Urbanside

Convolutional neural

networks input a single

mammogram, which is

first segmented to iden-

tify all lesions present. 

Each lesion is then

classified as “malignant”

or “benign.”  These

results are aggregated

to an image-level proba-

bility of malignancy. 

Users see an overlay of

circles marking “malig-

nant” lesions on the

original mammogram

image as well as the

image’s overall

“malignancy score.”
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Tool Name

Urbanside

subsection of

Radiology

Department

Nature of the Tool’s Diagnostic

Task

Measure of the Performance

of the Diagnosis Task

Tool

Source Tool Design

Breast

Ultrasound tool 

Breast imaging

section

• Classify (physician-marked) lesion

on ultrasound image into one of four

diagnosis categories (benign,

probably benign, suspicious, or

probably malignant) with the

associated confidence level, and

classify the lesion’s shape and

orientation.

• Context:  Physicians often cross-

validate abnormal regions identified

on a mammogram to their appear-

ance on ultrasound, which provides

additional information to inform

physicians’ diagnosis, such as the

lesion size, shape, and whether it is

solid or fluid-filled.

• Regular disagreement

between radiologists on final

diagnosis categorization of

ultrasound findings; higher

concordance reported for

lesion size, shape, and

orientation (Lazarus et al.

2006).

• Professional standards

suggest the use of additional

imaging modalities (MRI,

mammogram), performing

biopsies, or obtaining long-

term patient outcomes.

Vendor Patented software

design using an

ensemble of machine-

learning algorithms that

takes two regions-of-

interest (drawn by the

physician user) on an

ultrasound image as

input and classifies the

lesion’s diagnostic

category, associated

confidence level, and

shape and orientation.

Chest Triage tool

Chest imaging

section

• Classify chest x-ray into one of 14

disease categories (e.g.,  pneu-

monia, pleural effusion, cardio-

megaly) and classify whether that

outcome is considered “normal” or

“abnormal,” which is then used to

prioritize the work queue.

• Context:  Chest x-ray is the most

common imaging examination

globally, as it is critical for the

diagnosis and management of many

diseases.  As physicians analyze

cases, the work queue grows longer

and longer, and typically utilization a

prioritization based on coming from

the emergency department, then on

a first-in-first-out basis.

• Highly subjective and variable

diagnosis interpretations and

follow-up recommendations

among different radiologists

based on the same chest x-

ray.

• Professional standard

suggests the use of additional

imaging and modalities (CT

scan) or follow-up studies.

Open-

source

Convolutional neural

networks that take two

chest X-ray images

(from the front and side

views) as input and

classifies the disease

category and the asso-

ciated result of “normal”

or “abnormal.”  Users

can route cases based

on the final labels to

prioritize the work

queue.

basis (sometimes with a reduced workload) in addition to
conducting administrative and AI-related responsibilities. 
These responsibilities included formally leading and coor-
dinating AI research projects, negotiating with AI vendors,
attending and organizing AI conferences and symposia,
staying current on published research and regulatory guide-
lines for diagnostic AI, participating in implementation
preparation meetings with hospital IT and infrastructure
teams, and so forth.

Five AI tools are the primary analytical focus since their full
evaluation occurred while we had field access.  In total, 31 AI
evaluation meetings were observed and analyzed, wherein
managers spent one to two hours presenting cutting-edge AI
tool research, debating tool performance at length with data

scientists and other stakeholders, discussing internal pilot
studies and implementation plans, and so forth.  Observations
also include managers participating in industry and research
conferences, workshops, symposia, and vendor presentations.
We conducted 22 semi-structured interviews (Spradley 1979)
and numerous informal conversations with managers supple-
mented the observational data and deepened our under-
standing of managers’ perceptions of the tools throughout the
evaluations.  Interviewing the same individuals at different
time points helped us understand how their perceptions and
opinions about the AI tools shifted over time, what was
driving those shifts, and what new discoveries resulted.  All
interviews were conducted in person in administrative offices
and were recorded (with informants’ permission and consent)
and transcribed.
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Finally, our data collection included archival analysis of over
150 articles detailing diagnostic AI research across the profes-
sional and academic literature.  We analyzed how these
articles reported dimensions of the AI tools, including the
diagnostic context, technical infrastructure, training and
validation datasets, and reported accuracy measures.  More-
over, while observing evaluation meetings and conferences,
particular attention was paid to capturing the technical aspects
of the tools and how managers engaged with these aspects in
practice.  The archival data also included AI tools’ regulatory
filings as well as materials referenced or distributed at
academic events, professional workshops, and vendor
presentations.

Data Analysis.  The main focus of our analysis was under-
standing managers’ process of evaluating AI tools.  In keeping
with grounded theory methods, we constantly compared
emerging themes and categories across ongoing data collec-
tion (Charmaz 2014).  Early on, we created detailed accounts
of managers’ evaluation of each AI tool (based on all authors
reading the full set of observation, interview, and archival
data multiple times) which chronologically captured the range
of practices, interactions, and artifacts that were involved. 
We identified and examined commonalities and differences
among the processes for each of the five main AI tools
evaluated.  We noted, for instance, how managers in all five
evaluation processes were highly focused on a tool’s AUC
measure and the qualifications of the experts producing
ground truth labels.  We also noted how these became less
prominent in the later phases of the process, as they began
discovering the disconnects between these measures and
experts’ practices.  Differences in the evaluation processes
were mainly observed in how managers adapted the practices
to the unique diagnostic context of each AI tool (for example,
a measure called the “DICE” score was used for the brain
segmentation task, which operated very similar to the AUC
measure but was a more appropriate measure for this task). 
We frequently zoomed in on the specific nature of managers’
practices and zoomed out to see how these practices were
subject to institutional and organizational forces (Nicolini
2009).  For instance, we noted managers regularly referred to
AUC graphs in their meetings and discussions.  Zooming out,
we read and analyzed the professional radiology literature and
discovered that AUC measures have been used for decades as
a core professional method of evaluating diagnostic tools (AI
or otherwise).

Additional analysis focused on understanding the technical
nature and differences among the focal diagnostic scenario of
each AI tool.  We compared the nature of each tool’s predic-
tive task as well as how each tool was reportedly trained and
validated.  This led us to see the similarity in all five tools’
underlying technology, whereby all used image recognition
and ML-based classification models.  We also observed

meaningful differences in each tool’s diagnostic task and how
managers accounted for the specific risks and benefits
associated with each distinct diagnosis context.  For example,
managers in the chest imaging section had different expec-
tations for the AI tool designed to triage urgent patients than
managers in the breast imaging department evaluating tools
producing specific diagnosis outputs for physicians to
consider.  This led us to focus more deeply on how managers
assessed the reported claims about AI performance within
each diagnostic context and how they weighed the relative
risks and benefits of each tool.

