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Abstract

The integration of algorithmic trading and reinforcement learning, known as AI-powered
trading, has significantly impacted capital markets. This study utilizes a model of imperfect
competition among informed speculators with asymmetric information to explore the implica-
tions of AI-powered trading strategies on speculators’ market power, information rents, price
informativeness, and market liquidity. Our results demonstrate that informed AI speculators,
even though they are “unaware” of collusion, can autonomously learn to employ collusive
trading strategies. These collusive strategies allow them to achieve supra-competitive profits
by strategically under-reacting to information, even in the absence of explicit communication
or coordination that might breach conventional antitrust regulations. Algorithmic collusion
emerges from two distinct mechanisms. The first mechanism is collusion via price-trigger
strategies (“artificial intelligence”), while the second stems from homogenized learning biases
(“artificial stupidity”). The former is evident only when there is limited price efficiency and
information asymmetry. In contrast, the latter persists even under conditions of high price
efficiency or severe information asymmetry. As a result, in a market with prevalent AI-powered
trading, both price informativeness and market liquidity can suffer, reflecting the influence of
both artificial intelligence and stupidity.
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1 Introduction

The integration of algorithmic trading and reinforcement-learning (RL) algorithms, commonly
known as AI-powered trading, has the potential to reshape capital markets fundamentally and
presents new regulatory challenges. Notably, AI-powered trading bots have consistently delivered
remarkable profits in the equity and forex markets, showcasing their prowess and effectiveness
through established track records.1 Additionally, supported by compelling survey evidence and
industry studies,2 AI has proven highly effective in portfolio management, with the emergence of
AI advisors surpassing human advisors in actively managed equity funds. This noteworthy trend
is not confined to quantitative hedge funds; it also finds manifestation among industry behemoths
like BlackRock and JPMorgan, further underlining the significance and widespread adoption of
AI-powered trading strategies in the investment management arena.

Consequently, policymakers, regulators, and financial market supervisors worldwide have
recognized AI as a regulatory priority, directing their attention to how AI techniques are applied
in financial markets to comprehend the associated implications and assess potential systemic
risks.3 Security and Exchange Commission (SEC) Chair Gary Gensler, in particular, has cautioned
against the possibility of AI destabilizing the global financial market if big tech-based trading
companies monopolize AI development and applications within the financial sector. The challenge
for the SEC lies in promoting competitive and efficient markets amid the rapid adoption of AI
technologies, as AI might be optimized to benefit sophisticated speculators at the expense of other
investors, potentially compromising competition and market efficiency. Moreover, while many
AI proponents argue that algorithms can be designed without the unconscious biases present in
human decision-making, regulators acknowledge the biases inherent in reinforcement learning
processes due to factors like artificial stupidity. They have repeatedly highlighted the potential
for AI to inadvertently amplify biases that could lurk in their designers, further jeopardizing
competition and market efficiency.

This paper aims to analyze the behavior of AI-powered trading algorithms that possess private
information, investigating the significant effects they have on the market power of informed AI
traders and the overall price efficiency of capital markets. It is crucial to note that AI algorithms
do not merely imitate human behavior. In a similar vein to how decision theory and psychology
literature have provided insights into modeling human behavior in an economic context, laying
the foundation for modern finance research, comprehending the dynamics of capital markets with
the prevalence of AI-powered trading algorithms requires insights into algorithmic behavior akin

1The Meta Trade Bot serves as a recent example. According to the media, this sophisticated, cloud-hosted AI
trading system has undergone meticulous development and testing over several years, evidencing its capabilities with
a commendable track record.

2According to BarclayHedge Poll, 56% of hedge fund respondents stated they employed AI or machine learning in
their investment processes. Moreover, the JPMorgan Chase Survey found that more than 50% of the 835 institutional
and professional traders surveyed believed AI technologies would exert the most significant influence on trading in the
next three years.

3For example, the SEC proposed novel rules concerning the application of AI technologies (SEC, 2023). Additionally,
the European Securities and Markets Authority (ESMA) published a report on AI utilization within EU securities
markets (Bagattini, Benetti and Guagliano, 2023).
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to the “psychology” of machines (Goldstein, Spatt and Ye, 2021).
Specifically, we extend the influential framework introduced by Kyle (1985) by incorporating

three novel dimensions. First, it considers the involvement of multiple informed speculators within
a repeated-game context. Second, it introduces a representative preferred-habitat investor, whose
net demand flows need to be absorbed by other agents in the market. Third, the model introduces
a market maker who takes into account both inventory and pricing error, going beyond the limited
focus on price error alone, as seen in Kyle (1985). By combining theoretical rigor with practical
relevance, our model serves as a valuable laboratory for exploring the profound implications of
AI-powered trading strategies on the market power of informed traders and price informativeness.
Our main focus is to utilize Q-learning algorithms as a proof-of-concept illustration of algorithmic
collusion and its consequent effects on price informativeness. Q-learning algorithms, known for
their simplicity, transparency, and economic interpretability, have provided the foundation for
various variants of reinforcement learning procedures that have driven significant advancements
in the field of AI.

In our experimental framework, informed AI speculators utilize Q-learning algorithms to drive
their trading decisions. Our study includes multiple informed AI speculators, a representative
preferred-habitat investor, a continuum of atomistic and homogeneous noise traders, and a market
maker. The market maker updates its belief about the asset’s fundamental value by closely
monitoring the total order flows generated by both informed AI speculators and noise traders.
This belief formation process relies on “historical data” encompassing past total order flows
and corresponding asset values. Furthermore, the market maker employs a statistical learning
approach to understand the demand curve of the representative preferred-habitat investor. This
understanding is achieved by analyzing historical data that includes past order flows of the
preferred-habitat investor and corresponding market prices of the asset. Consequently, the market
maker utilizes a data-driven procedure to adaptively construct its conditional expectation of the
asset’s value and its estimate of the preferred-habitat demand curve. Remarkably, our findings
indicate that this data-driven pricing rule converges autonomously to a pricing rule that closely
resembles the hypothetical scenario where the market maker possesses rational expectations, is
knowledgeable about the preferred-habitat demand curve, and comprehends the collusive behavior
among informed AI speculators in the market. This observation highlights the effectiveness of the
data-driven approach in achieving pricing consistency despite the presence of complex market
dynamics involving informed AI speculators and the preferred-habitat investor.

To ascertain whether informed AI speculators’ behaviors exhibit collusion due to the intelli-
gence of the algorithms, we begin by analyzing the fundamental theoretical properties of tacit
collusion. This analysis assumes that both the informed speculators and the market maker possess
rational expectations and have a comprehensive understanding of the preferred-habitat demand
curve. We highlight how tacit collusion changes across diverse market structures and information
environments. This theoretical investigation enables us to establish a baseline understanding of
collusive behavior in the presence of asymmetric information and the market maker’s endogenous
strategic pricing rules. Furthermore, it lays the groundwork for our experimental study on the AI
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trading behavior, wherein we assess whether the observed collusion of informed AI speculators
aligns with the theoretical predictions under rational expectations and perfect knowledge of the
preferred-habitat demand curve. As a particularly noteworthy contribution, we establish a novel
theory on the impossibility of collusion under information asymmetry. This theory presents
a distinctive and intuitive perspective, emphasizing that informed speculators cannot exploit
pricing errors to achieve collusive outcomes, given the already high level of efficiency in prices
that accurately reflects the fundamental value. The value of this theory lies in its theoretical
insights and novelty, as it illuminates a distinct mechanism separate from existing theories on
the impossibility of collusion under information asymmetry in the context of product market
competition, as previously posited by Abreu, Milgrom and Pearce (1991) and Sannikov and
Skrzypacz (2007).

Furthermore, as another theoretical contribution, our research demonstrates that in scenarios
where preferred-habitat investors play a substantial role in price formation, resulting in prices
that are not highly efficient, tacit collusion among informed speculators can be sustained through
the use of price-trigger strategies. The effectiveness of these strategies is contingent upon the level
of information asymmetry in the market, which should not be overly severe, and the number of
informed speculators, which should not be excessively large. In addition, we show that collusion
capacity increases and price informativeness reduces, when the number of informed speculators
drops, information asymmetry reduces, the subjective rate of time preference (“impatience”)
declines, or preferred-habitat demand elasticity rises.

Our numerical findings provide compelling evidence that informed AI speculators can collude
and achieve supra-competitive profits by strategically manipulating excessively low order flows,
even in the absence of explicit coordination that would constitute an antitrust infringement. The
significance of information exchange in collusion among multiple firms operating within a market
has been well-established in existing research in experimental economics and game theory. To
demonstrate this key idea, we intentionally focus on relatively naive Q-learning algorithms that
solely rely on one-period-lagged asset prices, without incorporating more extensive lagged data
or their own order flow information. Remarkably, our study illustrates that these algorithms
can intelligently communicate and collaborate using just one period of historical prices, when
the trading environment is excessively complex relative to the AI algorithms. These algorithmic
collusion behaves exactly like what the theory would predict across diverse market structures and
information environments. Even more strikingly, in the scenarios where the trading environment
is too challenging or complex for the AI algorithms, informed AI speculators can still collude
and achieve supra-competitive profits by manipulating excessively low order flows, as long as the
algorithms are equally naive. Therefore, the emergence of algorithmic collusion can be attributed
to two distinct sources or mechanisms.

The first mechanism, known as algorithmic collusion through price-trigger strategies or
collusion due to “artificial intelligence,” bears resemblance to its theoretical counterpart – collusion
through price-trigger strategies – when both the informed speculators and the market maker
possess rational expectations and have a comprehensive understanding of the preferred-habitat
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demand curve. When one informed AI speculator deviates from the agreed collusive order flow
level by increasing its magnitude intentionally or randomly, the asset price reacts unfavorably for
the other informed AI speculator. Consequently, they seek to optimize their own performance
by selecting a different order flow level, often leading to a more aggressive approach. This, in
turn, negatively impacts the deviating informed AI speculator. While the underlying mechanisms
between the algorithmic collusion and the economic collusion may differ, despite that both are
through price-trigger strategies, the resulting patterns exhibit notable similarities. At the heart of
both, the punishment threat effectively serves as a deterrent to discourage individual speculators
from breaking the collusion and pursuing higher profits.

Algorithmic collusion through price-trigger strategies introduces a paradoxical situation
regarding price informativeness. This paradox arises because algorithmic collusion through price-
trigger strategies relies on the informativeness of prices, specifically the ability of an informed AI
speculator to deduce the order flows of other informed AI speculators from observed prices. When
price informativeness is high, it becomes easier for an informed AI speculator to accurately infer
the order flows of others, thus facilitating algorithmic collusion. The paradox emerges because the
presence of strong price informativeness, where prices are sensitive to new information and are
not primarily driven by noise trading flows, makes it simpler for informed AI traders to discern
each other’s order flows. This heightened ability to deduce others’ actions strengthens collusion
among the speculators. However, as collusion becomes stronger, it compromises the overall
price informativeness of the market. The collusion among informed AI speculators distorts the
information content of prices, reducing their ability to accurately reflect underlying fundamentals
and impeding the efficiency of price formation. Consequently, in a capital market where AI-
powered trading is prevalent and algorithmic collusion through price-trigger strategies exists,
perfect price informativeness or perfect price efficiency becomes unattainable.

The second mechanism, referred to as algorithmic collusion through learning bias (sometimes
termed “artificial stupidity”)4 and homogenization, relies upon a hub-and-spoke conspiracy.5

Despite the learning bias originating from the algorithms’ intrinsic imperfections, informed
speculators, even while ostensibly competing, may exploit these shared biased algorithms to
sustain supra-competitive profits, as a form of this hub-and-spoke conspiracy. Johnson and Sokol
(2021) underscore the prevalence of this “hub-and-spoke” AI-driven algorithmic collusion in the
context of e-commerce platforms. This conspiracy tends to surface when informed speculators
base their AI-driven trading systems on the same foundational models, potentially leading to a
high level of homogenization as noted by Bommasani et al. (2022), among others. In the context
of the Q-learning process, the emergence of learning bias is directly tied to the inconsistency in

4Learning bias, also known as algorithm bias or AI bias, manifests when an algorithm produces results that are
systemically skewed due to erroneous assumptions in the learning process.

5In the setting of product market competition, a hub-and-spoke conspiracy is a metaphor used to describe a cartel
that includes a firm at one level of a supply chain, such as a buyer or supplier, who acts like the “hub” of a wheel.
Vertical agreements up or down the supply chain act as the “spokes.” Anti-competitive effects can occur, when multiple
competitors use the same AI pricing algorithm supplied by a common service provider who acts as a hub (e.g., Johnson
and Sokol, 2021).
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statistical learning, which results from exploitation. This inherently biased algorithm prompts
the informed speculator to under-react to its private information in the trading, relative to the
optimal trading strategy in the non-collusive competitive setting. Such an under-reaction can
lead to the realization of supra-competitive profits, a scenario more likely to occur if there’s a
widespread homogenization in the use of algorithms among speculators. This situation is further
compounded when no speculator seeks to gain an advantage by utilizing superior algorithms in
contrast to others.

Related Literature. The topic of autonomous cooperation among multiple Q-learning agents in
repeated games has garnered significant attention from researchers in the artificial intelligence
and computer science community over the past decades (e.g., Sandholm and Crites, 1996; Tesauro
and Kephart, 2002). Given the widespread adoption of AI technologies in pricing decisions
across various marketplaces, Waltman and Kaymak (2008) demonstrate that Q-learning firms
typically learn to attain supra-competitive profits in repeated Cournot oligopoly games with
homogeneous products, even though a perfect cartel is usually unattainable. Klein (2021) also
examines the strategies employed by algorithms in a context where firms selling homogeneous
products alternate in adjusting prices to support supra-competitive profits. Recently, in a note-
worthy contribution, Calvano et al. (2020) study collusion by AI algorithms in a logit model
of differentiated products, uncovering not only the existence of supra-competitive profits but
also pinpointing how algorithms might learn to sustain collusive outcomes through grim-trigger
strategies. Expanding upon this, our paper extensively broadens the AI experimental framework,
moving from a scenario of perfect information and a static demand curve to one imbued with
asymmetric information and an strategically-determined demand scheme. We characterize the
various types of AI algorithmic collusion, whether occurring through price-trigger strategies or
through learning biases and homogenization, across diverse market environments.

Inspired by the simulation-based studies on AI algorithmic collusion, empirical research has
also emerged, demonstrating that the use of AI algorithms in setting product prices can lead to
collusion, resulting in heightened supra-competitive prices (e.g., Assad et al., 2023). Additionally,
recent studies have started to focus on policy interventions aiming to obstruct the ability of
algorithms to collude, thereby ensuring the maintenance of competitive prices. Specially, based on
simulation-based studies, Johnson, Rhodes and Wildenbeest (2023) show that platform design
can benefit consumers and the platform, but that achieving these gains may require policies that
condition on past behavior and treat sellers in a non-neutral fashion. Harrington (2019) delves
into critical policy issues surrounding the definition of collusion. Harrington (2019) provides
discussions on policy issues, such as whether collusion should necessarily entail an explicit
agreement among conspirators, or if it might be more aptly defined as the maintenance of elevated
prices, sustained by a reward-and-punishment scheme.

Our paper is one of the first few that study how the widespread adoption of AI-powered
trading strategies would affect capital markets. The work of Colliard, Foucault and Lovo (2022)
is closely related to our research as it also explores the emergence of algorithmic collusion in
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capital markets through the interactions of Q-learning algorithms. However, there are notable
differences in their focus compared to our paper. Specifically, Colliard, Foucault and Lovo
(2022) concentrate on AI-powered oligopolistic market makers, whereas our study centers on AI-
powered oligopolistic informed traders who face perfectly competitive market makers. Colliard,
Foucault and Lovo (2022) delve into how AI-powered market makers strategically mitigate
adverse selection by leveraging their market power, which is sustained through algorithmic
collusion. Their research sheds light on the strategies employed by market makers to cope with
the challenges posed by private information and to optimize their outcomes within an oligopolistic
environment. In contrast, our paper complements the aforementioned works by examining how
AI-powered informed traders exploit their private information and exert their market power
through algorithmic collusion. We investigate the dynamics and implications of collusion among
informed traders in the presence of perfectly competitive market makers. By focusing on the
perspective of informed traders, we provide additional insights into the strategies employed
by these participants to leverage their private information and maximize their profits through
collusion.

2 Model

This model extends the influential framework introduced by Kyle (1985) by incorporating three
novel dimensions. First, it considers the involvement of multiple informed speculators within a
repeated-game context. Second, it introduces a representative preferred-habitat investor, whose
net demand flows need to be absorbed by other agents in the market (e.g., Vayanos and Vila, 2021).
Third, the model introduces a market maker who takes into account both inventory and pricing
error, going beyond the limited focus on price error alone, as seen in Kyle (1985).

By blending theoretical rigor with practical relevance, this model offers a valuable laboratory
for exploring the implications of AI-powered trading behaviors on both algorithmic collusion
and price efficiency. Importantly, the theoretical results produced by the model act as a founda-
tional benchmark for the characterization and categorization of AI-powered trading behaviors in
simulated experiments.

2.1 Economic Environment

Time is discrete, indexed by t = 1, 2, · · · , and it runs forever. There are I ≥ 2 risk-neutral informed
speculators, a representative noise traders, a representative preferred-habitat investor, and a
market maker. The economic environment is stationary, and all exogenous shocks are independent
and identically distributed across periods.

In each period t, an asset is available for trading, with its fundamental value, denoted as vt,
being realized at the end of that period. Each period consists of two distinct steps: the beginning
and the end. We examine the problem in period t in reverse order. At the end of the period, the
fundamental value of the asset, vt, becomes observed by all agents. It is drawn from a normal
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distribution N(v, σ2
v ). Here, v represents the mean and σ2

v the variance of the distribution, with v
set to 1 for convenience. After the realization of the fundamental value vt, trading profits for all
agents in period t are determined.

