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Abstract

What do machines learn, and why? To answer these questions we import models
of human cognition into machine learning. We propose two ways of modeling machine
learners based on this join: feasibility-based and cost-based machine learning. We
evaluate and estimate our models using a deep learning convolutional neural network
that predicts pneumonia from chest X-rays. We find these predictions are consistent
with our model of cost-based machine learning, and we recover the algorithm’s implied
costs of learning.

Key words: Algorithms, machine learning, information frictions, information
economics, rational inattention
JEL codes: D83, D91

∗We thank Emir Kamenica, Stephen Morris, Nick Netzer, Marek Pycia, Doron Ravid, Jakub Steiner, and
audiences at the University of Zurich, the European Summer Symposium in Economic Theory in Gerzensee,
and the Sloan-NOMIS Summer School on Cognitive Foundation of Economic Behavior. Caplin thanks
the NOMIS and Sloan Foundations for their support for the broader research program on the cognitive
foundations of economic behavior.

†Department of Economics, New York University.
‡Kellogg School of Management, Northwestern University and Department of Economics, University of

California, Santa Barbara.
§Department of Economics, Louisiana State University.

1



1 Introduction

Machine learning is increasingly central to the modern economy. Virtually all industries, jobs,
and consumer experiences have been impacted in some way by the rapid rise in automation
brought about by this technology. Economically important applications of machine learning
include what ads to serve, what content to show, what coupons to provide, facial recognition,
translation, voice assistants, credit scoring and loan decisions, medical decisions, product
recommendations, driving routes, spam filters, fraud detection, and so on.

Yet in the push to improve the accuracy of machine learning predictions, state-of-the-art
machine learning algorithms have reached a level of complexity in which they are effectively
black boxes. Our understanding of the most recent machine learning algorithms is obscured
by their stochastic choice among local solutions to non-convex problems, nested training
protocols, and model architectures involving a large number of parameters. As a result, even
if an analyst knows all of the code behind such an algorithm, it is nearly impossible to fully
grasp its inner workings.

Because a complete as is understanding of modern machine learning algorithms is increas-
ing out of reach, a natural question is whether there exists a parsimonious as if representation
of opaque machine learners that can reasonably approximate their behavior. This question
is in the spirit of a long literature in economics, psychology, and neuroscience that aims to
generate parsimonious representations that reasonably approximate the behavior generated
by the black box of human cognition.

In fact, our approach to modeling machine learners exactly mirrors how human learners
are often modeled in economics, psychology, and neuroscience: as individual decision makers
who engage in signal gathering, belief formation, and choice. Specifically, we assume that
when facing a test set of observations, a machine learner engages in a two stage decision
process: first, it optimally chooses a signal structure, and second, it chooses predictions that
minimize expected losses given the posterior beliefs generated by signal realizations.

We propose two machine learning models that build on this information-theoretic founda-
tion. Both models are identical in terms of second stage choice, but differ in the constraints
that drive the choice of signal structure in the first stage. In one model, which we call
feasibility-based machine learning, the algorithm chooses among a feasible set of ways to
learn about observations in the test set. In our other model, which we call cost-based ma-
chine learning, the algorithm adjusts its learning in response to additional, unobservable
costs of learning. These are not the monetary costs incurred in running the algorithm, in-
stead they reflect the intrinsic difficulty the algorithm has in learning the true outcome given
its training procedures and the available training data.

We evaluate and estimate our models using CheXNeXt, an influential deep learning
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convolutional neural network for predicting thoracic diseases from chest X-ray images (Ra-
jpurkar, Irvin, Ball, et al. 2018). We vary the algorithm’s loss function by varying its class
weights, which dictate the relative value a loss function places on correct and incorrect pre-
dictions across different class labels. Rajpurkar, Irvin, Ball, et al. (2018) follow standard
practice in using class weights to increase the value that the algorithm places on mistakes
made for observations in the underrepresented class, which is important given that only 1.3%
of chest X-rays are in fact labeled with pneumonia.

One impact of varying class weights is that it varies the machine’s incentives for making
different predictions. We first show that this algorithm distorts its predictions in line with
these incentives precisely as predicted in our models. In addition, as we vary the algorithm’s
class weights we also vary the machine’s incentives for learning. Feasibility-based machine
learning requires that what the algorithm learns under one set of class weights is preferred to
what it learns under alternative class weights, since the alternative ways of learning are also
feasible and thus could have been chosen. Cost-based learning makes a related prediction,
but net of additional costs of learning. We find that CheXNeXt predictions are consistent
with cost-based learning, but not feasibility-based learning. This arises because of a common
preference for what is learned across class weights, which violates feasibility-based learning
but can be rationalized with recourse to additional structural costs of learning inherent to
the algorithm. In addition, we recover sharp bounds on the structural cost parameters and
construct “representative” learning costs for the algorithm. These bounds and representative
costs suggest that by placing relatively lower weight on pneumonia instances the algorithm
incurs higher learning costs, which is sensible given that doing so places relatively higher
weight on non-pneumonia instances, which are far more common.