We analyzed relationships between themes across the five
tools (Golden-Biddle and Locke 2007), noting similarity in
patterns.  For instance, across all five evaluation processes,
managers’ focus shifted from one measure to the next in
similar phases, from analyzing AUC measures to eventually
turning their focus inward to analyze the practices of experts
in their field.  Analyzing these shifts in managers’ focus and
practices led us to notice how certain aspects of the tools were
scrutinized (or ignored) as the tool evaluation unfolded over
time.  For example, specific aspects of research articles and
vendor materials were central early on, whereas other aspects
like the internal pilot study results and internally produced
ground truth labels gained prominence later in their evalua-
tions.  A key insight from this analysis was observing how, in
all five evaluation processes, managers’ focus ultimately
shifted inward, to scrutinizing the uncertainty and variability
of the performance of experts in their field and the lack of
reliable measures of quality in many scenarios.  We engaged
with literatures on the uncertain nature of knowledge work,
evaluation of new technologies, and the specific ways AI tools
are evaluated.  Iterating with our emerging concepts involved
in managers’ AI evaluation process, we focused even more
specifically on literatures related to how knowledge is evalu-
ated in professional contexts (and the importance of both
know-what and know-how aspects of knowledge) compared
to how it is evaluated in ML-based AI development com-
munities (based on knowledge outputs).  As we integrated and
adapted concepts of know-how and know-what to the quality
measures managers were evaluating, we were able to better
conceptualize and theorize their AI evaluation process and its
implications.

Findings

Focusing on Reported Claims of
the High Quality of AI Tools

Underlying the rise of the new generation of ML-based AI
tools were appealing promises of relieving human workloads
without compromising quality.  Urbanside managers, like
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managers in many organizations, were grappling with the
competing demands of coping with high work volumes while
providing high-quality services:  “This is our constant strug-
gle:  the ‘bottom line’ [increasing revenues and decreasing
costs] versus the fact that we are here trying our best to do our
job for our patients” (Irene).  In late 2018, the field of dia-
gnostic radiology experienced an explosion in AI develop-
ment, marked by rapid increases in vendors, research articles
(e.g., Langlotz 2019; Recht and Bryan 2017), educational
resources,4 and media coverage (e.g., Mukherjee 2017; The
Economist 2018).  Urbanside managers eagerly explored the
growing landscape of diagnostic ML-based AI tools and their
alluring promises to reduce costs while maintaining (or even
increasing) diagnostic quality, as flaunted by one tool’s
slogan:  “providing instant accuracy, anywhere, every time.” 
Urbanside managers combed through academic journal
articles, regulatory filings and approvals, and countless media
stories and vendors touting impressive new AI tools.  They
also actively collaborated and partnered with members at the
forefront of diagnostic AI development, which deepened their
understanding of reports about tools’ potential impacts, such
as “decreasing the amount of time it takes to do one task” and
“improving diagnosis by taking out some of the potential
error” (Sadie).  

Specifically, five ML-based AI tools stood out to Urbanside
managers based on their reported high quality and alluring
benefits.  The five tools and their associated diagnostic con-
texts are detailed in Table 1.  First, managers in the pediatric
section were drawn to the Bone Age tool, which received high
praise for its remarkably high accuracy and promises to speed
up diagnosis times by eliminating a tedious process from radi-
ologists’ workflow.  Second, managers in the chest section
focused on the Chest Triage tool, based on the highest
performing algorithm in a global ML competition and its
promises to speed up diagnosis times by classifying urgent
cases.  Third, the Brain Tumor Segmentation tool, another
global algorithmic competition winner, promised to improve
diagnosis accuracy by measuring the volume of brain tumors
(illustrated in Appendix A):  a novel technique without
existing standards.  Fourth and fifth, developers of the Breast
Ultrasound tool (vendor company) and Breast Mammo tool
(Urbanside research group) had both received notoriety for
their tool’s ability to accurately diagnose breast cancer:  “the
[Breast Mammo tool’s] neural network is using [image]
texture much more than the radiologists are capable of doing”
(Chris).

Assessing the Reported AUC
Accuracy Measures of AI Tools

Assessing the reported accuracy measures of AI tools was
critical to forming managers’ opinions about the quality of the
AI tools:  “If there’s a well-designed study that proves that the
tool’s accurate, I’d be comfortable with that” (Miguel).  Mea-
sures reported in published studies were crucial, and managers
specifically focused on reported AUC measures to assess tool
quality.  The AUC is an aggregated measure ranging from
zero to one, that represents the accuracy of the model across
different configurations; it summarizes how well the model’s
predicted outputs match the outputs predefined in the test data
set by the developers.  Professionals in the field of diagnostic
radiology are trained to focus on AUC measures when judging
whether any technological tool (far before and beyond AI)
improves diagnostic accuracy (see example in Appendix B),
from assessing the quality of imaging equipment (e.g., x-ray
or MRI) to analytical tools built into imaging software (e.g.,
Tensor Flow Analysis, tomosynthesis).  So, Urbanside man-
agers readily focused on AUC measures for diagnostic AI
tools and searched for tools “pushing that [AUC] curve into
the upper left corner” (Vivian), that is, nearing the optimal
score of 1.0.  Tools approaching 1.0 were expected to consis-
tently generate near-perfect diagnoses in practice (zero false
positive and false negative errors).

AUC measures were reported prominently in the AI materials
managers were consulting, including research publications,
vendor documentation, regulatory applications, and patent
filings.  Very often, such materials reported AUC values as
the primary evidence of performance, such as in medical
journal abstracts that were open for free to the public (see
example in Figure 1) and when vendor presentations drama-
tically revealed AUC values.  Typically, a tool’s AUC mea-
sure was reported in comparison to another method, usually
expert radiologists or a competing tool, to suggest the tool’s
ability to improve diagnosis accuracy (see Appendix C).

Thus, managers regarded AUC measures as a short-hand
indicator of the quality of an AI tool’s outputs and error rates
relative to experts’, as Cyrus explained:  “When we're talking
about performance, it comes down to what is the accuracy of
the method? It comes down to looking at the AUC number …
At what point is the tool better than what we would do on our
own?”  Managers used the AUC measure to compare the AI
outputs to experts’ outputs when evaluating the Breast
Mammo Tool, “The deep learning model is better than
humans in terms of the common metrics used, in terms of
AUC” (Chris), and the Bone Age tool, “The tool’s perfor-
mance was shown to be as good as, or slightly better than,
radiologists’ interpretations” (Nadia).  Managers also used
AUC measures to weigh relative costs of errors within a given

4See the American College of Radiology’s Data Science Institute at
www.acrdsi.org and Radiology Society of North America at
www.rsna.org/education/ai-resources-and-training.
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Figure 1.  Details of Accuracy Measures and Select Model Details Included in the First Page Summary of
an AI Research Article Published in Radiology:  Artificial Intelligence (E. F. Conant, A. Y. Toledano, J. W.

Hoffmeister, et al., “Improving Accuracy and Efficiency with Concurrent Use of Artificial Intelligence for Digital Breast

Tomosynthesis,” Radiology:  Artificial Intelligence, 2019.  © Radiological Society of North America)

diagnostic context and grasp the tool’s potential risks and
benefits:  “Would you rather have a model that … found all
the abnormal diseases, but had a lot of false positives that the
radiologist had to go through?  Or one that is particularly
specific but might miss something?” (Sadie).