At the beginning of the period, the informed speculators, noise trader, and preferred-habitat
investor submit their order flows. Simultaneously, the market maker sets the asset’s price, denoted
as pt. Specifically, at the beginning of the period, the noise trader submits its order flow ut to
either buy ut units of the asset if ut > 0 or take a short position of ut if ut < 0, with ut following
a normal distribution N(0, σ2

u), where zero is the mean and σ2
u is the variance. The informed

speculators perfectly know the value vt, but they are unaware of ut when submitting their order
flows. The informed speculators are indexed by i ∈ {1, · · · , I}. Each speculator i, whose order
flow is xi,t, understands that its choice of xi,t will influence pt by shifting the market clearing
condition and revealing information. The informed speculator i chooses its order flows {xi,t}t≥0

to maximize the expected present value of the profit stream:

E

[
∞

∑
t=0

ρt(vt − pt)xi,t

]
, (2.1)

where ρ ∈ (0, 1) is the subject discount rate.

Preferred-Habitat Investor’s Demand Curve. Contrary to the uninformed speculator in Kyle
(1989), the preferred-habitat investor does not derive information about vt from pt. Instead, this
investor has a linear demand curve for the net trading flow zt that slopes downward:

zt = −ξ(pt − v), with ξ > 0. (2.2)

The rationale behind this specification is straightforward: the preferred-habitat investor focuses
solely on the ex-ante expected fundamental value, v, and tends to buy more of the asset when
pt − v is more negative, interpreting this as a stronger indication that the asset is undervalued.
This demand curve is proportional to the spread between the ex-ante expected fundamental value
and the market price. Graham (1973) calls this spread a safety margin.

The average holding of the preferred-habitat investor in this type of asset, denoted as z, is often
substantial. Consequently, this leads to an approximately very small price elasticity of demand,
represented as ε ≈ ξ/z. Studies indicate that preferred-habitat investors with low price elasticity
of demand play an important role in shaping asset prices (e.g., Greenwood and Vayanos, 2014;
Vayanos and Vila, 2021; Greenwood et al., 2023).

The demand curve of the preferred-habitat investor, as specified in equation (2.2), mirrors that
of the “long-term investor” in the model by Kyle and Xiong (2001). This becomes clear, especially
when we recognize that v is the fair value of the asset to risk neutral investors as v = E[vt].
According to this demand curve, the preferred-habitat investor always provides liquidity to the
market. When the price falls further below the ex-ante fundamental value, v, in the market,
the preferred-habitat investor will buy more of the asset. Analogous to Kyle and Xiong (2001),
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we can justify the demand curve, as outlined in (2.2), through a rational choice made by the
preferred-habitat investor under certain assumptions. These assumptions are summarized in
Lemma 1. The proof is in Appendix A.

Lemma 1 (Demand Curve). If the preferred-habitat investor possesses exponential utility with an absolute
risk aversion coefficient of η, then the demand curve has the functional form of (2.2), where the slope ξ is
given by 1/(ησ2

v ).

Moreover, the concept of specifying exogenous net demand curves within the framework of a
noisy rational expectation equilibrium also shares similarities with studies conducted by Hellwig,
Mukherji and Tsyvinski (2006) and Goldstein, Ozdenoren and Yuan (2013), among others. The
fundamental idea is to capture relevant institutional frictions and preferences in a parsimonious
and tractable manner. Notably, our net demand curves can be reinterpreted as “noisy supply
curves” in these prior works by introducing a new variable z̃t ≡ −(ut + zt). Specifically, z̃t

represents the total trading supply provided by the noisy trader and the preferred-habitat investor
to absorb the trading demand of informed speculators. The total supply z̃t follows an exogenous
noisy supply curve defined as:

z̃t = −ut + ξ(pt − v), (2.3)

where −ut can be reinterpreted as the unobservable demand or supply shock in the context of the
prior works mentioned above.

Market Maker’s Pricing Rules. Trading occurs through the market maker, whose role is to absorb
the order flow while minimizing pricing errors. The market maker observes the combined order
flow of informed speculators and noise traders, represented by yt = ∑I

i=1 xi,t + ut, as well as the
order flow of the preferred-habitat investor, denoted by zt. However, the market maker cannot
distinguish between order flows from informed speculators and noise traders. Instead, they can
only make statistical inferences about the fundamental value vt based on the combined order flow
yt = ∑I

i=1 xi,t + ut and not on individual order flows. The market maker sets the price pt to jointly
minimize inventory and pricing errors according to the following objective function:

min
pt

E

[
(yt + zt)

2 + θ(pt − vt)
2
∣∣∣∣yt

]
, (2.4)

where θ > 0 represents the weight the market maker places on minimizing pricing errors. Here,
E [·|yt] denotes the market maker’s expectation over vt, conditioned on the observed combined
order flow yt and its belief about how informed speculators would behave in the equilibrium.

The market maker’s objective, as described in (2.4), captures both the inventory cost and
asymmetric information faced by the market maker. The term (yt + zt)2 represents the inventory-
holding costs borne by the market maker. Its quadratic form is adopted for tractability, consistent
with the literature (e.g., Mildenstein and Schleef, 1983). The term θ(pt − vt)2 captures the market
maker’s efforts to reduce pricing errors arising from asymmetric information. Assigning a weight,
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represented by θ, to the pricing error serves as a reduced-form method to encapsulate factors
such as the benefits of dynamically increasing the trading flows from a growing client base
or competing with other trading platforms.6 As θ approaches zero, the price pt is primarily
determined by the market clearing condition, yt + zt = 0, as in the model of Kyle and Xiong
(2001). Conversely, as θ increases towards infinity, the price pt is primarily determined by the
pricing-error minimization condition, pt = E [vt|yt], as in the model of Kyle (1985).

Given the repeated-game nature of this framework involving multiple informed speculators,
various equilibria with tacit collusion may emerge. We identify three types of equilibria: the
non-collusive equilibrium, the perfect cartel equilibrium, and the collusive equilibrium sustained
by price-trigger strategies. Throughout this analysis, we assume that the market maker is aware of
the specific equilibrium in which informed speculators are participating. Specifically, we consider
the linear and symmetric equilibrium in which the trading strategy of the informed speculators is
characterized by

xi,t = χ(vt − v), for any i = 1, · · · , I. (2.5)

The first-order condition of the minimization problem (2.4) leads to

pt =
ξ

ξ2 + θ
yt +

ξ2

ξ2 + θ
v +

θ

ξ2 + θ
E [vt|yt] ,

where E [vt|yt], according to Bayesian updating, is

E [vt|yt] = v + γyt, with γ =
Iχ

(Iχ)2 + σ2
u/σ2

v

Therefore, the pricing rule of the market maker is

pt = v + λyt, with λ =
θγ + ξ

θ + ξ2

2.2 Noncollusive Nash Equilibrium

We use the superscript N to denote the variables in the noncollusive Nash equilibrium. At the
beginning of the period t, each informed trader i solves the following problem:

xN(vt) = argmax
xi

E

[
(vt − pt) xi

∣∣∣∣vt

]
, (2.6)

where E [·|vt] is informed investor i’s expectation conditional on the privately observed vt and
its belief about how the market maker would set the price in the equilibrium pt = pN(yt). Here,

6Similarly, in the context of e-commerce platforms, it’s often assumed that the platform aims to maximize a weighted
average of per-unit fee revenues and consumer surplus (see, e.g., Johnson, Rhodes and Wildenbeest, 2023). Assigning
a weight to the consumer surplus in this context acts as a reduced-form method. This captures aspects such as the
benefits of dynamically expanding the consumer base over time and competing with rival platforms.
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pN(·) is a pricing function that is determined in the equilibrium characterized as follows:

pN(yt) = v + λNyt, with λN =
θγN + ξ

θ + ξ2 and γN =
IχN

(IχN)2 + (σu/σv)2 . (2.7)

And, yt is the combined order flow of informed speculators and noise traders, characterized by

yt = xi + (I − 1)xN(vt) + ut. (2.8)

The non-collusive Nash equilibrium can be summarized in the following proposition.

Proposition 2.1. The order flow and price in the non-collusive Nash equilibrium are

xN(vt) = χN(vt − v) and pN(vt) = v + λNyt, respectively,

where χN and λN satisfy

χN =
1

(I + 1)λN and λN =
θγN + ξ

θ + ξ2 with γN =
IχN

(IχN)2 + (σu/σv)2

The expected profit is
πN =

(
1 − λN IχN

)
χNσ2

v

The price informativeness, denoted by IN , is defined as the logged signal-noise ratio of prices, that is,
IN = log

[(
IχN)2

(σv/σu)
2
]
.

2.3 Perfect Cartel Equilibrium

Consider a cartel that consists all I informed speculators under perfect collusion. The cartel is a
monopolist who chooses each informed speculator’s order flow to maximize total profits. Because
informed speculators are symmetric, the cartel solves the following problem

xM(vt) = argmax
xi

E

[
(vt − pt) xi

∣∣∣∣vt

]
, (2.9)

where E [·|vt] is informed investor i’s expectation conditional on the privately observed vt and
its belief about how the market maker would set the price in the equilibrium pt = pM(yt). Here,
pM(·) is a pricing function that is determined in the equilibrium characterized as follows:

pM(yt) = v + λMyt, with λM =
θγM + ξ

θ + ξ2 and γM =
IχM

(IχM)2 + (σu/σv)2 . (2.10)

And, yt is the combined order flow of informed speculators and noise traders, characterized by

yt = Ixi,t + ut. (2.11)
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The perfect cartel equilibrium can be summarized in the following proposition.

Proposition 2.2. The order flow and price in the perfect cartel equilibrium are

xM(vt) = χM(vt − v) and pM(vt) = v + λMyt, respectively,

where χM and λM satisfy

χM =
1

2IλM and λM =
θγM + ξ

θ + ξ2 with γM =
IχM

(IχM)2 + (σu/σv)2

The expected profit is
πM =

(
1 − λM IχM

)
χMσ2

v

The price informativeness, denoted by IM, is defined as the logged signal-noise ratio of prices, that is,
IM = log

[(
IχM)2

(σv/σu)
2
]
.

2.4 Collusive Nash Equilibrium

Information asymmetry is a significant characteristic of capital markets, rendering standard grim
trigger strategies less viable due to the challenges in accurately observing and monitoring each
other’s actions.7 However, tacit collusion can still be sustained under information asymmetry
through price-trigger strategies with imperfect monitoring. If an informed speculator can reliably
infer other informed speculators’ total order flows from the market price, collusive incentives can
be created.

The concept of tacit collusion sustained by price-trigger strategies was first introduced by
Green and Porter (1984). Even with imperfect monitoring, agents can establish collusive incentives
by allowing non-collusive competition to occur with positive probability. Abreu, Pearce and
Stacchetti (1986) further characterize optimal symmetric equilibria in this context, revealing two
extreme regimes: a collusive regime and a punishment regime featuring a non-collusive reversion.
In the collusive regime, informed speculators implicitly coordinate on order flows less aggressive
than the order flows in the static non-collusive Nash equilibrium. If the price breaches a critical
level, suspicion of cheating arises, leading to a non-collusion reversion. In the punishment regime,
informed speculators trade non-collusively with low profits.

Price-Trigger Strategies. We now describe the collusive Nash equilibrium sustained by price-
trigger strategies under information asymmetry, as studied by Green and Porter (1984). Specifically,
we focus on the symmetric collusive Nash equilibrium in which all I informed traders choose
the same collusive order flow, denoted by xC(vt). Such trading strategies are sustained by a

7Tacit collusion sustained by grim trigger strategies has been a subject of extensive research, with pioneering work
by Fudenberg and Maskin (1986) and Rotemberg and Saloner (1986), among other notable contributors. Recent studies
have delved into the impact of such tacit collusion sustained by grim trigger strategies on pricing in capital markets
(e.g., Opp, Parlour and Walden, 2014; Dou, Ji and Wu, 2021a,b; Dou, Wang and Wang, 2023).

11



price-trigger strategy: Firms will initially submit their respective order flows xC(vt), and will
continue to do so until the market price falls below a trigger price q(vt) if vt < v or goes above
a trigger price q(vt) if vt > v, and then they will trade non-collusively for the duration (we will
specify this to be T − 1 periods) of a reversionary episode. At time t, the state of world is “normal,”
denoted by st = 0, if (a) vt−1 = v and st−1 = 0, or (b) pt−1 ≤ q(vt−1) and vt−1 > v and st−1 = 0,
or (c) pt−1 ≥ q(vt−1) and vt−1 < v and st−1 = 0, or (d) pt−T > q(vt−T) and vt−T > v and st−T = 0,
or (e) pt−T ≤ q(vt−T) and vt−T < v and st−T = 0. Otherwise, at time t, the state of world is
“reversionary,” denoted by st = 1. In other words, st = 0 if price trigger is not violated at t − 1
and st−1 = 0, or price trigger is violated at t − T and st−T = 0; otherwise, st = 1.

Similar to Green and Porter (1984), we assume that the state variable st is a common knowledge
to all agents. When st = 1, the equilibrium order flows and price are characterized in Section 2.2.
We now focus on characterizing the equilibrium order flow xC(vt) and price pC

t for the case of
st = 0.

We focus on linear policy functions for the case of st = 0:

xC(v) ≡ χC(v − v), (2.12)

pC(y) = v + λCy. (2.13)

We specify the price-trigger function q(v) using the expected price under the coordinated trading
conditional on v, denoted by pC(v) ≡ E

[
pC(y)|v

]
. Specifically, plugging (2.12) into (2.13) and

taking expectation over u, we obtain that pC(v) ≡ v + λC IχC(v − v). The trigger price is specified
as follows:

q(v) ≡
{

pC(v) + λCσuω, if v > v
pC(v)− λCσuω, if v < v,

(2.14)

where ω > 0 is a parameter that characterizes the tightness of the price trigger.
Equation (2.14) warrants further in-depth discussion on several important points. First, when

v > v, informed investors have incentives to buy a large amount of the asset, which boosts
up its price. As a result, when v > v, a meaningful price-trigger strategy would punish the
potential deviating counterparty by reverting to non-collusive Nash equilibrium once the market
price goes above certain high-level threshold q(v). In contrast, when v < v, informed investors
have incentives to sell a large amount of the asset, which suppresses down its price. As a
result, when v < v, a meaningful price-trigger strategy would punish the potential deviating
counterparty by reverting to non-collusive Nash equilibrium once the market price falls below
certain low-level threshold q(v). Second, there is no price threshold when v = v because no
informed investor would have incentives to trade in this case. Third, although there are infinitely
many different ways of specifying the functional form of the price threshold q(v), we focus on a
specification that ensures a linear model solution as in Kyle (1985) and statistically meaningful.
Each informed investor can infer from the price pt = pC(yt) that the noise trading order should be
ût = [pt − q(vt)]/λC. If ût is excessively positive when vt > v, say ût > ωσu for certain constant
ω > 0, the informed investor would suspect that some other informed investors might have
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deviated from the implicit agreement. Analogously, if ût is excessively negative when vt < v,
say ût < −ωσu for certain constant ω > 0, the informed investor would suspect that some other
informed investors might have deviated from the implicit agreement. Fourth, the multiplier σu

ensures that the probability of price-trigger violation is independent of the magnitude of noisy
trading, σu, in the collusive Nash equilibrium.

Given that st = 0, let JC(χi) denote each informed trader i’s expected present value of future
profits, when investor i chooses xi,t = χi(vt − v) and all other I − 1 informed investors choose
xC(vt). That is,

JC(χi) = E
[(

vt − pC(yt)
)

χi(vt − v)
]

+ ρJC(χi)P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

+ E

[
T−1

∑
τ=1

ρτπN(vt+τ) + ρT JC(χi)

]
P

{
Price trigger is violated in period t

∣∣∣∣χi, χC
}

, (2.15)

where pC(·) is the pricing function of market makers in the collusive Nash equilibrium and

yt = χi(vt − v) + (I − 1)xC(vt) + ut. (2.16)

The probability of price trigger violation is

P {Price trigger is not violated in period t}
= E [P (pt ≤ q(vt)|vt) 1{vt > v}] + E [P (pt ≥ q(vt)|vt) 1{vt < v}]

= E
[
Φ(σ−1

u (χC − χi)(vt − v) + ω)1{vt > v}
]
+ E

[
Φ(σ−1

u (χi − χC)(vt − v) + ω)1{vt < v}
]

,

where Φ(·) is the CDF of the standard normal distribution.

Impossibility of Collusion When Efficient Prices Prevail. The following proposition highlights
the impossibility of achieving collusion in an environment closely resembling the standard Kyle
benchmark (Kyle, 1985), where efficient prices prevail. In this setting, prices are determined by
the market maker, who sets them approximately at the expectation of the fundamental value,
conditional on the observed total order flow. In other words, efficient prices in this context are
unbiased estimates of the fundamental asset value, and they minimize pricing errors. The proof
can be found in Appendix B.

Proposition 2.3 (Impossibility of Collusion When Efficient Prices Prevail). If θ is large or ξ is small,
there is no collusive Nash equilibrium that can be sustained by price-trigger strategies for any σu/σv > 0.

Sustaining coordination through price-trigger strategies requires two conditions: (i) price infor-
mativeness needs to be sufficiently high to ensure that there is sufficient capacity for monitoring,
which has been emphasized by Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz
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(2007), and (ii) price impact of informed speculators’ order flows needs to be sufficiently low to
ensure that there is sufficient room for significant informational rents.

However, in cases where θ is large or ξ is small, the environment closely resembles the
standard Kyle benchmark (Kyle, 1985). In this scenario, it is important to note that λC becomes
approximately equal to γC. Importantly, in this case, low price impact endogenously reflects a
proportionally high information asymmetry, captured by σu/σv. Despite the aggressive trading by
informed speculators induced by low price impact, the negative effect of information asymmetry
and the positive effect of informed order flows on price informativeness balance each other
out in this environment. As a result, the two necessary conditions (i) and (ii) cannot coexist
simultaneously in an environment close to the standard Kyle benchmark environment, where
efficient prices prevail.

Proposition 2.3 carries intrinsic value in terms of theoretical insights and novelty, setting
it apart from existing theories on the impossibility of collusion under information asymmetry,
as posited by Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz (2007). These
prior theories emphasize that, when prices are not informativeness, “false positive” errors, made
by triggering punishments, occur on the equilibrium path disproportionately often, erasing all
benefits from collusion. In contrast, Proposition 2.3 offers a distinctive intuitive perspective,
highlighting that informed speculators cannot exploit pricing errors to achieve collusive outcomes
due to the already high level of efficiency in prices, which accurately reflect the fundamental value.
The absence of substantial pricing errors essentially renders collusion infeasible, as there exists
limited scope for market manipulation based on price discrepancies. In summary, Proposition
2.3 sheds light on the interplay between efficient pricing, information asymmetry, and collusive
behavior in financial markets. By demonstrating the impracticality of collusion in environments
characterized by efficient prices, our findings contribute to a deeper understanding of market
dynamics and the implications of information asymmetry on collusion strategies.