Shifting Focus to the “Ground Truth” Used
to Train and Validate ML-Based AI Tools

While assessing a tool’s AUC measures, managers also began
investigating the source of the “ground truth” created by the
AI developers.  Here, the term ground truth refers to the
labels assigned to the data sets used to train a ML model to
link new inputs to outputs and to validate its performance. 
Many diagnostic ML models relied on the diagnosis decisions
of licensed radiologists as the ground truth labels, which was
considered good practice for AI developers in this field, as
illustrated by materials published by the Chest Triage tool
creators:  “Ground truth is critical in evaluating deep learning
models in medical imaging and provide the foundation for
clinical relevance when interpreting results in this field—this
is why we focus a lot of our effort on considering the best
available ground truth via a panel of medical sub-specialist
experts.”

Managers recognized that ground truth labels were integral to
measuring ML-based AI performance, as they served as the
baseline outputs to compare against the model’s outputs. 
Higher skepticism was expressed towards a model that used
diagnosis opinions provided by novices versus seasoned
experts.  This was illustrated by managers assessing the Bone
Age tool, who were frustrated by the lack of visibility into the
source of the model’s ground truth labels, “If I knew the data
was all labeled by pediatric radiologists who had read thou-
sands and thousands of bone ages, I think I would consider
[the model] to be probably more vetted, more trustworthy than
if it had just been fed college students’ reads who were just
taught how to read them” (Nadia).

Managers searched for indicators of the caliber of the humans
producing the ground truth labels.  Indicators like the quan-
tity, qualifications, and years of experience of the individuals
labeling the data often appeared in published documentation
and the limited summary section of research articles (see
Figure 1).  This was the case for the Brain Tumor Segmen-
tation tool documentation describing how four physicians
followed the same protocol to generate the data labels, which
were then refined and approved by a certified neuroradi-
ologist.  These details were also uncovered in published
regulatory filings, where managers found a detailed table
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summarizing who provided ground truth labels for the Breast
Ultrasound tool (see Appendix C).   

Focusing on Conducting and Assessing
Internal Pilot Studies

Satisfied with the reported performance claims for five AI
tools, managers turned their focus towards evaluating them
within their local work environment.  In the case of the Bone
Age tool, managers were eager to conduct pilot studies since
the tool had previously “only been tested in the hospital where
it was developed.  How do we know if it will be applicable
and function here? … We need to know:  does the model gen-
eralize to our setting?” (Nadia).  Assessing the tool’s internal
performance was critical before moving towards full imple-
mentation, as Savannah from the breast imaging department
explained, “If the [Breast Ultrasound tool] study shows posi-
tive results, that means we [breast imaging radiologists] are
going to be more productive, which is what we want.  But we
don’t want to waste everyone’s time before we know for
sure.”

Importantly, managers had to carefully define what internal
measures of quality they would use to assess each tool’s
performance.  In all five cases, managers hand-selected
Urbanside experts to produce the ground truth diagnosis
labels for each study.  For the Bone Age tool, two senior
radiologists recorded independent decisions, and the average
of the two was recorded as the ground truth for each case. 
Then, AUC measures were generated to assess how well the
AI outputs matched the opinions recorded by the experts.  For
the Chest Triage tool, the consensus of two chest radiologists’
independent assessments was also used as the ground truth. 
In this case, managers also decided to adjust the label of one
disease, cardiomegaly, from “abnormal” to “normal,” which
adjusted the volume of cases ultimately elevated to their
prioritized worklist.

Managers debated the specifics of the ground truth labels they
would use for the Brain Tumor Segmentation tool:  “Is there
intra-observer variability?  If I do one, and you do one, if he
does one, are we happy with that?  Or does it then have to go
through one person to check them all?” (Vivian).  They ulti-
mately decided to compare the tool’s outputs to segmentation
labels generated by a senior neuroradiologist.  Finally, for
both the Breast Mammo and Breast Ultrasound tools,
managers decided to follow a common standard used in pub-
lished AI studies:  one radiologist’s judgment would serve as
the ground truth for the majority of cases, complemented by
a three-month follow-up assessment or pathology findings
when available.

As each study concluded, managers were quite surprised by
the internal results, as many results conflicted with the
accuracy measures reported by tool developers.  For instance,
when segmentation results of the Brain Tumor Segmentation
tool were projected on the screen against the ground truth
label, managers gazed at them in disbelief, “The segmentation
is atrocious!  It takes half the scalp with it.  That makes no
sense … Not only is it highlighting stuff in the brain that is
totally irrelevant, but it doesn’t actually highlight the impor-
tant parts of the tumor!” (Vivian).  Desperate to understand
these conflicting results, managers searched for explanations,
“The results were far more discrepant than I expected, and I
don’t know why” (Anthony).

How the Focus Shifted to Comparing
Experts’ Process to AI Processes

To investigate the underwhelming internal performance of the
AI tools, managers began comparing experts’ diagnosis
approach to how the ML model determined its outputs. 
Unpacking the Bone Age tool’s poor performance led man-
agers to question whether the ML model was “taught” to use
different standards than internal experts’ professional training: 
“Is it possible that our internal standards are slightly different
[than those used by the developers]?  Or that we’ve been
taught [to generate diagnoses] differently than the algorithm
was taught?” (Anthony).

Managers focused on comparing the evidence represented in
the data used to train the AI models to the evidence experts
used to form diagnosis opinions.  Doing so led managers to
confront the limitations of models’ training data in that only
a narrow subset of the relevant diagnosis inputs was captured
in the datasets underlying the ML model.  In the case of the
Breast Ultrasound tool, managers questioned the validity of a
model whose outputs were based solely on two cropped
ultrasound images, including Savannah remarking, “The
software does not take into account certain clinical variables
which are so very important,” and Lola commenting, “There’s
a lot of art of [patient’s case] management that’s not
accounted for by the tool.”

Moreover, managers began scrutinizing how ground truth
labels were defined and generated, extending their earlier
focus on assessing who generated the labels.  For the Breast
Mammo tool, significant discrepancies were discovered be-
tween how the labelers generated the ground truth and
experts’ approach in their daily practice:  “The readers were
not looking at prior images.  It was done intentionally, to keep
it, you know, apples-to-apples, a controlled way to do the
study.  But it’s not even close to real practice” (Lola). 
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Looking at prior images was an essential and fundamental
analytical practice for radiologists; not doing so is considered
a genuine act of malpractice in the field.  Urbanside managers
uncovered that experts labeling ground truth cases were only
analyzing the current image, driven by developers’ desire to
draw an “apples-to-apples” comparison between the AI and
human outputs.  This new realization led managers to confront
the limitations of using such measures to evaluate AI tools and
increased their skepticism about the tools’ reported perfor-
mance claims.

The Unexpected Consequence
of Evaluating AI Performance 

Managers continued to dig deeper into how ground truth
labels were constructed and ultimately confronted even deeper
limitations of using human-generated labels:  the deep uncer-
tainty human experts face when generating diagnosis outputs. 
Managers struggled to reconcile the practice of using expert-
generated labels as the ground truth when, in practice, these
opinions lacked strong external validation, as explained by
Sadie, “All we have for the ground truth is the radiologists …
That doesn’t necessarily mean that is the right answer, but it’s
what we have now,” and Leslie, “There’s no gold standard. 
The standard we use is the radiologists’ read, but is the
radiologist right?  We don’t know!”

Providing medical diagnoses is ambiguous and uncertain
knowledge work, plagued with a lack of agreement about
what constitutes an absolute or “accurate” opinion.  After a
radiologist diagnoses a patient, it is difficult to know for cer-
tain the accuracy of that diagnosis.5  In practice, it was com-
mon for radiologists to form conflicting conclusions about a
particular diagnosis, even when highly trained experts were
presented with the same full set of medical information (e.g.,
De Sanctis et al. 2014; Duijm et al. 2009; Lazarus et al.
2006).  Diagnostic errors are a major area of research in this
professional field, reporting how such errors impact between
10 and 20 percent of cases, as many as one in five patients
overall (Berner and Graber 2008; Bruno et al. 2015).  As one
Urbanside manager explained solemnly, “We all have misses. 
Interpretation is hard.  It’s not necessarily like you weren’t
looking or paying attention.  It’s like, you interpreted it, right?
And we can be right or wrong when we interpret things”
(Leslie).

Acknowledging these limitations, some measures of perfor-
mance in the diagnostic radiology field are considered more
or less reliable for determining the accuracy of a given
judgment.  Professional standards based on clinical outcomes,
such as pathology reports and/or long-term follow-up records,
for instance, are considered high quality measures of perfor-
mance for breast cancer diagnosis because they represent the
current best possible evidence to confirm the diagnosis. 
However, in many diagnostic scenarios (where standards are
difficult to obtain in terms of time, cost, technology resources,
and patient privacy concerns), the field recommends that one
or multiple experts’ diagnostic assessments may serve as a
measure of diagnosis quality.6  This was the scenario that
managers faced when evaluating both of the AI tools for
breast cancer diagnosis, where the professional standard (as
well as the expected level of evidence required by most medi-
cal journals) would require pathology reports or long-term
follow-up records.  However, ML research commonly uses
experts’ diagnoses as the standard, and managers expressed
discomfort drawing firm conclusions on that basis, given the
high uncertainty and variability of experts’ opinions:  “The
outcomes in breast cancer, by definition, need to be long-term
outcomes.  So, if some results are false negatives, you need at
least a year to figure out if they were wrong … How valid are
these results if they are not incorporating the long-term
outcomes?” (Savannah).

In all five cases of AI tool evaluation, managers faced the
crippling limitations of using expert-generated ground truth
labels to evaluate ML-based AI tools.  When unpacking the
poor results of the Brain Tumor Segmentation tool pilot,
managers began scrutinizing the ground truth labels they
constructed internally:  “How good is our standard for
segmenting brain tumors?  Let’s take a look at what the heck
was segmented and see how good is it?” (Vivian).  Projecting
one of the labels on the screen prompted concerned comments
about its quality, “In the center, the core, there are some really
patchy areas … It’s very important we get that [label] right. 
We can’t move forward with anything until we have a gold
standard, something to measure the tool against” (Yanis).  An
extensive debate followed:  they described in detail highly
varied approaches to how they would have labeled the tumor’s
regions in practice.  Multiple tumor segmenting standards
were available in the neuroradiology field, each yielding dif-
ferent outputs.  Thus, determining ground truth labels defining

5For instance, multiple conclusions may be drawn if a patient never returns
to the physician:  Was the diagnosis and subsequent treatment accurate and
the patient recovered?  Was the diagnosis inaccurate, but the patient
recovered anyway?  Was the diagnosis inaccurate, and the patient worsened,
yet never returned to the original physician?

6Gathering such assessments are often part of standard medical practices,
including routine peer reviews, regular conferencing with other physicians
in a patient care team, in addition to the frequent impromptu meetings or
phone calls wherein colleagues discuss a current diagnostic question,
examine and debating case details together, until agreeing on a unified
conclusion.
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the brain tumor’s edges was subject to deep underlying ambi-
guity:  “According to our standard protocol for this task, that
label is considered acceptable.  But I think, maybe, that just
isn’t a good standard, in general” (Vivian).  

Similarly, managers sought to understand why the Bone Age
tool’s outputs frequently diverged from the ground truth labels
experts had generated internally.  Managers began discussing
the high variability between and within even highly trained
experts at Urbanside and the field’s lack of external methods
to validate bone age diagnoses.  Confronting the underlying
uncertainty about the quality of human experts’ knowledge led
managers to question their ability to use expert-generated
diagnoses to evaluate the accuracy of AI outputs:  “I feel like
my opinions might be different than other people’s opinions. 
I also don’t know how good the intra-observer rate is.  And
also, the inter-observer.  I have no idea how good we
[experts] are.  So, is using our opinions a good way to train
and test the machine? I don’t know” (Nadia).

Outcomes of Evaluating AI Tools

In the end, managers’ AI evaluation process, which is sum-
marized in Table 2, resulted in three of the five piloted AI
tools moving forward towards deeper exploration in the
hospital, while the future for two tools was less clear.  For the
latter, the Breast Mammo and Breast Ultrasound tools,
managers recognized the limitations of using ground truth
measures based on experts’ diagnoses and struggled to eval-
uate each tool’s performance in a satisfying way:  “There were
a lot of situations where the model was wrong.  There were
also a lot of situations where the radiologist was wrong. 
There was a lot of discordant information” (Stella regarding
the Breast Mammo tool).  They considered the relative risks
of using the tools, from the potential errors it may introduce
to the potential increases in costs, as in the case of the Breast
Ultrasound tool pilot suggesting slower diagnosis speeds, “For
each lesion, you need to draw a little box into two different
planes of view, so there’s additional time for that extra
maneuvering” (Savannah).  These additional risks could not
be justified since it was not clear what (if any) benefits the
tool may generate if implemented.

In contrast, three AI tools were on a path of deeper explor-
ation and potential implementation at Urbanside.  Despite
lacking a clear assessment of a tool’s accuracy (given the
underlying uncertainty of expert outputs), managers’ AI eval-
uation process enabled them to have a clearer sense of a tool’s
relative risks and benefits.  For the Bone Age and Brain
Tumor Segmentation tools, managers were motivated by the
underlying uncertainty and lack of established professional

standards for the focal tasks.  They viewed implementing
these tools as a way to more deeply explore and potentially
improve these diagnosis methods, which they viewed as out-
weighing the risk of the tool generating flawed outputs: 
“Even if the tool has some degree of error in it, it is still better
than [our current method] for measuring the tumors– which is
horrible! So almost anything would be an improvement”
(Vivian).  Furthermore, while the pilots did not analyze diag-
nosis speeds, managers were hopeful that the tools may
increase efficiency, “It makes radiologists’ lives easier.  It
shortens the times for us to measure the tumor” (Alvin).