Existence of Collusion with a Significant Preferred-Habitat Investor. The following proposition
shows that collusion sustained by price-trigger strategies exists when the preferred-habitat plays an
important role in price formation (i.e., when prices are not very efficient). But, when information
asymmetry, captured by σu/σv, is too large, no collusion can be sustained through price-trigger
strategies even though prices are not very efficient. Moreover, when the number of informed
speculators, denoted by I, is too large, no collusion can be sustained through price-trigger
strategies even though prices are not very efficient. The proof is in Appendix C.

Proposition 2.4 (Existence of Collusion with a Significant Preferred-Habitat Investor). If θ is
sufficiently small or if ξ is sufficiently large, there exists a collusive Nash equilibrium that can be sustained
by price-trigger strategies for σu/σv and I that are not too large

When σu/σv is too large, price informativeness is low, and thus price-trigger strategies are
difficult to sustain. This is because when prices are not informativeness, agents to make “false
positive” errors by triggering punishments on the equilibrium path disproportionately often,
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erasing all benefits from collusion. The key idea is exactly the same as that of Abreu, Milgrom
and Pearce (1991) and Sannikov and Skrzypacz (2007).

If θ is small or if ξ is large, the price is primarily determined by the market clearing condition,
which is probably not an unbiased estimate of the fundamental value with minimum pricing
errors. If market clearing condition dominates, low price impact does not reflect a proportionally
high information asymmetry; as a result, it allows informed speculators trade aggressively,
thereby leading to higher price informativeness. Consequently, the necessary conditions (i) and
(ii) can hold simultaneously when the preferred-habitat investor plays an important role in price
formation.

Properties of Collusion Sustained by Price-Trigger Strategies. To characterize whether informed
speculators trade in a tacitly collusive manner based on observable outcomes, it is necessary to
derive the testable properties of collusion.

Proposition 2.5 (Supra-competitive nature of collusion). In the price-trigger collusive equilibrium, it
holds that

πM ≥ πC > πN , (2.17)

If we define ∆C ≡ πC − πN

πM − πN , inequalities in (2.17) can be summarized as ∆C ∈ (0, 1].

Clearly, a greater ∆C signifies a higher collusion capacity. We use ∆C as a measure for
collusion capacity, as in Calvano et al. (2020). Similar measures are also adopted in empirical
studies to identify collusion capacity (e.g., Dou, Wang and Wang, 2023). Below, we derive how
collusion capacity, ∆C, and price informativeness, IC, change across various market structures and
information environments. The proof of the following proposition can be found in Appendix D.

Proposition 2.6 (Effects of Market Structures and Information Environments). If θ is sufficiently
small or if ξ is sufficiently large, the price-trigger collusive Nash equilibrium satisfies the following
properties:

(i) I ↑ =⇒ ∆C ↓ & IC ↑

(ii) σu/σv ↑ =⇒ ∆C ↓ & IC ↑

(iii) ρ ↑ =⇒ ∆C ↑ & IC ↓

(iv) ξ ↑ =⇒ ∆C ↑ & IC ↓

3 AI-Powered Trading Algorithms

The theoretical results above hinge on the assumption that the informed speculators and the
market maker have rational expectations in the sense that they can perfectly figure out (i) the
order flows of other informed speculators (known by informed speculators but not the market
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maker due to information asymmetry), (ii) the distribution of noise trading flows, and (iii) the
distribution of the fundamental value of the asset. Furthermore, both the informed speculators
and the market maker are sufficiently astute, with the speculators able to communicate amongst
themselves. This allows the informed speculators to collectively reach and sustain a price-trigger
strategy characterized by χC(v) and q(v), as detailed in (2.12) to (2.14). Meanwhile, this also
allows the market maker perfectly understands the collusion scheme of these speculators.

It remains uncertain whether autonomous, model-free AI algorithms can learn to sustain
tacit collusion during trading – and thereby generate supercompetitive profits – in line with the
theoretical predictions above based on stringent, and at times, unrealistic assumptions. Specifically,
in this section, we investigate the capability of RL algorithms to attain tacit collusion and generate
supercompetitive trading profits when the machines have no direct knowledge of order flows from
their counterparts or are oblivious to the distribution of noisy trading flows and the fundamental
values of assets. If these algorithms demonstrate such capability, our study further delves into the
mechanisms driving these algorithmic collusive behaviors. RL is the type of machine learning in
which the algorithm learns by itself through autonomous trial-and-error experimentation.

3.1 Q-Learning

We examine Q-learning algorithms, exploring whether AI-powered trading algorithms can au-
tonomously achieve tacit collusion under asymmetric information, without the overt acts of
communication or agreements typically seen in competition law infringements (Harrington, 2018).
Our experimental design and methodology are similar to the studies of Calvano et al. (2020)
and Asker, Fershtman and Pakes (2022). They explored product market competition without the
complexities of asymmetric information or endogenous pricing rules.

Our main objective is to employ Q-learning algorithms as a proof-of-concept illustration,
shedding light on the potential of algorithmic collusion and its consequential effects on the
informativeness of prices. While reinforcement learning encompasses different variants (e.g.,
Watkins and Dayan, 1992; Sutton and Barto, 2018), our choice to focus on Q-learning is moti-
vated by several reasons. First, Q-learning serves as a foundational framework for numerous
reinforcement learning algorithms, upon which many recent AI breakthroughs are built. However,
it is important to note that AI trading algorithms currently in use may not exclusively rely on
Q-learning principles. Second, Q-learning holds substantial popularity among computer scientists
in practical applications. Third, Q-learning algorithms possess simplicity and transparency, offer-
ing clear economic interpretations, in contrast to the black-box nature of many machine learning
and AI algorithms. Finally, Q-learning shares a common architecture with more sophisticated
reinforcement learning algorithms.

The fundamental rationale behind the Q-learning algorithm, akin to all reinforcement learning
approaches, rests on the principle that actions leading to higher past payoffs are prioritized for
future occurrences compared to actions generating lower profits. Consequently, through multiple
rounds of exploration and experimentation, Q-learning algorithms can adapt their actions towards
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achieving optimal outcomes, even in the absence of prior knowledge concerning the problem at
hand. Below, we outline the Q-learning algorithm employed by a generic informed speculator
i ∈ {1, · · · , I}.

Bellman Equation and Q-Function. Informed speculator i’s intertemporal optimization problem,
specified in (2.1), is usually solved recursively using the dynamic programming approach and the
associated Bellman equation:

Vi(s) = max
x∈X

{
E [(v − p)x|s, x] + ρE

[
Vi(s′)|s, x

]}
, (3.1)

where X is the set of available actions, s is the current state, s′ represents the state in the next
period, the first term on the right-hand side, E [(v − p)x|s, x], is the expected payoff of the current
period, and the second term, ρE [Vi(s′)|s, x], is the continuation value.

The Bellman equation (3.1) reflects the recursive formulation of dynamic control problems, as
described by Bellman (1954) and Ljungqvist and Sargent (2012), among others. The value function
Vi(s), a function of the state s, and its associated Bellman equation focus on the equilibrium path.
However, instead of focusing solely on the optimal value of each state Vi(s) along the equilibrium
path, we can extend our analysis to the counterfactual value of each state-action pair, denoted
as Qi(s, x), which captures scenarios even off the equilibrium path. By definition, Qi(s, x) is the
same value as what’s in the curly brackets of the Bellman equation (3.1):

Qi(s, x) = E [(v − p)x|s, x] + ρE
[
Vi(s′)|s, x

]
. (3.2)

Intuitively, the Q-function value, Qi(s, x), can be interpreted as the quality of action x at state s.
The optimal value of a state, Vi(s), is the maximum of all the possible Q-function values of state
s. That is, Vi(s) ≡ maxx∈X Qi(s, x). By substituting Vi(s′) with maxx′∈X Qi(s′, x′) in equation (3.2),
we can establish a recursive formula for the Q-function as follows:

Qi(s, x) = E [(v − p)x|s, x] + ρE

[
max
x′∈X

Qi(s′, x′)
∣∣∣∣s, x

]
. (3.3)

When both |S| and |X| are finite, the Q-function can actually be represented as an |S| × |X|
matrix, which is often referred to as the Q-matrix.

State Variables. State variables, st, are essential for characterizing the recursive relation presented
in equation (3.3). While the choice of state variables is not unique, in principle, st can encompass
any information that informed AI speculator i has observed up to the beginning of period t.
This includes both public and the private information available to the speculator. We utilize
the smallest possible set of state variables in st that can generate tacit collusion sustained by
price-trigger strategies. Drawing from the insights in Section 2.4, we include the market price
of the asset from the preceding period t − 1, denoted by pt−1, as part of st. We incorporate vt
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instead of vt−1 in the state variable st because informed AI speculators engage in trading activities
in period t after observing vt at the beginning of period t, thereby necessitating the inclusion
of vt as part of the state variable in period t. Consequently, the state variable st is defined as
st ≡ {pt−1, vt}. Put simply, we equip the informed AI speculator with a one-period memory to
trace history for decision-making, similar to the approach in Calvano et al. (2020). One could also
include the informed AI speculator’s own lagged order flow xi,t−1, a piece of private information
only known by informed AI speculator i, and even more lagged asset prices and order flows, as
a state variable. In our simulation experiments, we observed that enlarging the state variable st

augments the degree of tacit collusion among informed AI speculators, leading to higher trading
profits. Thus, our deliberate choice to solely incorporate pt−1 and vt sets a stringent bar for the
Q-learning algorithms to reach tacit collusion within our economic environment. Furthermore, the
Q-learning algorithm with state variables st ≡ {pt−1, vt} exhibits a convergence speed significantly
faster than those incorporating a more extensive list of state variables.8

Q-Learning Algorithm. If informed AI speculators possessed knowledge of their Q-matrices, de-
termining the optimal actions for any given state would be straightforward. In essence, Q-learning
algorithms serve as methods to estimate this Q-matrix without knowing the underlying distri-
bution E [·|s, a] or observing sufficient off-equilibrium pairs (s, x) in the data. These algorithms
address both challenges concurrently: They employ Monte Carlo methods, backed by the law of
large numbers, to estimate the underlying distribution E[·|s, x], while simultaneously conducting
trial-and-error experiments to produce off-equilibrium counterfactuals.

The iterative experimentation starts from an arbitrary initial Q-matrix of informed AI speculator
i, denoted by Q̂i,0, and updates the estimated Q-matrix Q̂i,t recursively. Observing st ≡ {pt−1, vt},
informed AI speculator i chooses its order flow xi,t, following one of two experimentation modes,
which we describe in detail below. After receiving the total quantity of market orders, the market
maker determines the price pt according to its own pricing rules described in Subsection 3.2.

The evolution of informed AI speculator i’s state variable si,t is given by si,t+1 ≡ {pt, vt+1},
where vt+1 is randomly drawn from the distribution N(v, σ2

v ). The price pt depends on the noise
trading flow, which remains unknown to informed AI speculators when they make decisions.

The Q-learning algorithm employs a recursive update process for informed AI speculator i to
refine its estimated Q-matrix. The learning equation governing this update is as follows:

Q̂i,t+1(st, xi,t) = (1 − α) Q̂i,t(st, xi,t)︸ ︷︷ ︸
Past knowledge

+ α

[
(vt − pt)xi,t + ρ max

x∈X
Q̂i,t(st+1, x)

]
,︸ ︷︷ ︸

Present learning based on a new experiment

(3.4)

where α ∈ [0, 1] captures the learning rate, st is the state that the iteration t concentrates on, st+1

is randomly drawn from the Markovian transition probability conditional on st, and the action

8When dealing with an extensive list of state variables, deep Q-learning algorithms become indispensable.
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variable xi,t is chosen as follows:

xi,t =

{
argmaxx∈X Q̂i,t(st, x), with prob. 1 − εt, (exploitation)
x̃ ∼ uniform distribution on X, with prob. εt. (exploration)

(3.5)

Here, Q̂i,t(s, x) is the estimated Q-matrix of informed AI speculator i in the t-th iteration, and
(vt − pt)xi,t is the trading profit in iteration t if the order flow of informed AI speculator i is
xi,t. With probability 1 − εt, the Q-learning is in the exploitation mode with xi,t to be set as the
maximizer of the estimated Q-matrix, Q̂i,t(st, x). On the other hand, with probability εt, the Q-
learning is in the exploration model with xi,t to be randomly drawn from the uniform distribution
on X.9 As t approaches infinity, the pre-specified exploration probability εt monotonically
decreases to zero.

In equation (3.4), we see that during iteration t, the estimated Q-matrix for informed AI
speculator i, denoted as Q̂i,t(s, x), undergoes an update exclusively at the state-action pair (st, xi,t).
The new value is updated to Q̂i,t+1(st, xi,t). However, all other state-action pairs remain unchanged.
In other words, Q̂i,t+1(s, x) = Q̂i,t(s, x) for cases where s ̸= st or x ̸= xi,t. This updated value is
computed as a weighted average of accumulated knowledge based on the previous experiments,
Q̂i,t(st, xi,t), and learning based on a new experiment, (vt − pt)xi,t + ρ maxx∈X Q̂i,t(st+1, x). A key
distinction between the Q-learning recursive algorithm (3.4) and the Bellman recursive relation
(3.1) lies in how they handle expectations. Q-learning algorithm (3.4) does not form expectations
about the continuation value due to the unknown Markovian transition probability of st+1. Instead,
it directly discounts the continuation value based on the randomly realized state st+1 in the t + 1
iteration.

It is crucial to note that the learning rate, denoted by the weight α, plays a significant role
in the Q-learning algorithm, balancing past knowledge against present learning based on a new
experiment. A higher value of α not only indicates a greater impact of present learning on the
Q-matrix value update but also implies a quicker forgetting of past knowledge, potentially leading
to biased learning. This can be seen from the following expression:

Q̂i,t(st, xi,t) ≈
∞

∑
τ=0

α(1 − α)τ

[
(vt−τ − pt−τ)xi,t−τ + ρ max

x∈X
Q̂i,t−τ(st+1−τ, x)

]
︸ ︷︷ ︸

Learning based on the experiment in iteration t − τ

, (3.6)

when t is large and εt has decayed almost to 0. Specifically, when α is not close to 0, the weights
given by α(1 − α)τ decay so rapidly with τ that it jeopardizes the applicability of the LLN.

In the presence of randomness in the underlying environment, such as the noise traders’ order
flow ut and asset value vt in our model, a sufficiently small value of α is crucial for ensuring
low bias in learning. However, a smaller value of α requires more iterations, and thus it incurs
a greater computational cost. In contrast, for a relatively large α, it may cause the LLN to fail,

9For simplicity, we adopt a uniform distribution. However, a more intelligent distribution choice could make
exploration both more efficient and less costly.

19



thereby leading to biased learning. Moreover, if α is excessively small relative to the decay speed
of the exploration rate εt, biased learning may arise from the insufficient exploration.

Experimentation. Conditional on the state variable st, informed trader i selects its order flow
xi,t in two experimentation modes: exploitation and exploration. To determine the mode, we
employ the simple ε-greedy method, which governs the decision-making process of the Q-learning
algorithm. Specifically, as outlined in equation (3.5), informed trader i engages in the exploration
mode with an exogenous probability εt during iteration t, whereas with a probability of 1 − εt,
the trader operates in the exploitation mode. In the exploitation mode, informed trader i selects
its order flow to maximize the current state’s Q-value, given by xi,t = argmaxx∈X Q̂i,t(st, x).
Conversely, in the exploration mode, informed trader i randomly chooses an order flow level x̃
from the set of all possible values in X, each with equal probability. Essentially, the exploration
mode guides the Q-learning algorithm to experiment with suboptimal actions based on the current
Q-matrix approximation, Q̂i,t.

Given that informed trader i lacks prior knowledge about its Q-matrix, it becomes evident
that sufficient exploration is crucial to increase the accuracy of approximating the true Q-matrix,
even when starting from an arbitrary initial value Q̂i,0. At a minimum, all actions must be
attempted multiple times in all states, and even more so in complex environments. However, in
addition to the computational costs associated with exploration, there exists a tradeoff. An overly
comprehensive exploration scheme may have adverse effects when multiple agents interact with
one another. The random selection of actions by one informed trader introduces noise to the other
traders, impeding their learning processes.

Exploitation, as a defining characteristic of reinforcement learning algorithms, plays a vital role
in generating collusion among trading algorithms by biasing the estimation of the Q-matrix away
from its true values. This bias leads to excessive overestimation of Q-values for certain choices that
can sustain collusive profits, while simultaneously underestimating Q-values for other choices in
X. Termed as “collusion through biased learning,” this phenomenon shares a foundation with the
fundamental concept of the “bias-variance tradeoff” in supervised machine learning algorithms
— sacrificing unbiasedness to gain stronger identification. Although Q-learning algorithms are
inherently self-oriented, they can achieve and maintain collusive profits through interactions
by overestimating the Q-values of choices that facilitate high collusive profits. Consequently,
under the influence of the biased estimated Q-matrix, informed traders lack incentives to deviate
from collusive behavior. Such behaviors constitute a unique character of AI algorithms, which is
intrinsically different from how human traders would behave.

Exploration is not only critical for approximating the true Q-matrix but also for informed
traders to learn and sustain “collusion through punishment threat.” In each iteration t, the
randomly selected choice x̃ typically differs significantly from the exploited choice that generates
collusion profits. Thus, such deviation, triggered by exploration, provides the only opportunity
for the algorithms to learn strategies related to collusion through punishment threat.
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3.2 Pricing Rule of the Adaptive Market Maker

The market maker does not know the distributions of randomness. It stores and analyzes
“historical data” on asset value, asset price, order flow from the preferred-habitat investor, and
total order flow: Dt ≡ {(vt−τ, pt−τ, zt−τ, yt−τ)}Tm

τ=1, where Tm is a large integer. The market maker
estimates the demand curve of the preferred-habitat investor and the conditional expectation
E [vt|yt] using the following linear regression models:

zt−τ = ξ0 − ξ1 pt−τ, (3.7)

vt−τ = γ0 + γ1yt−τ + ϵt−τ, (3.8)

where τ = 1, · · · , Tm. The estimated coefficients are ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t, respectively, based on
the data set Dt in period t. The pricing rule adaptively adheres to the theoretical optimal policy
using a plug-in procedure:

pt(y) = γ̂0,t +
θγ̂1,t + ξ̂1,t

θ + ξ̂2
1,t

y, (3.9)

where θ is market maker’s own choice. Therefore, the market maker is adaptive using simple
statistical models.