Finally, managers decided that the benefits of moving forward
with the Chest Triage tool outweighed its potential risks: 
“[The department chair] has already given his stamp of
approval.  I think as long as it’s efficient, there’s no ques-
tioning it.”  In this context, managers were notably more
tolerant of potential AI errors.  They were using the tool to
“massively decrease turn-around-times” (Bob) for urgent
cases, while still applying experts’ full range of practices to
make diagnosis decisions:  “I’m okay with the model being
wrong sometimes [overclassifying cases as urgent], as long as
we don't miss [truly urgent] cases” (Leslie).  Managers were
ultimately driven by the promise that the AI tool may greatly
improve patients’ lives:  “Getting to acute patients faster
could impact their care and their health and their feelings and
avoid possible complications.  Isn’t that the point of medi-
cine?  That’s what [the tool] is doing” (Leslie).

Discussion

In this study, we unpack the process of evaluating ML-based
AI tools in a context of professional knowledge work (medical
diagnosis).  Initially, managers focused on specific reports of
high AI tool accuracy and assessed AUC measures and
expert-generated ground truth labels published by tool crea-
tors.  Managers chose five tools for further evaluation and
conducted pilot studies to assess how well the AI outputs
compared to internal experts’ outputs.  However, the pilots
yielded disappointing results and left managers searching for
explanations.  As managers dug deeper, it brought them to
confront the underlying challenge of evaluating the perfor-
mance of human experts, as many diagnostic scenarios lack
strong validation of the diagnosis outcome.  As in many
knowledge-intensive contexts, experts developed over the
years rich know-how practices to form high-quality knowl-
edge outputs.  Thus, to evaluate AI outputs, managers began
reflecting on the know-how practices that enable internal
experts to grapple with uncertainty in their daily work and
produce high-quality judgments.  As a result, managers came
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Table 2.  Summarizing the Shifting Focus Across Quality Measures While Evaluating ML-Based AI Tools
for Medical Diagnosis

Focus of

Evaluation

Brain Tumor

Segmentation Tool Bone Age Tool Breast Mammo Tool Chest Triage Tool

Breast Ultrasound

Tool

Reported

claims of AI

tools’ high

quality 

Focusing on pro-

mises to increase

diagnosis accuracy

by adding a precise

measurement to

physicians’ analysis

Focusing on pro-

mises to reduce

diagnosis time and

improve diagnosis

accuracy with tool-

generated

assessment

Focusing on promises

to improve diagnosis

accuracy and possibly

spend less time

reading “normal”

mammograms

Focusing on pro-

mises to reduce

diagnosis times and

improve outcomes

by detecting and

prioritizing urgent

cases

Focusing on promises

to improve diagnosis

accuracy and possibly

reducing time

physicians spend

equivocating 

AI tools’

reported AUC

measures

Assessing the

reported perfor-

mance of 0.79, 0.91,

0.84 for matching

experts’ outputs for

respective tumor

regions

Assessing the

reported accuracy

of 0.989 for

matching within 12

months of experts’

assessment of

normal vs.

abnormal 

Assessing the

reported accuracy of

0.93 for classifying

images with malig-

nant findings, sur-

passing radiologists’

AUC by 0.11

Assessing the

reported accuracy of

between 0.90 and

0.97 for 13 disease

categories, and 0.85

for one disease

category

Assessing the

reported accuracy of

0.88, surpassing the

mean accuracy of

experts’ by

approximately 0.05

“Ground truth”

used to train

and validate

AI tools

Consisted of manual

segmentations

drawn by one of four

experts following the

same protocol, then

revised and ap-

proved by a  board-

certified neuro-

radiologist

Consisted of the

average of the

assessments of

three fellowship-

trained pediatric

radiologists with

nine, eight, and two

years of post-

fellowship

experience

Consisted of biopsy

results performed

within 120 days of the

mammogram

Consisted of diag-

noses provided by

four radiologists who

had four, seven, 25,

and 28 years of

experience (one was

subspecialty trained)

Consisted of pathology

or a physician’s diag-

noses at 1-year follow-

up (for cases not

biopsied)

Internal

measures of

quality for

pilot studies

Comparing tool

outputs to segmen-

tation labels pro-

vided by one senior

neuroradiologist,

then aggregated to

generate AUC-like

measures

Comparing tool

outputs to diagnosis

labels of the aver-

age of two pediatric

radiologists’

assessments, then

aggregated to

generate AUC

measures

Comparing tool out-

puts to diagnosis

labels provided by

one breast radiologist,

then aggregated to

generate AUC-like

measures

Comparing tool out-

puts to the consen-

sus of two senior

chest radiologists’

assessments, then

aggregated to

generate AUC-like

measures

Comparing tool out-

puts to pathology

results (for cases with

biopsy), 3-month

follow-up of one radi-

ologist (when recom-

mended), or one

radiologist’s assess-

ment (majority of

cases), then aggre-

gated to generate

AUC-like measures

Comparing

the AI

process to

experts’

process

Comparing the 

pristine research-

grade images used

in the limited dataset

to the messy and

nuanced reality of

measuring tumor

development

Comparing how the

tool was deter-

mining a given out-

put to the multiple

standards and pro-

tocols local experts

were trained to use

in practice

Comparing how

experts produced

ground truth labels

using practices that

did not adhere to their

professional

standards 

Comparing how

ground truth labels

classified certain

diseases as “abnor-

mal” vs. “normal”

and deciding to

change those labels

for their internal use

case

Comparing the

creators’ decision of a

limited scope of

information to train the

tool to the wide array

of evidence experts

consider in practice

Confronting

limits of

evaluating

their own

performance

as experts

Confronting whether

expert labels were a

valid measure of

quality when they

lacked a single,

agreed-upon stan-

dard for measuring

brain tumor volume

Confronting whether

the expert labels

were a valid mea-

sure of quality when

they are highly

variable and subjec-

tive and based on

multiple standards

Confronting the trade-

offs of evaluating

based on highly

variable experts’

diagnoses vs. the

(highly expensive and

often inaccessible)

professional standard 

Confronting whether

experts’ diagnoses

are a valid quality

measure when they

are highly variable

and subjective

Confronting the trade-

offs of evaluating

based on highly

variable experts’

diagnoses vs. the

(highly expensive and

often inaccessible)

professional standard
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Table 3.  The Quality Measures of Know-What and Know-How Used to Evaluate ML-Based AI Tools 

Measure Description How Managers Evaluated the Measure 

Ground truth

measures 

• Data labels assigned to every data point in training

and validation datasets which form the basis of a

ML model’s ability to match new inputs to outputs

• Constructed by AI creators 

• Represented prominently in AI literature on ML 

• Focusing on assessing experts and their outputs (know-what)

that are used to train the model to generate its outputs.

• Asking, how well do the labels represent “accurate” outcomes

for a given input? 

• Asking, what is the caliber and qualification of the experts

generating labels?

Professional

standard of 

output quality

• The most accurate or best available benchmark for

establishing the accuracy of a given knowledge

output given current conditions

• Set in the context of a professional field 

• Occasionally represented in AI literature

• Standards vary from those that use aggregated

opinions of experts to those derived from external

validations derived from biopsies and long-term

follow-up 

• Focusing on assessing experts and their outputs (know-what)

• Asking, does the professional field endorse the use of this

standard?