3.3 Repeated Games of Machines

At t = 0, each informed trader i ∈ {1, · · · , I} is assigned with an arbitrary initial Q-matrix Q̂i,0

and state s0. Then, the economy evolves from period t to period t + 1 as follows:

(1) Informed speculator i draws a random value that determines whether it will be in the
exploration mode with probability εt or the exploitation mode with probability 1 − εt in
period t. The random values drawn by different informed AI speculators are independent.
Subsequently, each informed AI speculator i submits its own order flow xi,t.

(2) Noise traders, as a group, submit their order flow ut, which is randomly drawn from a
normal distribution N(0, σ2

u).

(3) Market makers observe the “historical data” Dt ≡ {vt−τ, pt−τ, zt−τ, yt−τ}Tm
τ=1 and estimate

the optimal pricing rule according to (3.7) – (3.9).

(4) Each informed AI speculator i realizes its profits (vt − pt)xi,t and updates its Q-matrix
according to equation (3.4).

(5) At the start of period t + 1, the state variable for each informed AI speculator evolves to
st+1 = {pt, vt+1}. Here, vt+1 is independently drawn from N(v, σ2

v ) and it is independent of
any other variables.

The interactions of informed AI speculators and an adaptive market maker, together with
the randomness caused by noise traders and stochastic asset values in the background, make
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the stationary equilibrium difficult to achieve. The underlying economic environment we study
is substantially more complex than that of Calvano et al. (2020) whose setting does not have
randomness, information asymmetry, or endogenous pricing rules. As noted by Calvano et al.
(2020), the player’s optimization problem is inherently nonstationary when its rivals vary their
actions over time due to experimentation or learning. There is no theoretical guarantee that
Q-learning agents will settle on a stable outcome, nor that they will correctly learn an optimal
policy. However, we can always verify this in our simulations ex post to ensure that our analyses
are conducted based on the stationary equilibrium.

4 Design of Simulation Experiments

Theoretical analysis of the Q-learning programs playing repeated games is generally not tractable.
Rather than applying stochastic approximation techniques to AI agents, we follow Calvano et al.
(2020) by simulating the exact stochastic dynamic system a large number of times to smooth out
uncertainty.

Motivated by our theoretical framework, we focus on the experimental economic environment
that consists of a group of I ≥ 2 symmetric informed traders, a representative preferred-habitat
investor, a market maker, and a representative noise trader.

4.1 Discretization of State and Action Space

Because Q-learning requires a finite state and action space, we choose the following grids for
the state variable st ≡ {pt−1, vt} and action variable xi,t. For computational efficiency, we
approximate the normal distribution N(v, σv) using a sufficiently larger number of nv grid points,
V = {v1, · · · , vnv}. Our discretization ensures that these nv grid points have equal probabilities
but are unequally spaced. Specifically, the probability of each grid point is Pk = 1/nv. The
locations of grid points are chosen based on vk = v + σvΦ−1((2k − 1)/(2nv)) for k = 1, · · · , nv,
where Φ−1 is the inverse cumulative density function of a standard normal distribution. The
mathematical property of Φ−1 implies that grid points around the mean v are closer to each other
than those far away from the mean. Because the probabilities of all nv grid points of vt are the
same, the speed of convergence is significantly increased.10

Following the guidelines offered by Calvano et al. (2020), we construct the discrete grid

10All the results are robust to the use of alternative methods to discretize the state variable vt. For example, one
commonly used method is to use nv equally spaced points over a sufficiently large interval, e.g., [v − 6σv, v + 6σv].
The probability of each grid point is different, computed based on the probability mass function of the normal mass
function, i.e., Pk = exp

(
−(k − v)2/(2σ2

v )
)

for k = 1, · · · , nv. Compared to the discretization method we use, this
alternative method yields similar quantitative results but has a much slower convergence. The reason is that it assigns
very small probabilities to the left-most and right-most grid points. As a result, the Q-matrix’s cells far away from
the mean v are updated at much lower frequencies than those closer to the mean. An infrequent update for the cells
far away from the mean in turn requires many more updates for other cells of the Q-matrix to stabilize. Thus, the
global convergence speed is reduced significantly due to the buckets effect. In fact, as nv → ∞, the two alternative
methods can both perfectly capture the theoretical distribution of vt but yield vastly different convergence speed for
the Q-learning programs.
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points for informed traders’ order xi,t based on their optimal actions in the noncollusive Nash
equilibrium and perfect cartel equilibrium. According to our model in Section 2, the order values
in the two equilibria are given by xN = (v − v)/((I + 1)λ) and xM = (v − v)/(2Iλ). We specify
informed traders’ action space by discretizing the interval [xM − ι(xN − xM), xN + ι(xN − xM)]

for v > v and [xN − ι(xM − xN), xM + ι(xM − xN)] for v < v into nx equally spaced grid points,
i.e., X = {x1, · · · , xnx}. The parameter ι > 0 ensures that firms can choose quantities beyond
the theoretical levels corresponding to the noncollusive Nash equilibrium and perfect cartel
equilibrium. As the action space is discrete, the exact quantities corresponding to the perfect
cartel equilibrium may not be feasible. Despite this, our simulations show that firms can collude
with each other to a large degree.

The grid points of price pt are similarly chosen as those of xi,t, except for considering the
impact of the representative noise trader on prices. Specifically, in our numerical experiments, the
noise trader’s order is drawn randomly from the normal distribution N(0, σu), without imposing
any discretization or truncation. In our theoretical framework in Section 2, market makers
set the price according to the total order flow yt, which is the sum of informed traders’ order

∑I
i=1 xi,t and the noise trader’s order ut. Because ut follows an unbounded normal distribution,

the theoretical range of the price pt is unbounded. To maintain tractability, in our numerical
experiments, we set the upper bound at pH = v + λ(I max(xM, xN) + 1.96σu) and the lower bound
at pL = v + λ(I min(xM, xN)− 1.96σu), corresponding to the 95% confidence interval of the noise
trader’s order distribution, N(0, σu). The grid points of pt are chosen by discretizing the interval
[pL − ι(pH − pL), pH + ι(pH − pL)] into np grids, i.e., P = {p1, · · · , pnp}.

4.2 Initial Q-Matrix and States

We adopt the initialization method of Calvano et al. (2020) by setting the initial Q-matrix at t = 0
using the discounted payoff that would accrue to informed trader i if the other informed traders
randomize their actions uniformly over the grid points defined by X.11 Moreover, we consider
zero trading orders from the representative noise trader, corresponding to the expected value
of the distribution N(0, σ2

u). Specifically, for each informed trader i = 1, · · · , I, we set the initial
Q-matrix Q̂i,0 at t = 0 as follows:

Q̂i,0(pm, vk, xn) =
∑x−i∈X [vk − (v + λ(xn + (I − 1)x−i))] xn

(1 − ρ)nx
, (4.1)

for (pm, vk, xn) ∈ P×V×X.
The initial states of our simulation, s0 = {p−1, v0}, are randomly chosen. Specifically, the value

11In reinforcement learning algorithms, another common strategy to initialize the Q-matrix is to use optimistic initial
values. That is, initializing the Q-matrix with sufficiently high values so that subsequent iterations tend to reduce the
values of the Q-matrix. This approach enables Q-learning algorithms to visit all actions multiple times, resulting in
early improvement in estimated action values. Thus, setting optimistic initial values are in some sense equivalent to
adopting a thorough exploration over the entire action space early in the learning phase and then exploitation later on.
Following this heuristic argument, we verify that adopting higher initial values for the Q-matrix has little effect on the
quantitative results after informed traders’ Q programs fully converge.
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of v0 is drawn randomly from the discretized distribution of asset values, V. The variable p−1 is
randomized uniformly over the grids points of price, P.

4.3 Specification of Learning Modes

Following Calvano et al. (2020), we adopt an exponentially time-declining state-dependent
exploration rate for informed traders,

εt(vk) = e−βt(vk), (4.2)

where the parameter β > 0 governs the speed that informed traders’ exploration diminishes
over time and the variable t(vk) captures the number of times that the exogenous state vk ∈ V
has occurred in the past.12 The specification of t(vk) implies that the exploration rate is state
dependent, which ensures that informed traders can sufficiently explore their actions for all grid
points of the exogenous state variable vt.

The specification (4.2) implies that initially, Q-learning programs are almost always in the
exploration mode, choosing actions randomly. However, as time passes, Q-learning programs
gradually switch to the exploitation mode.

4.4 Parameter Choice

The parameters used in our numerical experiments can be categorized into three groups according
to their roles. The environment parameters are the parameters that characterize the underlying
economic environment in our experiments. Importantly, the values of most of these parameters
are neither known to informed traders nor to the market maker.13 They instead adopt Q-
learning algorithms to learn how to make decisions in an unknown environment. The simulation
parameters are the parameters that determine our numerical experiments, such as the number of
discrete grid points, simulation sessions, etc. The hyperparameters are the parameters that control
the machine learning process. Below, we describe the choice of parameters for each category.

Environment Parameters. Across all simulation experiments, we set v = 1, σv = 1, and θ = 0.1.
The parameter v determines the expected value of vt, and thus we normalize its value to unity
without loss of generality. The parameter σv plays a similar role as σu because what matters in our
theoretical framework in Section 2 is the ratio σu/σv. We thus normalize the value of σv to unity.
The parameter θ determines the extent to which the market maker focuses on price discovery. We
find that the implications of different values of θ can be analyzed similarly by varying the value
of ξ. Thus, for simplicity, we fix the value of θ at 0.1 throughout our simulation experiments.

12In principle, we can allow informed traders to choose their exploration rate conditional on the realized value of vt
because they perfectly observe vt, which is one of their state variables st = {pt−1, vt}.

13An exception is ρ and θ. The parameter ρ is known to informed traders as this parameter captures their own
discount rates. The parameter θ is known to the representative market maker as this is their own choice.
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In the baseline economic environment, we set I = 2, σu = 0.1, ρ = 0.95, and ξ = 500. We
extensively study the implications of different values for these parameters. Specifically, we
consider different number of informed traders ranging from I = 2 to I = 6, different levels of
background noise ranging from σu = e−5 to σu = e5, different discount rates ranging from ρ = 0.5
to ρ = 0.95, and different values of ξ ranging from ξ = 0 to ξ = 500.

Simulation Parameters. Following Calvano et al. (2020), we set ι = 0.1 so that informed traders
can go beyond the theoretical bounds of actions by 10%. We choose nx = 15 and np = 31.
These grid points are sufficiently dense to capture the economic mechanism we are interested in.
Importantly, our choice of np ≈ 2nx ensures that, all else equal, a one-grid point change in one
informed trader’s order will result in a change in price pt over the grid defined by P. If the grid
defined by P is coarser, informed traders will not be able to detect small deviations of peers even
in the absence of noise, which in turn significantly lowers the possibility of algorithmic collusion
through punishment threats.

We use nv = 10 grid points to approximate the normal distribution of vt. Under our discretiza-

tion, the standard deviation of vt is σ̂v =
√

∑N
k=1 P(vk)(vk − v)2 = 0.938, which is close to the

theoretical value σv = 1. In the remainder of this paper, the theoretical benchmarks of noncollusive
Nash equilibrium and perfect cartel equilibrium are computed using σ̂v, to be consistent with the
discretization of vt adopted in our simulation experiments.

All the results of this paper are robust if we choose a larger nv, nx, np, or ι, as long as the
hyperparameters, α and β, are adjusted accordingly to ensure sufficiently good learning outcomes.
However, the cost of using denser grids is that significantly longer time would be required for
Q-learning algorithms to fully converge to limit strategies.

We set Tm = 10, 000 so that market makers store sufficiently long time-series data to estimate
the linear regressions (3.7) and (3.8). In our simulation experiments, we verify that the estimates
of ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t can accurately recover the preferred-habitat investor and the conditional
expectation E [vt|yt]. Increasing the value of Tm will not change any quantitative results, but it
adds more computation burden.

For each experiment with a particular choice of environment parameters, we simulate the
Q-programs by N = 1, 000 times. All the random initial states and shocks (i.e., vt, ut, and
exploration status of each informed trader for all t ≥ 0) are independently drawn from identical
distributions across the N simulation sessions of the experiment. In principle, the results of
different experiments can differ both because of the difference in environment parameters and the
difference in the realized values of random variables. To ensure that comparisons across different
experiments are not contaminated by the latter, we generate a large set of random variables for all
N simulation sessions offline and store in the high-powered-computing server. The same set of
random values is used when we compare results across experiments in Sections 5 and 6.

Hyperparameters. The hyperparameters that control the learning process of Q-programs are
set at α = 0.01 and β = 10−5. All results are robust to choosing different values of α and β so
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long as they are in the reasonable range that ensures sufficiently good learning outcomes. The
implications of α and β for achieving collusive outcomes are discussed extensively by Calvano
et al. (2020). Our baseline choice of β implies that any action xk ∈ X is visited purely by random
exploration by 1/[(1 − exp(−10−5))nx] = 6, 666 times on average before exploration completes.14

4.5 Convergence

Strategic games played by Q-learning algorithms do not have general convergence results. To
verify convergence, Calvano et al. (2020) adopt a practical criterion by checking whether each
player’s optimal strategy does not change for 100,000 consecutive periods. Note that convergence
is determined by the stationarity of players’ optimal strategies rather than the stationarity of
players’ learned Q-matrices. In fact, in a stochastic environment, the Q-matrix can never remain
unchanged because randomly realized shocks will always result in an update for some cells of the
Q-matrix. However, the slight update in the Q matrix does not necessarily result in a change in
the optimal strategies. This is why convergence in optimal strategies can be achieved in principle,
even in a stochastic environment with Q-learning programs playing repeated games.

In general, setting a smaller value of α or β requires longer time for the program to reach
convergence. For example, with β = 10−5, informed traders’ Q-learning programs are still doing
exploration with 36.8% probability after 100,000 periods. It is almost by definition that the optimal
strategies are nonstationary with an exploration rate that is far away from zero. Thus, a necessary
condition for all Q-learning programs to reach stationary optimal strategies is that exploration rate
is virtually zero, say, after 1,000,000 periods. Moreover, with a small α, the Q-matrix is updated
slowly when new information arrives. As a result, informed traders can only slowly learn their
optimal actions, which are based on their learned Q-matrices. A sufficiently long time is needed
to ensure the convergence of optimal strategies.

Per discussions above, we adopt a more stringent criterion than the one used by Calvano
et al. (2020) by requiring all informed traders’ optimal strategies to stay unchanged for 1,000,000
consecutive periods. All N = 1, 000 simulation sessions are simulated until convergence. The
number of periods needed to reach convergence varies considerably across experiments depending
on the particular choice of environment parameters. Moreover, even for the same experiment, the
number of periods needed to reach convergence can vary significantly across the N simulation
sessions, depending on the realized values of random variables. Among all the experiments
we study, the number of periods to reach convergence ranges from 2 million to 10 billion. To
speed up computations, our programs are written in C++, using −O2 to optimize the compiling
process. The C++ program is run with parallel computing in a cluster that consists of 9 high-
powered-computing servers, with 376 CPU cores in total. It takes about 1 to 30 mins to finish all
N simulation sessions in one experiment, depending on the number of iterations needed to reach
convergence.

14We do not have an explicit formula for the expected number of times a cell in the Q-matrix being visited by random
exploration because the state variable pt−1 in st = {pt−1, vt} is also affected by noise traders’ random order and the
pricing rule adopted by market makers.

26



4.6 Metrics Reflecting Collusive Behavior

Motivated by our theoretical framework in Section 2, we calculate three simple metrics that can
be indicative of potential collusive behavior among informed traders. The values of all three
metrics are computed in each simulation session over T = 100, 000 periods, after informed traders’
optimal strategies fully converge to the limit strategies according to the convergence criterion in
Section 4.5.

Collusion Capacity. As in Calvano et al. (2020), the degree of collusion can be reflected by the
Delta metric defined as follows:

∆C ≡ π − πN

πM − πN , (4.3)

where π ≡ ∑Tc+T
t=Tc

∑I
i=1 πi,t(vt, ut) is the average profits of all informed traders over T periods

after Q-learning programs reach convergence at Tc.15 The values of πN = ∑Tc+T
t=Tc

∑I
i=1 πN

i (vt, ut)

and πM = ∑Tc+T
t=Tc

∑I
i=1 πM

i (vt, ut) are the average profit that each informed trader would obtain,
theoretically, in the noncollusive Nash equilibrium or perfect cartel equilibrium, respectively.
Specifically, according to the formulas in Section 2.2, conditional on the realized values of vt and
ut in period t, an informed trader’s profit in the noncollusive Nash equilibrium is

πN
i (vt, ut) =

[
vt − pN(IxN(vt) + ut)

]
xN(vt), for i = 1, · · · , I, (4.4)

where xN(vt) = χN(vt − v) and p(IxN(vt) + ut) ≡ v + λN(IxN(vt) + ut). Similarly, according to
the formulas in Section 2.3, conditional on the realized values of vt and ut in period t, an informed
trader’s profit in the perfect cartel equilibrium is

πM
i (vt, ut) =

[
vt − p(IxM(vt) + ut)

]
xM(vt), for i = 1, · · · , I, (4.5)

where xM(vt) = χM(vt − v) and p(IxM(vt) + ut) = v + λM(IxM(vt) + ut).
In principle, the value of ∆C should range from 0 to 1. A larger ∆C implies that informed

traders attains more supra-competitive profits. The value of ∆C can never be larger than 1 because
πM is the highest theoretically possible average profit. In fact, because informed traders can only
choose actions over discrete grids, by design, it is not possible to obtain ∆C = 1 in our simulation
experiments. However, it is possible to achieve a ∆C below 0 under the limit strategies of informed
traders. This outcome implies that informed traders failed to learn a good approximation of the
actual Q-matrix, and as a result, they achieve average profits lower than those in the noncollusive
Nash equilibrium.

15We average over T = 100, 000 periods to smooth out the stochastic underlying economic environment, caused by
the randomness in noise traders’ order ut and the stochastic variation of the asset value vt over time. In fact, even if the
underlying economic environment is stationary, as in the experiments of Calvano et al. (2020), Q-learning programs’
optimal limit strategies may not be time invariant. Calvano et al. (2020) show that a large fraction of sessions displays
cycles in AI agents’ behavior even after convergence. We also find such cyclical patterns in our setting if we consider a
setting without noise traders and with a constant asset value.
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Profit Gain Relative to Noncollusion. The Delta metric is informative about collusive behavior.
However, it does not tell us the relative magnitude of supra-competitive profits. We thus also
calculate the extra profit gain relative to the profits that informed traders would obtain in the
noncollusive Nash equilibrium theoretically. Specifically, the relative profit gain is π/πN , where
π and πN are calculated similarly as those in equation (4.3).

Order Sensitivity to Asset Value. Our theoretical framework indicates that informed traders
tend to be more conservative in placing their orders if there is implicit collusion. That is, the
sensitivity of trading order xi,t to the asset value vt − v is lower when informed traders collude
more. Theoretically, informed traders’ trading order xi,t is linear, as captured by xi,t = χC(vt − v).
However, in our simulation experiments with Q-learning programs, such linearity restriction is
not imposed at all. Despite this, we find that informed traders learn roughly linear strategies
(see Figure 9). Therefore, we estimate χ̂C based on the recorded asset value and order flow
{vt, xi,t}Tc+T

t=Tc
for each informed trader i = 1, · · · , I, by running the following linear regression:

xi,t = χC
i,0 + χC

i,1vt + ϵt. (4.6)

Consistent with our theoretical framework, we find that the estimates satisfy χ̂C
i,0 ≈ −vχ̂C

i,1 in
the unrestricted regression (4.6). The estimate χ̂C

i,1 captures the sensitivity of informed trader i’s
order xi,t to the asset’s value vt under the optimal trading strategies informed by their Q-learning
programs. We further compute the average sensitivity of informed traders as χ̂C = 1

I ∑I
i=1 χ̂C

i,1.
In our theoretical framework, it should be the case that χM ≤ χC ≤ χN . Although no restriction

is imposed on the Q-learning programs, we show in Section 6 that the estimated χ̂C also satisfies
χM ≤ χ̂C ≤ χN .

5 AI Collusion under Information Asymmetry

Our model suggests that under certain conditions, informed traders can achieve supra-competitive
profits through implicit collusion when information asymmetry is small. In this section, we
conduct simulation experiments with AI traders whose trading is powered by Q-learning programs.
We are mainly interested in four questions. First, can AI traders learn to collude through the
adoption of Q-learning programs, even if they do not communicate with each other or possess any
information about the underlying economic environment? Second, if collusion exists, what are
the mechanisms that generate such collusive behavior among AI traders? Third, how the pricing
rule adopted by market makers affects the trading patterns of AI traders. Fourth, what are the
implications of AI-powered trading for the price informativeness of financial markets?

In Subsection 5.1, we show that when information asymmetry is small, AI traders achieve
supra-competitive profits through implicit collusion sustained by punishment threat. The price-
trigger strategies learned by AI traders are quite similar to the those characterized by our model.
In Subsection 5.2, we show that when information asymmetry is large, AI traders achieve supra-
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competitive profits due to their biased learning of the economic environment. In fact, because
collusion is achieved through biased learning, rather than punishment threat, this result is also
consistent with the model’s prediction that implicit collusion cannot be sustained by price-trigger
strategies in the presence of large information asymmetry. In Subsection 5.3, we study the role
of information asymmetry and market makers in determining AI traders’ profits and collusive
behavior. Finally, in Subsection 5.4, we study the price informativeness of financial markets and
show that perfect price informativeness is not achievable in the presence of AI traders.

5.1 Artificial Intelligence: Collusion through Punishment Threat

In this subsection, we study AI traders’ behavior when information asymmetry is small, with
σu/σv = 0.1. We focus on the baseline economic environment described in Section 4.4. The
implications of alternative values of σu/σv are studied in Subsection 5.3. In the presence of small
information asymmetry, we find that AI traders are able to achieve supra-competitive profits.
Across N = 1, 000 simulation sessions, the average value of ∆C is about 0.73 and the average
profit of AI traders is about 9% higher than the profit in the noncollusive equilibrium. Below, we
examine the mechanism that leads to supra-competitive profits.

Price-Trigger Strategy. Motivated by our model, we examine whether the optimal strategies
learned by AI traders are consistent with the price-trigger strategy illustrated in Section 2. To this
end, we study the impulse response function (IRF) after an exogenous shock to the asset’s price,
which could be caused by the realization of random trading flows from noise traders. Specifically,
in each simulation session, based on the economic environment that the session has converged to,
we consider an exogenous shock to the asset’s price pt in period t = 3, which changes the value
of pt marginally by one grid point of price in P. Though the exogenous change in the asset’s
price pt in period t = 3 is caused by the trading flows from noise traders, to investigate whether
price-trigger strategies are adopted, the direction of the price change is made to mimic the price
impact of a profitable deviation from AI traders. That is, the exogenous change in pt is positive if
vt > v and negative if vt < v. Both AI traders play their learned optimal strategies and the asset’s
price is determined endogenously by market makers according to their learned pricing rule in the
subsequent periods, t ≥ 4.

In Figure 1, panel A plots the evolution of the percentage deviation of the asset’s price pt

from its long-run mean, i.e., |pt − E[pt]|/E[pt]. Panel B plots the per-period profit deviations
from the long-run mean for each AI trader, i.e., (πi,t − E[πi,t])/E[πi,t] for i = 1, 2. Panel C plots
the evolution of the absolute percentage quantity deviations from the long-run mean for each AI
trader, i.e., |xi,t − E[xi,t]|/E[xi,t] for i = 1, 2.16

16In our model and simulation experiments, informed (AI) traders may take long (xi,t > 0) and short (xi,t < 0)
decisions depending on the sign of vt − v (see Figure 9). As vt is randomized independently across periods and sessions,
the quantities of long and short positions and the prices determined by these positions will offset each other after taking
the average. Thus, we focus on the average absolute percentage deviations from the long-run mean when plotting the
IRF for order quantities and prices. Moreover, even after convergence, the economic environment is stochastic due
to the random shocks to vt and ut. To clearly illustrate the IRF corresponding to the optimal trading strategies of AI
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Note: In each simulation session, we consider an exogenous shock to the asset’s price pt in period t = 3, which changes
the value of pt marginally by one grid point of price in P. The direction of the price change is made to mimic the price
impact of a profitable deviation from AI traders. That is, the exogenous change in pt is positive if vt > v and negative
if vt < v. Both AI traders play their learned optimal strategies and the asset’s price is determined endogenously by
market makers according to their learned pricing rule in the subsequent periods. Panel A plots the absolute percentage
price deviation from the long-run mean, i.e., |pt − E[pt]|/E[pt]. Panel B plots the two AI traders’ per-period profit
deviations from the long-run mean, i.e., (πi,t − E[πi,t])/E[πi,t] for i = 1, 2. Panel C plots the two AI traders’ absolute
percentage quantity deviations from the long-run mean, i.e., |xi,t − E[xi,t]|/E[xi,t] for i = 1, 2. All curves are average
values across N = 1, 000 sessions, where each session is independently simulated 10,000 times to smooth out the effect
of random shocks to vt and ut. We set σu/σv = 10−1. The other parameters are set according to the baseline economic
environment described in Section 4.4.

Figure 1: IRF of an exogenous price change (σu/σv = 10−1).
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In period t = 3, panel A shows that the asset’s price pt deviates from its long-run mean by
1.2% due to the exogenous shock. Panel B shows that this exogenous price change reduces both
AI traders’ profits by 1.6% of the long-run mean. Panel C shows that the trading quantities of
both AI traders’ remain at the long-run mean because informed traders submit their orders in
period t before observing pt.

In period t = 4, panel C shows that in response to the exogenous price change in the previous
period, both traders’ orders significantly deviate from the long-run mean by 4.2%. The AI traders’
aggressive behavior are similar to the price-trigger strategies described in Section 2. As a result of
increased trading flows from AI traders, the percentage deviation of the asset’s price continues to
increase to 4.2% of the long-run mean (see panel A), which further enlarges both AI traders’ profit
losses to −2.4% of the long-run mean (see panel B).

In periods t ≥ 5, panel C shows that both AI traders abruptly return to the predeviation level
of quantities. As a result, both the price and profit deviation abruptly return to zero.

The patterns illustrated in Figure 1 are observed not because we take the average over
N = 1, 000 simulation sessions. In fact, we find that AI traders adopt similar price-trigger
strategies in most simulation sessions. Figure 2 plots the distribution of the impulse responses.
Although the magnitudes of quantity and price deviations differ significantly across sessions, the
[25%, 75%] and [5%, 95%] confidence intervals indicate that price-trigger strategies are consistently
adopted by AI traders.

Punishment for Deviation. According to our model in Section 2, price-trigger strategies are
implemented based on whether the price in the preceding period deviates from the long-run
mean, which could be caused by either the random orders submitted by noise traders or the
orders submitted by informed traders. Informed traders cannot distinguish the causes of price
deviation under information asymmetry.

Complementary to the impulse responses to an exogenous price change caused by the trading
flows of noise traders (see Figure 1), we further study the impulse responses to a unilateral
deviation by one of the AI traders. Specifically, in each simulation session, based on the economic
environment that the session has converged to, we exogenously force one AI trader to have a
one-time deviation from its learned limit strategy in period t = 3. The other AI trader does not
detect this defect in period t = 3, and thus plays its learned optimal strategy in period t = 3.
Starting from t = 4, both AI traders continue to play their learned optimal strategies in the
subsequent periods. The one-time deviation in period t = 3 is made to the direction that increases
the contemporaneous profits of the deviating trader (i.e., the deviating trader increases its order if
vt > v and reduces its order if vt < v). We consider a marginal deviation by one grid point of
quantity in X, which ensures that the resulting price deviation is similar to that in panel A of
Figure 1 for comparison purposes.

Panel A of Figure 3 plots the evolution of the absolute percentage quantity deviations from

traders, we smooth out these random shocks by taking the average across 10,000 independently simulated IRF for each
of the N = 1, 000 simulation sessions.
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Note: The experiment is similar to that described for Figure 1. Panels A and B plot the two traders’ quantity deviation
from the long-run mean, and panels C and D plot their profit deviation from the long-run mean. In each panel, the
dotted line represents the median value, the boxes represent the 25th and 75th percentiles, and the dashed intervals
represent the 5th and 95th percentiles across N = 1, 000 sessions. Parameters are set as in Figure 1.

Figure 2: Confidence intervals for the IRF of an exogenous price change (σu/σv = 10−1).
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Note: In each simulation session, we exogenously force one AI trader to have a one-time deviation from its learned
optimal strategy in period t = 3 while the other AI trader continues to play its learned optimal strategy in period
t = 3. Starting from t = 4, both AI traders continue to play their learned optimal strategies in the subsequent periods.
The one-time deviation in period t = 3 is made towards the direction that increases the contemporaneous profits of
the deviating trader (i.e., the trader increases its quantity if vt > v and reduces its quantity if vt < v). We consider
a marginal deviation by one grid point of quantity in X. Panel A plots the two AI traders’ absolute percentage
quantity deviations from the long-run mean, i.e., |xi,t − E[xi,t]|/E[xi,t] and |x−i,t − E[x−i,t]|/E[x−i,t]. Panel B plots the
per-period profit deviations from the long-run mean (πi,t − E[πi,t])/E[πi,t] and (π−i,t − E[π−i,t])/E[πi,t]. Panel C
plots the absolute percentage price deviation from the long-run mean, i.e., |pt − E[pt]|/E[pt]. All curves are average
values across N = 1, 000 sessions, where each session is independently simulated 10,000 times to smooth out the effect
of random shocks to vt and ut. We set σu/σv = 10−1. The other parameters are set according to the baseline economic
environment described in Section 4.4.

Figure 3: IRF of a unilateral marginal deviation (σu/σv = 10−1).
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the long-run mean for the deviating trader and nondeviating trader, respectively, i.e., |xi,t −
E[xi,t]|/E[xi,t] and |x−i,t − E[x−i,t]|/E[x−i,t]. In period t = 3, on average, the deviating trader’s
order deviates from the long-run mean by 2.5% while the nondeviating trader’s order remains
unchanged. In period t = 4, the deviation gets punished as the nondeviating trader behaves more
aggressively, deviating its quantity from the long-run mean by 4.2%. Note that the behavior of
the nondeviating trader in panel A of Figure 3 is almost identical to that in panel C of Figure 2
because the nondeivating trader only observes the asset’s price in the previous period rather than
its peer’s trading order.

Rather than reducing the deviation amount, the deviating trader further increases its deviation
amount to 4.1% of the long-run mean in period t = 4, slightly below that of the nondeviating
trader. This form of overshooting exists for small deviations. As shown in panel A of Figure 5, if
we consider a large deviation by three grid points of quantity, the deviating trader would reduce
its quantity deviation in period t = 4. Regardless of whether its a small or a large deviation, both
AI traders abruptly return to the predeviation level of quantities thereafter.

Panel B of Figure 5 plots the per-period profit deviations from the long-run mean for each
AI trader, i.e., (πi,t − E[πi,t])/E[πi,t] and (π−i,t − E[π−i,t])/E[πi,t]. In period t = 3, the forced
deviation increases the deviating trader’s profit by 0.8% of the long-run mean while reduces the
nondeviating trader’s profit by 1.6%. In period t = 4, due to the punishment strategy implemented
by the nondeviating trader, the profit of the deviating trader drops substantially from 0.8% to
−2.4% of the long-run mean. The expected discounted profit of deviation is about −1.6% of the
long-run mean for the deviating trader, indicating that the forced deviation is not a profitable
strategy.

Panel C of Figure 3 plots the evolution of |pt − E[pt]|/E[pt], the percentage deviation of the
asset’s price from its long-run mean. In period t = 3, due to the forced deviation, the asset’s
price deviates from its long-run mean by 1.2%. In fact, this is the force that triggered both AI
traders to change their decisions (i.e., order quantities) in period t = 4 because pt−1 is the only
state variable that records the forced deviation in the last period t = 3. The asset’s price continues
to increase to 4.2% in period t = 4 because of the overshooting in the deviating trader’s quantity,
and then abruptly returns to the long-run mean in period t = 5 as the two AI traders revert to
their predeviation behavior.

Figure 4 plots the distribution of the impulse responses and shows that the deviating trader
gets punished through price-trigger strategies in most simulation sessions. To further show
robustness, in panels A to C of Figure 5, we present the IRF of a unilateral large deviation by three
grid points of quantity in X in the experiment with σu/σv = 10−1. The nondeviating trader still
implements a punishment strategy by substantially increase its order in period t = 4 to punish the
deviating trader’s defect in period t = 3. The expected discounted profit of deviation is negative
for the deviating trader. In panels D to F of Figure 5, we present the IRF of a unilateral marginal
deviation by one grid point of quantity in X in the experiment with σu/σv = 1, in which the two
AI traders achieve a small amount of supra-competitive profits with an average value of ∆C = 0.2.
Even with such a low level of supra-competitive profits, we still see that the nondeviating trader
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Note: The experiment is similar to that described for Figure 3. Panels A and B plot the two traders’ quantity deviation
from the long-run mean, and panels C and D plot their profit deviation from the long-run mean. In each panel, the
dotted line represents the median value, the boxes represent the 25th and 75th percentiles, and the dashed intervals
represent the 5th and 95th percentiles across N = 1, 000 sessions. Parameters are set as in Figure 3.

Figure 4: Confidence intervals for the IRF of a unilateral marginal deviation (σu/σv = 10−1).
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implements price-trigger strategies to deter deviations. However, the quantitative magnitude of
both deviations and punishments in panels D to F of Figure 5 are smaller than those in Figure
3. This is consistent with a lower average ∆C and the theoretical insight that collusive behavior
becomes more difficult to achieve when informed traders are less able to monitor peers’ deviations
in the presence of larger information asymmetry.

Further Discussions. Except for the duration of punishment, the impulse responses presented
in Figures 1, 3 and 5 are quite consistent with the price-trigger strategies described in our model
in Section 2. The patterns observed in our experiments coincide with our theoretical predictions
that when information asymmetry is sufficiently small, informed traders are able to collude with
each other by adopting price-trigger strategies to deter deviations. Moreover, collusion is more
difficult to attain as information asymmetry becomes large.

Q-learning programs can learn price-trigger strategies because of experimentations. When one
AI trader switches to the exploration mode in the process of learning, it would choose actions
randomly. Such behavior is effectively similar to defect from an implicit collusive agreement, if
any. When this occurs, the two AI traders would be trapped in the punishment phase until further
explorations by one or both AI traders occur. AI traders are able to learn coordination strategies
because exploration modes will eventually stop, a necessary condition for the simulation session
to converge.

Our finding that AI traders are able to learn price-trigger strategies is similar to the finding
of Calvano et al. (2020) that AI traders learn grim trigger strategies to sustain collusion in a
perfect-information environment with Bertrand competition. However, different from Calvano
et al. (2020), after punishment in t = 4, rather than gradually returning to predeviation behavior,
the AI traders in our experiments abruptly return to their predeviation behavior. This difference
is mainly due to the information asymmetry introduced by noise traders (i.e., σu > 0) and the
stochastic asset’s value (i.e., σv > 0). Both model ingredients make informed traders more difficult
to achieve the collusion sustained by punishment threat, not just in the simulation experiments
with AI traders, but also in the model in Section 2.