• Sometimes standards are represented in the AI literature, for

example, does the ground truth use the best available

standard established by the professional field?

AI accuracy

measures

• In the image recognition models in our study, ML-

based AI outputs are summarized by AUC

measures which compare how well AI outputs

match predefined ground truth labels

• Represented prominently in AI literature and

publicly reported documentation

• Focusing on assessing ML-based AI outputs (know-what)

• Asking, how close is the AUC measure to 1.0?  A measure of

1.0 suggests the ML-based AI model’s know-what perfectly

aligns with experts’ know-what.

• Asking, how does the ML-based AI model’s error rates

compare to experts’ error rates? 

• Weighing the relative risks and benefits of tradeoffs between

false positive and false negative types of errors.

Practically

acceptable

performance

• The accumulated professional know-how practices

that enable experts to reach an adequate level of

certainty in a situated problem context

• Constituted in daily professional life

• Rarely represented in AI literature on ML

• Demonstrating mastery of practices and problem-solving

approaches guided by the knowledge system of a given

professional field.

• Acceptance that one may never achieve full certainty in

practice given limits of many knowledge contexts, but that

relying on and applying know-how enables acceptable levels

of certainty in practice.

to recognize a troubling disconnect between ML-based AI
quality measures that were based solely on know-what aspects
of knowledge and the rich know-how practices experts rely on
in their daily work.  These realizations had profound implica-
tions for managers’ AI evaluations and their assessment of
each tool’s potential risks and benefits.

A key insight of this study is uncovering the limitations of
using know-what-based measures that ignore experts’ know-
how in evaluating ML-based AI tools for knowledge work. 
Table 3 summarizes our findings.

Quality measures based on know-what.  Ground truth labels
used for training and evaluating AI tools, professional stan-
dards of diagnostic output quality, and aggregated AI perfor-
mance accuracy were critical to managers’ AI evaluation
process but eventually proved problematic due to their
emphasis on know-what aspects of knowledge.  Regarding
ground truth measures, AI creators select ground truth labels
that attempt to represent the “accurate” knowledge output for
every input in training datasets.  In this study, managers

initially scrutinized the qualifications of the labelers and
treated ground truth labels as taken-for-granted representa-
tions of knowledge in their field.  Eventually, they recognized
how even labels generated by experts limited their evaluations
since experts’ knowledge outputs were subject to deep under-
lying uncertainty and ignored know-how aspects of knowl-
edge that were essential to producing knowledge in practice.

The second quality measure based on know-what is a profes-
sional standard of diagnostic output quality.  These measures
are set in the context of a professional field and have strong
reputations for being the most accurate or best available
benchmark to establish the accuracy of knowledge outputs. 
In medical diagnosis, for example, a professional standard for
the accuracy of a diagnosis is often established using long-
term patient outcomes or microscopic evidence.  Managers
faced the limits of professional standards of diagnostic quality
for all five tools in this study.  In two cases (bone age and
brain tumor segmentation), multiple standards were used
unsystematically and yielded varied (yet equally acceptable)
diagnosis outputs.  For the two breast cancer diagnosis tools,
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expert-generated labels were commonly used for evaluation
instead of enduring the costs of acquiring the level of evi-
dence defined by the established professional standard.

Finally, aggregated AI performance accuracy measures were
the third quality measure based on know-what that influenced
and limited managers’ AI evaluations.  Managers focused
specifically on AUC measures, a numeric representation of
how well an AI model’s outputs matched predefined ground
truth labels.  Managers viewed AUC measures as objective
indicators of the quality of the AI tool.  They often failed to
appreciate how the AUC measure obscured the uncertain
knowledge represented in ground truth labels and how it
failed to account for experts’ know-how practices.

Quality measure of know-how.  This study distinguishes
between the previous three quality measures of know-what
from a quality measure based on know-how.  This measure is
associated with experts applying rich professional know-how
practices to reach an adequate level of certainty for a situated
problem context.  In many fields, this involves experts
accepting that full certainty may be impossible to achieve
given the current state of knowledge in that field and practical
costs and constraints.  Using a quality measure of know-how
in practice means evaluating experts based on their ability to
demonstrate the range of tacit practices they have accu-
mulated over time that enable them to form practically accep-
table judgments.  In our study, we show how managers
ultimately confronted the disconnect between experts’ know-
how-based measures and the know-what-based measures used
for evaluating ML-based AI tools.

Theoretical and Practical Implications

AI tools are rapidly emerging in many professional knowledge
contexts using expert-provided labels as the ground truth
(Mitchell et al. 1990; Smyth et al. 1994), yet the highly uncer-
tain nature of experts’ knowledge outputs is going largely
unexamined.  By identifying how ML-based AI tool evalua-
tion focuses on know-what measures, while professional
knowledge work focuses on know-how measures, we offer a
number of theoretical implications and future research direc-
tions, which are examined in the following section and
summarized in Table 4.

This study highlights the vital importance of conducting
thorough evaluations of AI tools for contexts of expert knowl-
edge work.  Only through a deep process of unpacking the AI
tools were managers able to understand AI performance levels
and appreciate the potential risks and opportunities of
adopting each specific tool.  At the same time, recently,
innovation in many fields has been accelerated (Lifshitz-Assaf

et al. 2021).  This became evident in the global pandemic
when there was “gold rush” to AI for helping address
COVID-19 (Gkeredakis et al. 2021).  Our study’s findings
warn against the rushed adoption of AI tools, particularly for
new problems wherein the underlying knowledge is uncertain
or immature.  The diligence of the evaluation process con-
ducted by managers in our study exposed the gaps between
the know-what of ML-based AI tools and experts’ know-how. 
However, in many settings, AI is adopted without such
diligent evaluation, and it might take a long time for the
resulting damage to be captured.  For instance, AI was
adopted very rapidly for COVID-19 patient-related care
decisions, including treatment choices and patient dismissal
decisions.  How could these systems be trained properly
according to expert’s standards?  For instance, were ML
models trained on data that included tracking of dismissed
patients’ clinical outcomes?  Would there be a way for these
ML models to learn if patients were erroneously discharged?
Recently, ML researchers themselves started raised such
concerns, finding serious flaws with many algorithms devel-
oped in the early stages of the pandemic (Roberts et al. 2021). 
A diligent evaluation of such tools could have surfaced such
flaws.  As some professional fields begin taking steps to
formalize how AI ought to be evaluated (e.g., Mongan et al.
2020), our study speaks directly to what diligent evaluations
should encompass.