In particular, our economic environment differs from that of Calvano et al. (2020) in two main
aspects. First, we consider a stochastic environment where the value of assets vt in each period is
drawn from an i.i.d. distribution. In this stochastic setting, it becomes more difficult for the two
AI traders to learn punishment strategies to sustain collusion than in the deterministic setting
with a constant vt.17 Second, noise traders’ random actions generate information asymmetry to
informed traders, which makes grim trigger strategies infeasible. As a result, informed traders
have to adopt price-trigger strategies to collude. In both the model with rational-expectation
informed traders and the simulation experiments with AI traders, the ratio σu/σv plays a crucial

17In one of the robustness checks, Calvano et al. (2020) consider stochastic demand and show that the average ∆C is
lower when aggregate demand can take two values randomly. We also find that with stochastic vt, the average ∆C

declines because it is more difficult for Q-learning programs to learn strong punishment strategies. The decline in
∆C would be smaller if the evolution of vt exhibits a smaller degree of randomness, either through a higher level of
persistence or a less dispersed distribution.
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Note: The experiment is similar to that described for Figure 3. The left three panels consider a unilateral large deviation
by three grid points of quantity in X in the experiment with σu/σv = 10−1. The right three panels consider a unilateral
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Figure 5: Robustness of IRF: large deviation or high information asymmetry (σu/σv = 1).
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role in determining the level of collusion in financial markets.
The information asymmetry in our economic environment implies that peer AI traders’ lagged

actions are unobservable and thus cannot be included as state variables. Thus, as described in
Section 3.1, we use the lagged asset’s price pt−1 as the state variable in period t, rather than
the lagged actions of the two AI traders. Compared to our baseline setting with state variables
st = {pt−1, vt}, we also examine the settings with alternative specifications of state variables.
First, we consider a counterfactual setting with state variables st = {xi,t−1, x−i,t−1, vt}. This setting
essentially assumes that AI traders’ can perfectly observe peers’ actions, which is close to the
perfect-information setting of Calvano et al. (2020) except for including vt as an additional state
variable. Second, we consider the setting where state variables are st = {pt−1, xi,t−1, vt}. We find
that under the perfect information benchmark (i.e., σu/σv = 0) with two AI traders I = 2, these
two alternative settings have almost the same average ∆C. This is not surprising because under
the perfect information benchmark, recording xi,t−1 and pt−1 allows each AI trader to back out
its peer’s action x−i,t−1. However, with information asymmetry (i.e., σu/σv > 0), the first setting
with st = {xi,t−1, x−i,t−1, vt} yields a considerably higher average ∆C than the other setting with
st = {pt−1, xi,t−1, vt}. In addition, we find that the average ∆C in these two alternative settings
is higher than that in our baseline setting. Thus, incorporating AI traders’ lagged actions as
additional state variables indeed helps AI traders to learn collusive strategies, likely through
an improved learning of punishment strategies. However, lagged actions are not a necessary
ingredient because in both our model with rational-expectation informed traders and simulation
experiments with AI traders, including lagged price pt−1 alone can already result in a significant
degree of collusion.

5.2 Artificial Stupidity: Collusion through Biased Learning

In this subsection, we study AI traders’ behavior when information asymmetry is large, with
σu/σv = 102. Similar to Section 5.2, we focus on the baseline economic environment.

According to our model in Section 2, informed traders should find it impossible to collude
with each other in this setting with large information asymmetry. However, in simulation
our experiments, AI traders are able to achieve supra-competitive profits. Across N = 1, 000
simulation sessions, the average value of ∆C is about 0.6 and the average profit of AI traders
is about 7.5% higher than the profit in the noncollusive equilibrium. The profits become even
higher as information asymmetry increases. Below, we examine the mechanism that leads to such
supra-competitive profits.

To begin with, we study the impulse responses to a unilateral deviation in Figure 6. Clearly,
regardless of whether it is a small deviation (panels A to C) or a large deviation (panels D to F),
we do not see any punishment from the nondeviating trader. Instead, panels A and D of Figure 6
show that the nondeviating trader’s order is virtually unchanged and the deviating trader returns
to its learned optimal trading strategy immediately in period t = 4, which is just one period after
the deviation. Panels B and E of Figure 6 show that the deviating trader obtains an extra amount
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Note: The experiment parameters are similar to those described for Figure 3, except for setting σu/σv = 102. The
left three panels consider a unilateral marginal deviation by one grid point of quantity in X. The right three panels
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Figure 6: IRF of a unilateral deviation (σu/σv = 102).
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of one-period profit in period t = 3, which causes a one-period profit loss for the nondeviating
trader. Because there is no punishment for t ≥ 4, the average percentage gains from the deviation
in terms of discounted profits is strictly positive for the deviating trader.

The collusive behavior of the two AI traders is clearly not sustained by price-trigger strategies
when σu/σv is large, which is consistent with the prediction of our model (Proposition 2.4). We
find that the seemingly collusive behavior under large information asymmetry is caused by AI
traders’ biased learning. Although deviation seems to be profitable in terms of increasing the
discounted profits, both AI traders choose not to do this according to their learned optimal trading
strategies. The reason is that AI traders’ actions are governed by their learned Q-matrix, which
suggests that the (no-deviation) strategies they are playing are already optimal and any deviations
cannot be profitable. Such behavior constitutes a unique character of AI algorithms, which is
intrinsically different from how human traders would behave.

We now explain how biased learning can lead AI traders to exhibit collusive behavior in three
steps. First, in Subsection 5.2.1, we show that biased learning is significant when information
asymmetry is large because in this case, the estimation of the Q-matrix cannot properly accounts
for the distribution of noise trader’s order ut due to the failure of the law of large numbers. This
is a generic issue of reinforcement learning algorithms. Second, in Subsection 5.2.2, we show
that due to biased learning, actions with larger order amounts would be associated with larger
unconditional variances of the estimated Q-values. Third, in Subsection 5.2.3, we show that these
actions are less likely to be the optimal strategies adopted by AI traders after Q-learning programs
converge. In other words, biased learning would more likely lead AI traders to optimally take
actions with small order amounts, which coincide with those actions played in the collusive
Nash equilibrium. Taken together, we argue that in the presence of large information asymmetry,
collusive outcomes emerge due to AI traders’ biased learning.

The magnitude of biased learning increases with the degree of information asymmetry (i.e.,
σu/σv = 0) in financial markets, along with other parameters. In Subsection 5.2.4, we further
discuss the theoretical properties of biased learning, which provide unique predictions for us to
test the relationship between biased learning and collusive outcomes in simulation experiments.

5.2.1 Biased Learning When Information Asymmetry is Large

First, we explain that when information asymmetry is large, there is biased learning for the
Q-matrix due to the failure of the law of large numbers.

Biased learning is caused by a generic feature of reinforcement learning algorithms. As
discussed in Section 3.1, Q-learning programs cannot take expectations due to the absence of
knowledge about the underlying economic environment (e.g., the distribution of noise ut). In each
period t, the algorithm updates the value of one single cell (s, x) (which includes state s and action
x) of the Q-matrix according to the currently realized profit (vt − pt)xi,t (see equation (3.4)) rather
than the expected profit E[(v − p)x|s, x] as in a rational-expectation framework. Biases may exist
in Q-value estimation because updating the Q-matrix sequentially based on past realized profits
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may not accurately reflect the expected profit, due to the failure of the law of large numbers.
To illustrate this point, consider a simple setting in which s is the only state of the economy

and x is the only action that trader i can play. Thus, the Q-matrix contains exactly one cell.18. The
learning process updates the Q-matrix according to Equation (3.4). Thus, starting from the initial
Q-matrix Q̂0(s, x), after T updates, the Q-matrix’s value becomes

Q̂i,T(s, x) =α
T−1

∑
t=0

δT−1−t(vt − pt)x + δTQ̂0(s, x)

=α
T−1

∑
t=0

δT−1−t [vt − v − λ(yt − ut)] x − αλx
T−1

∑
t=0

δtut + δTQ̂0(s, x). (5.1)

where δ = 1 − α + αρ. The term αλx ∑T−1
t=0 δtut represents a stochastic term that depends on

the noise order ut, and it becomes relatively more important in determining Q̂i,T(s, x) when
information asymmetry is large, i.e., σu/σv is large. With E[ut] = 0, the estimation for the limit
value of Q̂i,T(s, x) is unbiased only if αλx ∑T−1

t=0 δtut = 0 as T → ∞19, which occurs if δ → 1.
Given ρ ∈ (0, 1), a necessary condition for δ → 1 is α → 0.20 Thus, for any α > 0, the term
αλx ∑T−1

t=0 δtut would significantly bias the estimate of Q̂i,T(s, x) when σu/σv is sufficiently large.
This is due to the failure of the law of large numbers because in general, as T → ∞, we have
αλx ∑T−1

t=0 δtut ̸= αλxE[ut] unless δ → 0.
The magnitude of biased learning depends on the importance of the term αλx ∑T−1

t=0 δtut relative
to the term α ∑T−1

t=0 δT−1−t [vt − v − λ(yt − ut)] x in equation (5.1). Obviously, biased learning is
absent when three is no information asymmetry (i.e., σu/σv = 0), and biased learning becomes
more significant when σu/σv is larger. In general, the magnitude of biased learning also depends
on the parameters α, λ, and ρ. These theoretical properties provide unique predictions for us to
test the relationship between biased learning and collusive outcomes in simulation experiments.
We discuss them in Subsection 5.2.4.

5.2.2 Complementarity Between Informed Traders’ Order and Noise Order

Second, we show that due to biased learning, actions with larger order amounts would be
associated with larger unconditional variances of the estimated Q-values.

To begin with, we decompose the per-period profit (vt − pt)x that an informed trader i receives

18In the more general case with many values of s and x, the logic of our explanations still applies. However, equation
(5.1) needs to be modified because the Q-learning programs do not necessarily visit and update the same cell (s, x) in
every period.

19To see why unbiasedness requires αλx ∑T−1
t=0 δT−1−tut = 0 as T → ∞, note that the Q-matrix is essentially a

precursor of the value function (i.e., Vi(s) ≡ maxx∈X Qi(s, x), see Section 3.1), which represents the discounted
“expected” profits. In our model, the noise order ut should have no direct effect on informed traders’ “expected” profits
except for affecting their trading order xi,t.

20By setting ρ = 1, we also have δ = 1. However, the choice of ρ = 1 is not feasible because the limit value of
Q̂i,T(s, x) will explode. Moreover, unlike the hyperparameter α, the parameter ρ cannot be freely adjusted because it
has an economic meaning and captures informed traders’ patience.
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when playing action x ∈ X in period t into two parts:

(vt − pt)x = [vt − v − λ(yt − ut)] x − λxut. (5.2)

The term [vt − v − λ(yt − ut)] x captures the profit determined by the asset’s fundamental value
vt and the term λxut captures the profit determined by the noise order ut. Through the term λxut

in equation (5.2), there exists complementarity between the informed trader’s action x and the
noise order ut in determining per-period profits. This complementarity implies that, actions with
larger order amounts (i.e., a larger absolute value |x|) would amplify the impact of the noise order
ut.

Because the estimated Q-value is the discounted value of per-period profits realized in the
past, the complementarity between x and ut in equation (5.2) would propagate to equation (5.1),
captured by the term αλx ∑T−1

t=0 δtut. In the absence of biased learning (i.e., when δ → 1 as α → 0),
for a sufficiently large T, we should have αλx ∑T−1

t=0 δtut ≈ αλxE[ut] = 0, so that the unbiased
estimate of the Q-value is not affected by the complementarity. However, as long as α > 0, we
would have αλx ∑T−1

t=0 δtut ̸= 0 for a sufficiently large T, and thus, the estimated limit Q-value
is biased, due to the failure of the law of large numbers. The biased learning implies that the
estimated Q-value of an AI trader’s particular action is path dependent, crucially depending on
the realized noise order ut when the AI trader plays this action in the past.

Thus, in the presence of biased learning, there exists complementarity between x and ut in
determining the estimated Q-value. This complementarity implies that the action that a larger
order amount would be associated with a larger unconditional variance of its estimated Q-value,
which consequently affects AI traders’ optimal trading strategies in a way that makes the choice
of large order amounts less likely.

5.2.3 Impacts of Biased Learning on Optimal Strategies

Third, we show that actions with large order amounts are less likely to be the optimal strategies
adopted by AI traders after Q-learning programs converge. In other words, biased learning would
more likely lead AI traders to optimally take actions with small order amounts, which coincide
with those actions played in the collusive Nash equilibrium.

Before discussing why biased learning makes the choice of large order amounts less likely, it is
useful to clarify although AI traders start their Q-learning programs with a mix of the exploration
mode and the exploitation mode, it must be the case that the exploration rate drops to zero at
some point in time before Q-learning programs to converge. In other words, in a long period
of time right before Q-learning programs converge, AI traders must be in pure exploitation
mode, choosing the action that maximizes the Q-value rather than choosing the action randomly.
Therefore, without loss of generality, we focus on the exploitation mode in our discussions below.

To fix the idea, consider a simple setting in which the AI trader can take two actions 0 < xS < xL

in state s, with xL being the action with a large order amount. As discussed above, in the presence
of biased learning caused by information asymmetry, there is complementarity between x and ut
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in determining the estimated Q-value. Thus, relative to the action xS, the action xL generates a
large unconditional variance of the estimated Q-value (see equation (5.1)). Let [Q(xS), Q(xS)] and
[Q(xL), Q(xL)] be the 99.9% confidence interval of the estimated Q-value for actions xS and xL,
respectively. Thus, we have [Q(xS), Q(xS)] ⊂ [Q(xL), Q(xL)]. Because the AI trader is purely in

the exploitation mode, at any time t, its action follows argmaxxS,xL

{
Q̂i,t(xS), Q̂i,t(xL)

}
.

At any time t, there are two cases, either Q̂i,t(xL) > Q̂i,t(xS) or Q̂i,t(xL) <= Q̂i,t(xS). In the
first case, for τ > [t, t′], the AI trader would keep choosing xL to update Q̂i,τ(xL) while Q̂i,τ(xS)

remains unchanged at Q̂i,t(xS). The time t′ > t is the first passage time for Q̂i,t′(xL) <= Q̂i,t′(xS).
From time t′ on, the AI trader switches from playing xL to playing xS, and fall into the second
case as described below.

In the second case, for τ > [t, t′], the AI trader would keep choosing xS to update Q̂i,τ(xS)

while Q̂i,τ(xL) remains unchanged at Q̂i,t(xL). The time t′ > t is the first passage time for
Q̂i,t′(xL) > Q̂i,t′(xS). From time t′ on, the AI trader switches from playing xS to playing xL, and
fall into the first case as described above.

These two cases alternate over time. In one simulation session, given our convergence criterion
specified in Section 4.5 (i.e., stability of optimal strategy for T = 100, 000 consecutive periods),
eventually, the optimal strategy will converge to xS with probability p and xL with probability
1 − p. We have p > 0.5 because Q(xL) < Q(xS). The probability p is higher if the action xL’s
estimated Q-value has a larger probability to be in the interval [Q(xL), Q(xS)], which happens
when information asymmetry is larger (i.e., larger σu/σv so there is more significant biased
learning) or the difference in order amounts is larger (i.e., larger xL − xS). This explains why
biased learning makes the choice of large order amounts less likely.

According to our model in Section 2, the sensitivity of informed traders’ order flow to the
asset’s value vt is lower under collusion, i.e., χM ≤ χC ≤ χN . Because informed trader i’s order
xi,t is xi,t = χ(vt − v), its absolute order amount satisfies |xM

i,t | ≤ |xC
i,t| ≤ |xN

i,t| for any vt, indicating
that informed traders would collude if they adopt more conservative (i.e., trading smaller order
|xi,t|), rather than more aggressive, trading strategies. Taken together, it is clear that in the presence
of large information asymmetry, biased learning leads to collusive outcomes.

5.2.4 Testable Predictions of the Biased Learning Mechanism

Per our discussions above, more collusive outcomes are generated as a result of biased learning.
As discussed in the end of Subsection 5.2.1, the magnitude of biased learning depends on the
relative importance of the term αλx ∑T−1

t=0 (1 − α + αρ)tut in equation (5.1). Obviously, this term
becomes more important in determining the estimated Q-value when σu/σv is larger, λ is larger,
ρ is smaller, or α is larger. These theoretical properties predict that AI traders can attain higher
supra-competitive profits due to a larger degree of biased learning when σu/σv is larger, λ is
larger, ρ is smaller, or α is larger.

The above unique predictions allow us to further test and understand the impacts of biased
learning on AI traders’ collusive outcomes in simulation experiments. We briefly summarize the
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Note: This figure plots the average ∆C and profit gain relative to noncollusion (πC/πN) across N = 1, 000 simulation
sessions as log(σu/σv) varies along the x-axis, for different values of ξ = 500, 100, 30, 1. The other parameters are set
according to the baseline economic environment described in Section 4.4.

Figure 7: ∆C and πC/πN for log(σu/σv) ∈ [−5, 5] and ξ = 500, 100, 30, 1.

findings below. Consistent these predictions, first, we show that the average ∆C across N = 1, 000
simulation sessions increases with log(σu/σv) in the region with large information asymmetry
in panel A of Figure 7. Second, we show that conditional on large information asymmetry (e.g.,
log(σu/σv) = 2), reducing ξ from 500 to 1 (which results in a larger λ) leads to a larger average
∆C in panel A of Figure 7. Third, we show that with large information asymmetry, reducing the
value of ρ will lead to a larger average ∆C in panel C of Figure 12. Finally, we show that with large
information asymmetry, a higher α would result in a lower average ∆C in panel B of Figure 14.

5.3 Role of Information Asymmetry and Market Efficiency

In this subsection, we study the role of information asymmetry and market efficiency.

Role of Information Asymmetry. Consider the baseline economic environment described in
Section 4.4. The blue solid line in Panel A of Figure 7 plots the average ∆C across N = 1, 000
simulation sessions as log(σu/σv) varies from −5 to 5 along the x-axis, holding all other param-
eters unchanged. It shows that as log(σu/σv) increases along the x-axis, the average ∆C first
decreases and then increases. This U-shape pattern is an outcome of the interaction of the two
mechanisms discussed in Subsections 5.1 and 5.2. Panel B of Figure 7 plots the profit gain relative
to noncollusion (πC/πN), the pattern is similar to that in panel A.

Specifically, in the region of small information asymmetry, i.e., log(σu/σv) < 2, the average ∆C

is decreasing in log(σu/σv). In this region, AI traders adopt price-trigger strategies to attain supra-
competitive profits, as discussed in Section 5.1. The negative relationship between the average ∆C

and log(σu/σv) observed in our simulation experiments is consistent with the prediction of our
model (see Proposition 2.6.(ii)).
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In the region of large information asymmetry, i.e., log(σu/σv) ≥ 2, the average ∆C is increasing
in log(σu/σv). In this region, AI traders attain supra-competitive profits because of biased learning,
as discussed in Section 5.2. The positive relationship between the average ∆C and log(σu/σv)

observed in our simulation experiments is consistent with the theoretical property that biased
learning becomes more significant when log(σu/σv) increases (see Subsection 5.2.4).

Role of Market Efficiency. According to our model in Section 2, the market maker focuses
more on minimizing pricing errors when ξ is small or θ is large. In this case, market is efficient
and there is no collusive Nash equilibrium that can be sustained by price-trigger strategies for
any σu/σv > 0 (Proposition 2.3). By contrast, when ξ is large or θ is small, the market maker
focuses more on minimizing inventory costs. In this case, market is inefficient and there exists a
collusive Nash equilibrium that can be sustained by price-trigger strategies for small σu/σv and I
(Proposition 2.4).

By varying the value of ξ in our simulation experiments, we study how market efficiency
affects AI traders’ trading profits. We do not conduct experiments with different θ because a
smaller θ has similar impacts as a larger ξ on market efficiency.

Specifically, the four curves in panel A of Figure 7 represent the experiments with ξ =

500, 100, 30 and 1, representing different weights in the market maker’s pricing objective in terms
of minimizing pricing errors or inventory costs. The overall U-shaped relationship between the
average ∆C and log(σu/σv) is not peculiar to the choice of ξ. All four curves display U-shape
patterns.

As we compare the four curves in panel A of Figure 7, one salient feature is that the trough of
the U-shape shifts to the left as ξ decreases. This suggests that with a smaller ξ, a lower level of
information asymmetry is needed for AI traders to adopt price-trigger strategies. A similar point
can be made if we focus on the region with small information asymmetry, in which price-trigger
strategies are adopted for AI traders. For example, holding ln(σu/σv) = −4 unchanged, it is clear
that the average ∆C declines monotonically as ξ decreases from 500 to 1. Thus, collusion becomes
more difficult to achieve through price-trigger strategies as ξ decreases, as predicted by our model
(see Proposition 2.6.(iv)).

By contrast, let us switch the focus to the region with large information asymmetry, in which
AI traders’ trading strategies are dominantly affected by biased learning. For example, holding
ln(σu/σv) = 2 unchanged, it is clear that the average ∆C increases monotonically as ξ decreases
from 500 to 1. This is consistent with the theoretical property of biased learning discussed
in Subsection 5.2.4, that is, the magnitude of biased learning increases with λ (i.e., decreases
with ξ). Thus, a lower ξ leads to more biased learning, allowing AI traders to achieve higher
supra-competitive profits.
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5.4 Price Informativeness

In this subsection, we study the implication of information asymmetry for price informativeness
in a financial market with AI traders.

Consider the baseline economic environment described in Section 4.4. The blue solid line in
panel A of Figure 8 is similar to that in panel A of Figure 7, which plots the average ∆C across
N = 1, 000 simulation sessions as log(σu/σv) varies. The black dotted and red dash-dotted lines
represent the theoretical benchmarks (∆M = 1 and ∆N = 0) in the perfect cartel and noncollusive
Nash equilibrium, respectively. Panel B of Figure 8 plots the average πC/πN , the profit gain
relative to noncollusion, across N = 1, 000 simulation sessions. The blue solid line in panel
B exhibits a similar U-shape pattern as panel A. When log(σu/σv) is very small or very large,
AI traders can increase their profits by about 9.5% relative to what they would obtain in the
noncollusive Nash equilibrium theoretically.

Trading Strategy of AI Traders. In panel C of Figure 8, we plot the sensitivity of AI traders’
order to the asset’s value, χ̂C estimated based on equation (4.6). Consistent with panel A of Figure
8, χ̂C displays an inverted U-shape as log(σu/σv) increases along the x-axis. By contrast, the
theoretical benchmarks χN and χM stay roughly unchanged as log(σu/σv) increases.

In fact, the estimated χ̂C almost sufficiently describes AI traders’ trading strategy because
their orders are almost linear in the assets’s value, a property that holds both in the model and
the simulation experiments. To show this, in Figure 9, we present the average trading strategy
of AI traders across N = 1, 000 simulation sessions. Panel A is for the experiment with small
information asymmetry (σu/σv = 10−1) and panel B is for the experiment with large information
asymmetry (σu/σv = 102). The trading strategy in each simulation session is calculated as
x(vk) = 1

Inp
∑I

i=1 ∑
np
m=1 xi(pm, vk), which is the average trading strategy of I informed traders

across all grid points of P, after Q-learning programs converge. The dots on the blue solid lines
represent the discrete grid points of V. The black dotted and red dash-dotted lines represent
the theoretical benchmarks (χM(vk − v) and χN(vk − v)) in the perfect cartel equilibrium and
noncollusive Nash equilibrium, respectively.

It is clear that AI traders learn a trading strategy that is roughly linear in the asset’s value,
even though the linearity restriction is never imposed on the Q-learning programs. Moreover, the
slope of a linear fit for the trading strategy of AI traders lies between χM and χC in both panels
A and B of Figure 9. Thus, the trading strategy learned by AI traders is more conservatively
than that in the noncollusive Nash equilibrium, which explains why AI traders are able to attain
supra-competitive profits.

Price Informativeness in Markets with AI Trading. In panel D of Figure 8, we present the rela-
tive price informativeness. Specifically, price informativeness is measured by the natural log of the
signal-noise ratio of price, which are IN = log

[
(IχN)2(σ̂v/σu)2] and IM = log

[
(IχM)2(σ̂v/σu)2]

in the theoretical benchmarks of the noncollusive Nash equilibrium and perfect cartel equilibrium,
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as log(σu/σv) varies.
Panels A, B, and C plot the average ∆C, profit gain relative to noncollusion (πC/πN), and informed traders’ order
sensitivity to asset value (χ̂C). These metrics are defined in Section 4.6. Panel D plots the price informativeness relative
to the theoretical benchmark of the noncollusive Nash equilibrium, i.e., IC/IN , where the price informativeness in
the simulation experiment is calculated by IC = log

[
(Iχ̂C)2(σ̂v/σu)2]. The blue solid line represents the simulation

experiments with AI traders; the red dash-dotted and black dotted lines represent the theoretical benchmarks in the
noncollusive Nash equilibrium and perfect cartel equilibrium, respectively. The other parameters are set according to
the baseline economic environment described in Section 4.4.

Figure 8: Price informativeness for log(σu/σv) ∈ [−5, 5].

respectively. The price informativeness in our numerical experiment with AI-powered trading is
IC = log

[
(Iχ̂C)2(σ̂v/σu)2], where χ̂C is estimated based on equation (4.6) and σ̂v is the standard

deviation of vt under our discrete grid points in V. The relative price informativeness is measured
by IC/IN (the blue solid line), IN/IN ≡ 1 (the red dash-dotted line), and IM/IN (the black
dotted line).

Consistent with panel C of Figure 8, the blue solid line displays an inverted U-shape. The
relative price informativeness is close to one when log(σu/σv) is around 2, which is also the
region when χ̂C ≈ χN . When log(σu/σv) is very small or very large, the price informativeness
in our numerical experiments with AI traders is significantly lower than that in the theoretical
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Note: The blue solid line plots the average trading strategy of AI traders across N = 1, 000 simulation sessions. Panels
A and B represent the experiments with small (σu/σv = 10−1) and large (σu/σv = 102) information asymmetry. The
trading strategy in each simulation session is calculated as x(vk) = 1

Inp
∑I

i=1 ∑
np
m=1 xi(pm, vk), which is the average

trading strategy of I AI traders across all grid points of P, after Q-learning programs converge. The dots on the blue
solid lines represent the discrete grid points of V. The other parameters are set according to the baseline economic
environment described in Section 4.4.

Figure 9: The trading strategy of AI traders.

benchmark of the noncollusive Nash equilibrium. The reason is that AI traders place orders in a
more conservative manner, with χ̂C < χN , as shown in panel C of Figure 8.

Our findings suggest that perfect price informativeness is not achievable in the presence of
AI traders. In our simulation environments, when information asymmetry declines (i.e., σu/σv

decreases), AI traders would withhold their information and collude more through price-trigger
strategies, placing orders more conservatively than what they would do in the noncollusive Nash
equilibrium (see panel C of Figure 8). This reduces price informativeness. Crucially, AI traders
never need to communicate with each other, whether explicitly or implicitly, the adoption of
Q-learning programs automatically leads to such collusive behavior.

6 Further Inspection of Model Ingredients

In this section, we further inspect several key parameters in our simulation experiments. In
Subsection 6.1, we study how the number of AI traders affects their trading strategies. In
Subsection 6.2, we study the implication of AI traders’ discount rates. Finally, in Subsection 6.3,
we study the impacts of hyperparameters α and β on AI traders’ learning outcomes.

6.1 Number of AI Traders

Our model in Section 2 predicts that when ξ is sufficiently large (or θ is sufficiently small) and
information asymmetry is small (i.e., small σu/σv), informed traders are less able to collude
through price-trigger strategies when there are more informed traders. That is, the average ∆C

decreases with I and price informativeness IC increases with I (see Proposition 2.6.(i)).
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as the number
of AI traders I varies. Panels A and B plot the average ∆C and profit gain relative to noncollusion (πC/πN) under
small information asymmetry (σu/σv = 10−1). Panels C and D plot these metrics under large information asymmetry
(σu/σv = 102). The blue solid line represents the simulation experiments with AI traders; the red dash-dotted and black
dotted lines represent the theoretical benchmarks in the noncollusive Nash equilibrium and perfect cartel equilibrium,
respectively. The other parameters are set according to the baseline economic environment described in Section 4.4.

Figure 10: Implications of the number of AI traders on ∆C and πC/πN .

In the simulation experiments with AI traders, we find similar patterns. Specifically, consider
the baseline economic environment described in Section 4.4. In panels A and B of Figures 10
and 11, we conduct simulation experiments under small information asymmetry (σu/σv = 10−1).
Consistent with the model prediction, panels A and B of Figure 10 show that as the number of AI
traders I increases from 2 to 4, the average ∆C decreases from 0.74 to 0.56 and the average πC/πN

increases from 1.09% to 1.32%, respectively. Moreover, panels A and B of Figure 11 show that as I
increases, χ̂C declines due to a congestion effect and the relative price informativeness IC/IN

increases. Because in our model, IN increases with I, the positive relationship between IC/IN

and I implies that IC is increasing in I, which is consistent with the model’s prediction.
For comparisons, in panels C and D of Figures 10 and 11, we conduct simulation experiments

49



2 3 4
60

80

100

120

140

160

180

2 3 4

0.94

0.96

0.98

1

2 3 4
60

80

100

120

140

160

180

2 3 4
0.6

0.7

0.8

0.9

1

Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as the number
of AI traders I varies. Panels A and B plot informed traders’ order sensitivity to asset value (χ̂C) and the relative
price informativeness (IC/IN) under small information asymmetry (σu/σv = 10−1). Panels C and D plot these
metrics under large information asymmetry (σu/σv = 102). The blue solid line represents the simulation experiments
with AI traders; the red dash-dotted and black dotted lines represent the theoretical benchmarks in the noncollusive
Nash equilibrium and perfect cartel equilibrium, respectively. The other parameters are set according to the baseline
economic environment described in Section 4.4.

Figure 11: Implications of the number of AI traders on χ̂C and IC/IN .

under large information asymmetry (σu/σv = 102). In this case, AI traders achieve supra-
competitive profits due to biased learning, as discussed in Subsection 5.2. We find that the
implications of I for AI traders’ strategies are similar to the experiments with small information
asymmetry. Specifically, in panels C and D of Figure 10, the blue solid lines show that as I
increases from 2 to 4, the average ∆C decreases from 0.62 to 0.39 and the average πC/πN increases
from 1.08% to 1.22%, respectively. Moreover, the blue solid lines in panels C and D of Figure 11
show that as I increases, χ̂C decreases and the relative price informativeness IC/IN increases.
These results seem to suggest that the coordination through biased learning becomes more difficult
to achieve when there are more AI traders in the market.
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as the discount rate
ρ varies. Panels A and B plot the average ∆C and profit gain relative to noncollusion (πC/πN) under small information
asymmetry (σu/σv = 10−1). Panels C and D plot these metrics under large information asymmetry (σu/σv = 102).
The blue solid line represents the simulation experiments with AI traders; the red dash-dotted and black dotted lines
represent the theoretical benchmarks in the noncollusive Nash equilibrium and perfect cartel equilibrium, respectively.
The other parameters are set according to the baseline economic environment described in Section 4.4.

Figure 12: Implications of the discount rate on ∆C and πC/πN .

6.2 Discount Rates

Our model in Section 2 predicts that when ξ is sufficiently large (or θ is sufficiently small) and
information asymmetry is small (i.e., small σu/σv), informed traders are more able to collude
through price-trigger strategies as the discount rate ρ increases. That is, the average ∆C increases
with ρ and price informativeness IC decreases with ρ (see Proposition 2.6.(iii)).

In the simulation experiments with AI traders, we find similar patterns. Specifically, consider
the baseline economic environment described in Section 4.4. In panels A and B of Figures 12
and 13, we conduct simulation experiments under small information asymmetry (σu/σv = 10−1).
Consistent with the model prediction, panels A and B of Figure 12 show that as ρ increases from
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as the discount
rate ρ varies. Panels A and B plot informed traders’ order sensitivity to asset value (χ̂C) and the relative price
informativeness (IC/IN) under small information asymmetry (σu/σv = 10−1). Panels C and D plot these metrics
under large information asymmetry (σu/σv = 102). The blue solid line represents the simulation experiments with
AI traders; the red dash-dotted and black dotted lines represent the theoretical benchmarks in the noncollusive Nash
equilibrium and perfect cartel equilibrium, respectively. The other parameters are set according to the baseline economic
environment described in Section 4.4.

Figure 13: Implications of the discount rate on χ̂C and IC/IN .

0.5 to 0.95, the average ∆C decreases from 0.29 to 0.74 and the average πC/πN increases from
1.04% to 1.09%, respectively. Moreover, panels A and B of Figure 13 show that as ρ increases,
both χ̂C and relative price informativeness IC/IN decrease, which is consistent with the model’s
prediction.

Turning to the economic environment with large information asymmetry, the theoretical
properties discussed in Subsection 5.2.4 imply that as the discount rate ρ increases, the magnitude
of biased learning declines, and as a result, the supra-competitive profits that AI traders are able
to achieve would decrease. The patterns observed in our simulation experiments are consistent
with these predictions.
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Note: Panel A plots ∆C under small information asymmetry (σu/σv = 10−1); panel B plots ∆C under large information
asymmetry (σu/σv = 102). The other parameters are set according to the baseline economic environment described in
Section 4.4.

Figure 14: Implications of hyperparameters α and β on ∆C.

In particular, in panels C and D of Figures 12 and 13, we conduct simulation experiments
under large information asymmetry (σu/σv = 102). Panels C and D of Figure 12 show that as
ρ increases from 0.5 to 0.95, the average ∆C decreases from 0.76 to 0.62 and the average πC/πN

decreases from 1.10% to 1.08%, respectively. Moreover, panels C and D of Figure 13 show that as
ρ increases, both χ̂C and relative price informativeness IC/IN increase.

6.3 Hyperparameters

In this subsection, we study how the hyperparameters α and β affect AI traders’ profits in
equilibrium. Similar to the baseline economic environment, we consider AI traders adopting the
same value of α and β. In panel A of Figure 14, we plot the average ∆C under small information
asymmetry (σu/σv = 10−1) for different values of α and β. As discussed in Subsection 5.1, AI
traders need to conduct sufficient experimentations to learn punishment strategies, which is
achieve through a long exploration process by setting a sufficiently low β. Indeed, when β = 10−6,
the red bars in panel A of Figure 14 show that AI traders can easily achieve a very high level of
∆C = 0.90 (corresponding to α = 0.001) whereas when β = 10−3, the yellow bars show that AI
traders can only achieve a low level of ∆C = 0.40 (corresponding to α = 0.1).

Panel A of Figure 14 further shows that, to achieve the best collusive outcomes, the values of α

and β have to be jointly determined. That is, the choice of a smaller β needs to be matched with a
smaller α, and conversely, the choice of a larger β needs to be matched with a larger α. Intuitively,
setting a small β ensures that AI traders will spend a long time in the exploration mode in which
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they randomly choose different actions, resulting in extensive experimentation. Then, setting a
small α is necessary to record the value learned in the past whereas setting a large α will disrupt
learning as the algorithm would forget what it has learned in the past too rapidly. By contrast,
setting a large β means that AI traders only spend a short period of time in the exploration mode.
Then, if we still set a small α, the Q-matrices of AI traders would not be updated significantly
until the algorithms complete exploration. Thus, when β is large, setting a small α would backfire,
making the initial exploration futile. Instead, setting a large α in this case would help AI traders
to learn punishment strategies to achieve more collusive outcomes.

In panel B of Figure 14, we plot the average ∆C under large information asymmetry (σu/σv =

102) for different values of α and β. Holding β unchanged at each value of {10−6, 10−5, 10−4,
10−3}, panel B shows that the value of ∆C declines monotonically as α decreases. This is because
under large information asymmetry, the supra-competitive profits are attained because AI traders
have biased learning. As discussed in Section 5.2, the biased learning due to the failure of the law
of large numbers is mitigated when α becomes small (see equation (5.1)).

Taken together, a key feature that distinguishes collusion due to artificial intelligence (panel A
of Figure 14) and collusion due to artificial stupidity (panel B of Figure 14) is whether improved
learning through setting a sufficiently small α would significantly reduce the supra-competitive
profits of AI traders.

Focusing on the economic environment with large information asymmetry, we now allow
the two AI traders to adopt different values of α, but the same value of β. Intuitively, the AI
trader adopting a smaller α would have less biased learning than the one adopting a larger α.
As discussed in Subsection 5.2.4, biased learning induces AI traders to adopt more conservative
trading strategies, i.e., placing orders with smaller amounts. Therefore, the AI trader with a larger
α would adopt a more conservative trading strategy than the one with a smaller α. This essentially
enables the AI trader with a smaller α would take advantage of the other AI trader and obtain
more profits that what it would obtain when the other trader adopts the same α. Conversely, the
AI trader with a larger α would obtain less profits than what it would obtain when the other
trader adopts the same α.