The Tension Between Evaluating
AI and Evaluating Experts

This study illuminates the strong tension between how ML-
based AI tools are evaluated (using quality measures of know-
what) and how experts evaluate their work (based on know-
how).  It is critical to examine and understand the limitations
of any measures based on know-what aspects of knowledge
(e.g., ground truth measures and AUC measures) that ignore
the know-how.  Prior literature describes how know-what and
know-how aspects of knowledge are inherently inseparable
(Polanyi 1966; Ryle 1949), in that all knowing emerges from
and is rooted in situated practices (Brown and Duguid 1991,
2001; Lave 1988; Orlikowski 2002).  Measures using know-
what as the sole representation of knowledge are therefore
inherently incomplete.  In constructing ground truth labels and
AUC measures based on know-what knowledge outputs, ML
model developers divorce “a view of knowledge as a separate
entity, static property, or stable disposition embedded in prac-
tice, [from] a view of knowledge as … enacted—every day
and over time—in people’s practices” (Orlikowski 2002, p.
250).  And yet, despite that know-what measures ignore how
“knowing is in our action” (Schön 1983, p. 49), they have
become a prominent, taken-for-granted means of evaluating
ML-based AI tools.
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Table 4.  Theoretical Implications of the ML-Based AI Tools Evaluation on Professional Knowledge
Work

Focus of

Evaluation

Evaluation

Based on

Know-What or 

Know-How

Relationship Between Know-What

and Know-How Questions for Future Research

Ground truth

measures 

Based on

know-what

• Know-what knowledge outputs fail to

capture the richness of experts’ tacit

know-how practices yet are taken for

granted as “the truth” if produced by

trained experts.

• When and how does an introduction of ML tools into a

professional field increase the propensity to codify know-

what of practice to enable ML tools? 

Professional

standard of

output

quality

Based on

know-what

 

• Standards based on know-what may

be taken-for-granted as objective

and reliable knowledge in a field, but

when the underlying knowledge is

uncertain, such standards will not be

met consistently.

• Reliable professional standards of

know-what are often costly to obtain

at scale. 

• How do professional standards of know-what in a field

change with the introduction of ML tools? 

• Does the introduction of ML tools lead to convergence of

professional standards of know-what even in areas where

know-what knowledge is uncertain and standard creation

is less mature?  

• Do professional standards “degrade” towards those that

are easier to obtain at scale?

• Will we see the rise of new types of professional

standards pertaining to AI-augmented work?

Performanc

e accuracy

measures

(AUC)

Based on

know-what

• Aggregating accuracy measures into

a single AUC measure obscures the

trade-offs made in the construction

of the underlying ground truth

measures.

• How do AUC measures influence managerial decisions of

whether to use ML tools to augment or replace human

experts?

• What are the risks of comparing human and ML tool per-

formance based on an AUC measure, if ML tools are

trained to optimize this measure, while human experts

optimize multiple performance outputs?

Practically

acceptable

performance

Based on

know-how

• Know-how is difficult to codify in

know-what outputs since know-how

is based on tacit, social, situated,

and embedded action performed

over time.

• Know-how measures are the only

“measure of quality” available when

knowledge is highly uncertain.

• As learning unfolds through

reflection-in-action, know-how

knowledge evolves; know-what

knowledge cannot improve without

know-how.

• When do tacit and contextual aspects of experts’ know-

how lead to greater know-what performance? 

• How can ML tools be developed to take into account more

of experts’ know-how, and would this impact the perfor-

mance of ML tools in practice?

• Will the adoption of ML tools that replace human experts

lead to knowledge stagnation in a professional field due to

the erosion of know-how knowledge?

• How can “explainable AI” be used to compare machine

classification processes with experts’ know-how? How can

this comparison be used to improve both ML-based AI tool

performance and human know-how knowledge? 

Currently, ML-based AI creators do not account for these
limitations of know-what-based measures when reporting and
advertising the performance of tools.  Since the days of expert
systems, computer science researchers have attempted to cap-
ture and codify experts’ knowledge (Dreyfus et al. 2000;
Forsythe 1993; Simon 1987) and experienced difficulties of
faithfully representing tacit know-how in technological form
(e.g., Hutchins 1995; Orlikowski 1992; Star 1989; Suchman
1987).  Today, however, there is renewed hope that ML-based
AI can bypass capturing tacit elements of experts’ process by
implicitly learning the patterns linking inputs to outputs.  This
assumes that what is being linked—the ground truth datasets

defining the input and output—reliably represent knowledge
in that domain.  Issues are known to arise when constructing
ground truth measures for ML models in contexts where
knowledge claims are unreliable (Sheng et al. 2008), such as
when outputs are disputed, subject to multiple interpretations,
or even unavailable.  While some researchers are actively
developing benchmarks and methods for improving ground
truth acquisition in ML research (Krig 2016; Milan et al.
2013), the majority of ML researchers avoid the problem
altogether by selecting domains with less disputed outcomes,
such as images of physical objects (e.g., Deng et al. 2009) or
audio-signals (Mohamed et al. 2012).
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In contrast to AI tool creators ignoring the limitations of
know-what, members of professional fields widely acknowl-
edge these limitations in their everyday practice and focus on
exercising their know-how.  Over decades, experts cultivate
rich practices to build practically acceptable levels of cer-
tainty in their everyday work (Knorr Cetina 1999).  Many
professional fields hold their members accountable for their
ability to adhere to this “professional knowledge system”
(Abbott 1988) rather than enforcing a standard based solely
on know-what outcomes.  For instance, when radiologists are
sued for a diagnostic error, they avoid malpractice charges by
showing they adhered to their professional process standards,
following all of the best available practices and protocols
according to their know-how.  Professionals must trust that
their know-how will help them avoid negative outcomes, or
else the uncertainty they face in their know-what may be
paralyzing.

Our study also relates to the growing discourse and body of
research focusing on “explainable AI” (e.g., Barredo Arrieta
et al. 2020; Bauer et al. 2021; Fernández-Loría et al. 2020;
Guidotti et al. 2018).  Managers in this study were actively
searching for ways to better understand the “black box” of the
AI tools during their evaluations.  Indeed, one of the key
drivers behind the movement towards explainable AI research
is the eagerness of managers performing AI evaluation to
understand how the tools were developed and what processes
they use to derive outputs.  Unpacking such processes can
help managers compare AI processes with experts’ know-
how.  Such comparison may create an opportunity for
learning, where it can reveal if a crucial part of know-how is
not captured by the machine; vice-versa, it may enable human
experts to learn from the AI processes.  Moreover, if explain-
able AI for ML-based tools reveals inconsistencies in how
machines classify similar input data (e.g., using different parts
of the image every time a classification is done), this may
prompt managers to question the reliability of such AI tools. 
Explainable AI, however, would not be able to address critical
challenges that we have identified in this study associated with
the limitations of the ground truth labels and the lack of uni-
form professional standards that characterize many areas of
professional knowledge.

The Risky Consequences of Treating
Constructed Quality Measures Objectively

Our study highlights the constructed nature of the measures
commonly used to evaluate ML-based AI tools and the
consequences of treating them as objective means of judging
knowledge.  Ground truth labels and AUC measures were
often presented in quantified forms, which are known to
increase the appearance of objectivity while hiding the

situated, embodied, and equivocal nature of the underlying
knowledge being represented (Bechmann and Bowker 2019;
Espeland and Stevens 2008; Pentland 1993).  However,
despite the popularity of the term “ground truth,” prior
scholars have argued that such measures are far from objec-
tive or neutral, but are socially constructed and subject to
ongoing debate and contestation (Bowker and Star 2000;
Gitelman 2013; Latour 1987; Timmermans and Berg 2003). 
In particular, prior literature examining the constructed nature
of categories and labels in (digital and nondigital) classifi-
cation systems has emphasized the high degree of subjectivity,
abstraction, and influence underlying decisions to form and
define labels (Bechky 2021; Bowker and Star 2000). 
Recently, research has begun investigating the influential role
of ML-based AI tool creators in constructing ground truth
labels and arbitrating the “right” knowledge that AI tools
should generate (Bechmann and Bowker 2019; Pasquale
2015).  Further research is needed, however, to better under-
stand how constructed ground truth labels shape the
performance of ML-based AI tools and impact their adoption
and use in organizational contexts.