The results of our simulation experiments are consistent with the above intuition. In Figure
15, we allow each AI trader i to adopt different values of αi = 0.001, 0.01, 0.05 and 0.1 for i = 1, 2.
Panels A and B plot the average ∆C

1 and ∆C
2 for AI traders 1 and 2, respectively. It is shown that

for any combination of (α1, α2), the AI trader with a higher αi attains a higher average ∆C
i than

the other AI trader. Moreover, holding α1 unchanged at each value of {0.001, 0.01, 0.05, 0.1}, panel
A shows that the average ∆C

1 for AI trader 1 increases as AI trader 2’s α2 increases. By contrast,
holding α2 unchanged at each value of {0.001, 0.01, 0.05, 0.1}, panel B shows that the average ∆C

2

for AI trader 2 increases as AI trader 1’s α1 increases.
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Note: We allow the two AI traders to adopt different values of α, denoted by α1 and α2 for AI traders 1 and 2,
respectively. We calculate the Delta metric for each trader separately, defined by ∆C

i ≡ (πi − πN)/(πM − πN), where
πi ≡ ∑Tc+T

t=Tc
πi,t(vt, ut), for i = 1, 2. Panels A and B plot ∆C

1 and ∆C
2 under large information asymmetry (σu/σv = 102).

The other parameters are set according to the baseline economic environment described in Section 4.4.

Figure 15: Profit gain when AI traders adopt different values of α.
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Appendix

A Proof of Lemma 1

The preferred-habitat investor solves the following portfolio optimization problem for a given pt:

max
z

E
[
−e−η(vt−pt)z/η

]
. (A.1)

Because vt − pt is distributed as N(v − pt, σ2
v ), the first-order condition with respect to z is

0 =
[
ηz (v − pt)− (ηz)2σ2

v

]
e−ηz(v−pt)+(ηz)2σ2

v /2. (A.2)

Thus, the optimal holding, z, is characterized as

z = − 1
ησ2

v
(pt − v). (A.3)

B Proof of Proposition 2.3

Given that st = 0, let JC(χi) denote each informed trader i’s expected present value of future profits, when investor i
chooses xi,t = χi(vt − v) and all other I − 1 informed investors choose xC(vt). That is,

JC(χi) = E
[(

vt − pC(yt)
)

χi(vt − v)
]

+ ρJC(χi)P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

+ E

[
T−1

∑
τ=1

ρτπN(vt+τ) + ρT JC(χi)

]
P

{
Price trigger is violated in period t

∣∣∣∣χi, χC
}

, (B.1)

where pC(·) is the pricing function of market makers in the collusive Nash equilibrium and

pC(yt) = v + λCyt, with λC =
θγC + ξ

θ + ξ2 and γC =
IχC

(IχC)2 + (σu/σv)2 (B.2)

yt = χi(vt − v) + (I − 1)xC(vt) + ut.

The probability of price trigger violation is

P {Price trigger is not violated in period t}

= E [P (pt ≤ q(vt)|vt) 1{vt > v}] + E [P (pt ≥ q(vt)|vt) 1{vt < v}]

= E
[
Φ(σ−1

u (χC − χi)(vt − v) + ω)1{vt > v}
]
+ E

[
Φ(σ−1

u (χi − χC)(vt − v) + ω)1{vt < v}
]

,

where Φ(·) is the CDF of the standard normal distribution.
Evaluating equality (B.1) at χi = χC leads to

JC(χC) =
(

1 − λC IχC
)

χCσ2
v

+ ρJC(χC)Φ(ω)

+
ρ − ρT

1 − ρ
[1 − Φ(ω)]E

[
πN(v)

]
+ ρT JC(χC) [1 − Φ(ω)] . (B.3)
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Thus, we can obtain that

JC(χC) =

(
1 − λC IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]E

[
πN(v)

]
1 − ρΦ(ω)− ρT [1 − Φ(ω)]

. (B.4)

The first-order derivative of the both sides of (B.1) with respect to χi, evaluated at χi = χC, is

∇JC(χC) =
[
1 − λC(I + 1)χC

]
σ2

v

+ ρ
[
∇JC(χC)

]
Φ(ω)− ρJC(χC)

1
σu

ϕ(ω)E [|v − v|]

+
ρ − ρT

1 − ρ

1
σu

ϕ(ω)E [|v − v|]E
[
πN(v)

]
+ ρT

[
∇JC(χC)

]
[1 − Φ(ω)] + ρT JC(χC)

1
σu

ϕ(ω)E [|v − v|] . (B.5)

Because v − v is distributed as N(0, σ2
v ), it follows that E [|v − v|] = σv

√
2
π . Plugging it into (B.5), we obtain that

∇JC(χC) =
[
1 − λC(I + 1)χC

]
σ2

v

+ ρ
[
∇JC(χC)

]
Φ(ω)− ρJC(χC)

σv

σu
ϕ(ω)

√
2
π

+
ρ − ρT

1 − ρ
E
[
πN(v)

] σv

σu
ϕ(ω)

√
2
π

+ ρT
[
∇JC(χC)

]
[1 − Φ(ω)] + ρT JC(χC)

σv

σu
ϕ(ω)

√
2
π

. (B.6)

The first-order condition with respect to χi, characterized by ∇JC(χC) = 0, leads to

0 =
[
1 − λC(I + 1)χC

]
σ2

v

− ρJC(χC)
σv

σu
ϕ(ω)

√
2
π

+
ρ − ρT

1 − ρ
E
[
πN(v)

] σv

σu
ϕ(ω)

√
2
π

+ ρT JC(χC)
σv

σu
ϕ(ω)

√
2
π

, (B.7)

where ϕ(·) is the probability density function of the standard normal distribution.
As θ → ∞ or as ξ → 0, λC → γC, that is, the market approaches to the environment of Kyle (1985). In this case,

the demand of the preferred-habitat investor is irrelevant. Because the system is continuous, we only need to show that
there is no solution χC ∈ [χM, χN) in the environment of Kyle (1985), where χN = 1√

I
σu
σv

and χM =
√

I
I+1

σu
σv

. Denote

χC = χ̂C σu
σv

. Then, we show that there is no solution χ̂C ∈ [
√

I
I+1 , 1√

I
). In the Kyle case, E

[
πN(v)

]
= σuσv

(I+1)
√

I
. Therefore,

equations (B.4) and (B.7) can be rewritten, respectively, as follows:

JC(χC) =

(
1 − γC IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]

σvσu

(I + 1)
√

I
1 − ρΦ(ω)− ρT [1 − Φ(ω)]

. (B.8)

and

0 =
[
1 − λC(I + 1)χC

]
σ2

v −
[

ρJC(χC)− ρ − ρT

1 − ρ

σvσu

(I + 1)
√

I
− ρT JC(χC)

]
σv

σu
ϕ(ω)

√
2
π

(B.9)
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Therefore, χ̂C is the root of the following quadratic equation that is different from 1/
√

I:

0 =
[
1 − I(χ̂C)2

] 1
ρ − ρT −

{
1 − ρ + (ρ − ρT)[1 − Φ(ω)]

}−1
{

χ̂C +
1

(I + 1)
√

I

[
1 + (Iχ̂C)2

]}
ϕ(ω)

√
2
π

(B.10)

Thus, we can obtain that

χ̂C = −
{

1 − ρ + (ρ − ρT)[1 − Φ(ω)]
}−1

ϕ(ω)
√

2
π

I2

(I+1)
√

I

{
1 − ρ + (ρ − ρT)[1 − Φ(ω)]

}−1
ϕ(ω)

√
2
π + I

ρ−ρT

− 1√
I
< 0. (B.11)

As a result, there is no root that lies in [
√

I
I+1 , 1√

I
).

C Proof of Proposition 2.4

As θ → 0 or as ξ → ∞, λC → 1/ξ, that is, the market approaches to the environment where price is primarily
determined by market clearing conditions. In this case, the demand of the preferred-habitat investor plays an important
role. Because the system is continuous, we only need to show that there is a solution χC ∈ [χM, χN) in the environment
of no price recovery, where χN = ξ

I+1 , χM = ξ
2I , and E

[
πN(v)

]
= σ2

v
(I+1)2 . We show that existence a solution

χC ∈ [ ξ
I+1 , ξ

2I ). In this case, equations (B.4) and (B.7) can be rewritten, respectively, as follows:

JC(χC) =

(
1 − ξ−1 IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]

σ2
v

(I + 1)2

1 − ρΦ(ω)− ρT [1 − Φ(ω)]
. (C.1)

and

0 =
[
1 − ξ−1(I + 1)χC

]
σ2

v −
[

ρJC(χC)− ρ − ρT

1 − ρ

σ2
v

(I + 1)2 − ρT JC(χC)

]
σv

σu
ϕ(ω)

√
2
π

(C.2)

Therefore, χC is the root of the following quadratic equation that is different from ξ/(I + 1):

0 =
σu

σv
ϕ(ω)−1

[
1 − ξ−1(I + 1)χC

]
+

ρ − ρT

1 − ρ

1
(I + 1)2

− ρ − ρT

K

[(
1 − ξ−1 IχC

)
χC +

ρ − ρT

1 − ρ
[1 − Φ(ω)]

1
(I + 1)2

]
where

K = 1 − ρΦ(ω)− ρT [1 − Φ(ω)] (C.3)

Thus, we can obtain that

χC =
σu

σv

(
1 +

1
I

) [
1 − ρT

ρ − ρT − Φ(ω)

]
ϕ(ω)−1

√
2
π

+
ξ

I(I + 1)
(C.4)

To ensure that χC characterizes a collusion equilibrium, it requires that χC − χN < 0, that is,

σu

σv

(
1 +

1
I

) [
1 − ρT

ρ − ρT − Φ(ω)

]
ϕ(ω)−1

√
2
π

− ξ(I − 1)
I(I + 1)

< 0. (C.5)

The above inequality is satisfied if information asymmetry σu/σv or I is not too large.

D Proof of Proposition 2.6

We only prove the proposition for the case of θ = 0 here. More general cases with small θ or large ξ can be proved
similarly with more involving derivations.
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First, we compute IπC − IπN as follows:

IπC − IπN = ξ

[
1 − ξ−1 σu

σv
(I + 1)A(ρ)− 1

I + 1

] [
ξ−1 σu

σv
(I + 1)A(ρ) +

1
I + 1

]
− ξ I

(I + 1)2

= ξ

[
ξ−1 σu

σv
(I + 1)A(ρ) +

1
I + 1

]
− ξ

[(
ξ−1 σu

σv
(I + 1)A(ρ)

)2
+ 2ξ−1 σu

σv
A(ρ) +

1
(I + 1)2

]
− ξ I

(I + 1)2

= ξ

[
1 − ξ−1 σu

σv
(I + 1)A(ρ)

]
ξ−1 σu

σv
(I + 1)A(ρ)− 2

σu

σv
A(ρ),

where A(ρ) ≡
[

1−ρT

ρ−ρT − Φ(ω)
]

ϕ(ω)−1
√

2
π . We then compute IπM − IπN as follows:

IπM − IπN = ξ

[
1
4
− I

(I + 1)2

]
= ξ

(I − 1)2

4(I + 1)2 (D.1)

Thus,

∆C =
4
[
1 − ξ−1 σu

σv
(I + 1)A(ρ)

]
ξ−1 σu

σv
(I + 1)A(ρ)− 8ξ−1 σu

σv
A(ρ)

(I − 1)2/(I + 1)2 (D.2)

The function (1 − x)x is strictly decreasing in x when x > 1/2. To ensure that χC ≥ χM for any I, we as-
sume that ξ−1 σu

σv
(I + 1)A(ρ) ≥ 1/2. Therefore, as I increases, ξ−1 σu

σv
(I + 1)A(ρ) ≥ 1/2 increases, thereby making[

1 − ξ−1 σu
σv
(I + 1)A(ρ)

]
ξ−1 σu

σv
(I + 1)A(ρ) decrease. In the meantime, as I increases, (I − 1)2/(I + 1)2 increases. Taken

together, ∆C decreases with I. Additionally, as σu/σv increases, ξ−1 σu
σv
(I + 1)A(ρ) ≥ 1/2 increases, which decreases[

1 − ξ−1 σu
σv
(I + 1)A(ρ)

]
ξ−1 σu

σv
(I + 1)A(ρ). In the meantime, as σu/σv increases, ξ−1 σu

σv
A(ρ) increases. Taken together,

∆C decreases with σu/σv. Similarly, we can easily prove that ∆C increases with ξ and ρ.

Price informativeness is

IC = log
[(

IχC
)2

(σv/σu)
2
]

= 2 log
[
(I + 1)A(ρ) +

σv

σu

ξ

I + 1

]
Because ξ−1 σu

σv
(I + 1)A(ρ) ≥ 1/2, it follows that (I + 1)A(ρ) + σv

σu

ξ
I+1 increases with I. Consequently, price informa-

tiveness IC is increasing in I. Obviously, price informativeness IC is decreasing in ρ and σu/σv, and it is increasing in

ξ.

E Standard Kyle Setting with ξ = 0

In this appendix section, we study AI traders’ behavior in the baseline economic environment
except for setting ξ = 0, which essentially means that preferred-habitat investors do not exist.
Thus, market makers set prices purely for price discovery, i.e., pt = E[vt|yt]. This economic
environment is similar to Kyle (1985) except for having I = 2 informed traders. Our model in
Section 2 shows that implicit collusion cannot be sustained by any price-trigger strategies when
ξ = 0.

Figure A presents the simulation experiments with AI traders when ξ = 0. Although our
model suggests that informed traders should not be able to achieve supra-competitive profits,
our AI traders can attain an average ∆C of 0.85 (panel A) and an average profit gain relative to
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as log(σu/σv) varies.
Panels A, B, and C plot the average ∆C, profit gain relative to noncollusion (πC/πN), and informed traders’ order
sensitivity to asset value (χ̂C). These metrics are defined in Section 4.6. Panel D plots the price informativeness relative
to the theoretical benchmark of the noncollusive Nash equilibrium, i.e., IC/IN , where the price informativeness in
the simulation experiment is calculated by IC = log

[
(Iχ̂C)2(σ̂v/σu)2]. The blue solid line represents the simulation

experiments with AI traders; the red dash-dotted and black dotted lines represent the theoretical benchmarks in the
noncollusive Nash equilibrium and perfect cartel equilibrium, respectively. The parameters are set according to the
baseline economic environment described in Section 4.4, except for ξ = 0.

Figure A: Implications of information asymmetry in the standard Kyle Setting with ξ = 0.

noncollusion, πC/πN = 1.05 (panel B), due to biased learning. Moreover, AI traders’ relative
price informativeness (panel D) remain unchanged as log(σu/σv) varies along the x-axis, which is
similar to the theoretical implication of the Kyle (1985) model. The AI traders’ order sensitivity to
asset value χ̂C increases linearly with σu/σv (panel C).
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F Market Makers with Q-Learning

In the baseline economic environment, market makers analyze historical data to estimate the
pricing rule (ese Subsection 3.2). In this appendix section, we consider market makers adopting
Q-learning algorithms to learn the pricing rule. All the results presented in the main text are
similar; they do not depend on whether market makers determine the pricing rule using statistical
learning or Q-learning.

Below, we describe the Q-learning algorithms of market makers. We consider market makers
adopting linear policies to price assets given total output yt:

pt = vMM
t + λMM

t yt, (F.1)

where vMM
t and λMM

t are the decisions of market makers learned from their Q-learning programs.
Specifically, market makers states are st = ∅ and actions are at = {vMM

t , λMM
t } ∈ V× Λ. They

update their Q-matrix according to the following learning equation:

Q̂MM
t+1 (v

MM
t , λMM

t ) =(1 − αMM)Q̂MM
t (st, at) + α

[
(yt − ξ(vMM

t − v + λMM
t yt))

2

+θ(vMM
t + λMM

t yt − vt)
2 + ρMM min

v∈V,λ∈Λ
Q̂MM

t (v, λ)

]
, (F.2)

where the reward in period t is

(yt + zt)
2 + θ(pt − vt)

2 =(yt − ξ(pt − v))2 + θ(pt − vt)
2

=(yt − ξ(vMM
t − v + λMM

t yt))
2 + θ(vMM

t + λMM
t yt − vt)

2. (F.3)

The optimal decision vMM
t and λMM

t are learned to minimize the Q-matrix. Similar to informed
traders’ Q-learning programs, market makers also do exploration with probability εMM

t and
exploitation with 1 − εMM

t . In the exploration mode, market makers randomly choose actions v
and λ over the set V× Λ.

To implement the Q-learning programs for market makers, we construct discrete grid for
vMM

t and λMM
t . Specifically, we discretize the intervals [(1 − κ)vMM, (1 + κ)vMM] and [(1 −

κ)λMM, (1 + κ)λMM] into nv and nλ equally spaced grid points, i.e., V = {vMM
1 , · · · , vMM

nv
} and

Λ = {λMM
1 , · · · , λMM

nλ
}. The parameters vMM and λMM correspond to the theoretical values in the

noncollusive equilibrium. The parameter κ > 0 ensures that market makers can choose decisions
different from these theoretical values.

For grid (vMM
k , λMM

j ) ∈ V× Λ, we initialize market makers’ Q matrix as follows:

Q̂MM
0 (vMM

k , λMM
j ) =

1
1 − ρMM E

[
(yt − ξ(vMM

k − v + λMM
j yt))

2 + θ(vMM
k + λMM

j yt − vt)
2
]
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Substituting out yt = IχN(vt − v) + ut, we obtain

Q̂MM
0 (vMM

k , λMM
j ) =

1
1 − ρMM

[
(1 − ξλMM

j )2((IχNσv)
2 + σ2

u) + ξ2(vMM
k − v)2

]
+

θ

1 − ρMM

[
(vMM

k − v)2 + (λMM
j IχN − 1)2σ2

v + (λMM
j σu)

2
]

The exploration rate is εMM
t = e−βMMt, similar to equation (4.2). We set the parameters at

βMM = 10−4, αMM = 0.1, ρMM = 0.95, κ = 0.5, and nv = nλ = 31. The results are similar if we
choose different parameters.
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