Our study illuminates how ground truth measures were treated
objectively, despite their constructed nature.  Prior literature
describes how knowledge that is removed from situated work
processes begins to take on a more objective and static quality
(Berger and Luckmann 1966; Latour 1987) that may then be
represented in and associated with technological artifacts
(Pentland 1995).  Part of the process of forming judgments
about new technologies has been shown to involve individuals
questioning the measures, artifacts, and quantifications meant
to represent knowledge in a given field (Anthony 2018;
Espeland and Stevens 2008; Pentland 1993).  Attending to
these issues involves actively unfolding and scrutinizing the
technology and its related artifacts, “unraveling of the features
of physical and technical objects, of their details, composition,
hidden sequences, and behavioral implications” (Knorr Cetina
1999, pp. 71-72).

In our study, the spell of objectivity surrounding AI measures
that are based on know-what was broken when managers
began comparing these measures to experts’ rich professional
know-how and recognizing the serious disconnect.  Focusing
on a specific ground truth label (previously assumed to repre-
sent the “accurate” diagnosis), they recontextualized it within
its situated problem scenario and analyzed the diagnosis as an
expert would in their daily practice.  After discussing and
debating the patient’s specific condition, potential imaging
nuances, and conflicting evidence of disease progressions,
they concluded that multiple diagnoses were equally likely
and recording any one as the “ground truth” was unaccept-
able.  In other words, as managers drew on experts’ rich and
multifaceted know-how practices, they reconsidered the
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validity of ground truth labels based solely on experts’ know-
what knowledge outputs.

Understanding the constructed nature of AI performance
claims is not only useful for managers evaluating AI tools; it
is also critical for anyone engaging with or referencing quality
measures of know-what for academic or policy-related
purposes.  Our study points to the risks of taking-for-granted
measures based on know-what and ignoring their limitations
when incorporating them into aggregated studies and perfor-
mance claims.  Take, for instance, ImageNet models’ high
AUC measures (Gershgorn 2017; Parloff 2016) which are
commonly cited as clear evidence of AI’s strengths and
abilities to support analyses of employment and automation
trends (e.g., Dhar 2016; Frey and Osborne 2017; Seamans and
Furman 2019).  Our findings would urge for explicitness
about the constructed nature of the measures underlying
ImageNet performance claims and the limitations of being
built upon popular datasets using crowdsourced image
labeling as the ground truth.  Explicitness about possible risks
and limitations is critical, since, as this study showed, these
claims often serve as the driving force behind the adoption of
highly consequential AI tools at growing scales.

Relying on AI Outputs May Severely
Limit Learning

Finally, if ML-based AI tools are indeed implemented at scale
in knowledge-intensive contexts, the dilemmas that surfaced
in this study would be further exacerbated and lead to major
consequences.  Namely, organizational and professional
learning processes may disappear if know-what-based AI
outputs dominate decision-making contexts and erode experts’
tacit know-how.  Once AI tools are perceived as taken-for-
granted and objective (Berger and Luckmann 1966; Latour
1987), and experts rely on seemingly accurate AI outputs as
a welcome reprieve from their uncertainty, fundamental
organizational changes may follow.  Moving forward, AI tools
and their trusted outputs may influence the social and
technological ensemble that generates the very data on which
the tool is trained (Faraj et al. 2018; Orlikowski and Scott
2014; Pachidi et al. 2021).  For instance, in a recent study,
Pachidi et al. (2021) find that sales professionals responded
to a new tool by continuing to work according to their expert
know-how and used the tool in symbolic ways only.  How-
ever, their perfunctory use generated new data which further
trained and legitimized the predictive model, and, ironically,
resulted in the entire sales staff being laid off.

In the future, a “new know-how,” which is augmented and
influenced by AI outputs, may eventually represent the sole
remaining source of knowledge in an organization and stunt
the possibility for learning (in addition to improving the tool). 

Organizational researchers have theorized about the dynamic
way of knowing transforms through humans “interacting,
discovering ‘truth,’ justifying observations, defining prob-
lems, and solving them,” which fuels how “knowledge
alternates between tacit knowledge that may give rise to new
explicit knowledge and vice versa … Tacit and explicit
knowledge mutually enhance each other towards increasing
the capacity to act” (Nonaka and von Krogh 2009, p. 638). 
This process is likely to dissolve if AI tools’ explicit outputs
overshadow the tacit aspects of experts’ knowledge processes
and know-how (Feldman 2004).  If, however, both humans
and AI tools operate in parallel, both retain the potential to
learn and evolve, and there is the important potential to
continue observing and scrutinizing the performance of both
over time.  However, operating in parallel is highly difficult
and expensive in practice, especially as organizational leaders
urge AI tool adoption based on promised efficiency gains. 
Based on this study, we suggest two possible ways of ad-
dressing these concerns.  In areas where scientific knowledge
is highly uncertain, human experts must remain the final
arbiter of decision-making in practice.  For fields with more
established knowledge claims, based on our study, we recom-
mend that AI tools should be trained and validated on quality
measures that more closely resemble know-how and experts’
practically acceptable performance.

Ever since the Turing Test, the performance of computers has
been measured in head-to-head comparisons with the perfor-
mance of humans.  Today, the sentiment has not changed, and
comparisons are routinely drawn between AI tools and human
experts in growing numbers of domains.  Moreover, today AI
tools are being developed for increasingly more critical indi-
vidual, organizational, and societal decisions.  Such decisions,
however, are often embedded in contexts where human
experts routinely experience uncertainty-producing judgments
and, as a result, rely on their know-how to address limitations
of their know-what.  In such contexts, organizational actors
should be cautious in developing and adopting AI tools that
are based on human experts’ know-what knowledge.  Such
tools may not only produce poor decisions that are conse-
quential but may also limit our ability to learn how to improve
such decisions in the future.
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Appendix A

Figure A1.  Featured on the Brain Tumor Segmentation Tool Website  (The tool promises to segment three

tumor regions (small images, left), which are combined in the final output (far right image).)
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Appendix B

Figure B1.  AUC Graph Depicting the Superior Performance of Tool A (e.g., 3D imaging for breast cancer

screening) over tool B (e.g., 2D imaging)

Appendix C

Figure C1.  AUC Graph Displayed on Breast Ultrasound Tool Vendor’s Website
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Figure C2.  FDA Filing for Breast Ultrasound Tool Showing Details of Physicians Involved in the Tool’s
Validation Study
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