Our approach provides a natural join between three growing literatures: information
economics, bounded rationality, and machine learning. The information-theoretic founda-
tion of our models mirrors the core objects of information design (Kamenica and Gentzkow
2011; Kamenica 2019; Bergemann and Morris 2017),1 and we leverage a wide range of tools
recently introduced for modeling boundedly rational decision making. Our feasibility-based
machine learning model is an application of the capacity constrained learning model charac-
terized by Caplin, Martin, and Marx (2022), which generalizes the fixed capacity version of
rational inattention theory proposed by Sims (2003) and the noisy cognition model proposed
by Woodford (2014). Our cost-based machine learning model is an application of the gen-
eral version of rational inattention theory characterized by Caplin and Dean (2015), which
itself generalizes the specialized version using Shannon entropy characterized by Matejka
and McKay (2015) and Caplin, Dean, and Leahy (2017). Thus, our paper is connected to
both a growing literature that considers stochastic choice to be essential for studying lim-

1Liang, Lu, and Mu (2022) draw a point of connection between information design and machine learning
to study the tradeoffs between accuracy and fairness.
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ited attention in human decision making (e.g., Manzini and Mariotti 2014; Cattaneo, Ma,
Masatlioglu, and Suleymanov 2020) and a growing literature that studies the theoretical
properties of costly learning (e.g., Gentzkow and Kamenica 2014; De Oliveira, Denti, Mihm,
and Ozbek 2017; Hébert and Woodford 2017; Denti 2022; Lipnowski and Ravid 2022). In
this paper we demonstrate that the join between information economics, bounded rationality,
and machine learning approaches can, in fact, produce models that reasonably approximate
the behavior of opaque machine learners.

The rest of the paper proceeds as follows. Section 2 introduces the preliminaries of our
model and empirical application. Section 3 covers the foundation for our learning models.
Building on this foundation, Section 4 covers the feasibility- and cost-based machine learning
models and cost recovery. An empirical application that tests the foundations and learning
models and performs recovery in a state-of-the-art deep convolutional neural network is
treated concurrently at the end of the corresponding sections. Section 5 concludes with a
discussion of related literatures.

2 Preliminaries

2.1 Setup and Notation

There is a finite set of instances X with generic element x, a finite set of outcomes Y with
generic element y, and a deterministic map between instances and outcomes f : X → Y that
is called the ground truth. In our running application, the set of instances X is 112,120 chest
X-ray images, the set of possible outcomes Y = {0, 1} is an indicator for the presence of
pneumonia, and the ground truth is the actual outcome (pneumonia or not) corresponding
to each image.2

Algorithms generate predictions about each instance, and we consider a generic set of
predictions A to accommodate an array of possibilities. For example, many classification
algorithms output a numeric confidence score for each instance and possible outcome. In
turn, confidence scores can be translated into discrete outcome predictions using a down-
stream classification rule, such as predicting an outcome if its confidence score exceeds a
given threshold or the confidence scores of the other possible outcomes. In our application,
we consider numeric confidence scores instead of a discrete downstream outcome predictions
because confidence scores are more closely tied to machine incentives and yield stronger tests
and sharper identification. Our framework also accommodates situations where the analyst

2Specifically, Wang et al. (2017) provides the ground truth by labeling whether each chest X-ray indicates
pneumonia or not. As is standard when evaluating algorithms, we assume this ground truth is correct, but
our approach could be extended to include uncertainty about the ground truth.
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only has data on predicted outcomes or wishes to model the scoring algorithm jointly with
a downstream classification rule.

An important input to the training of an algorithm is a loss function L : A×Y → R, which
indicates the value of a particular prediction given the outcome. It is standard practice to use
cross-entropy L(a, y) = −y log a−(1−y) log(1−a) over confidence scores and outcomes when
training deep learning neural networks to predict the class to which an instance belongs. In
addition, it is also standard practice to re-weight the loss function to make losses higher or
lower for a particular outcome; such class weighting is often employed when one outcome is
less common (Thai-Nghe, Gantner, and Schmidt-Thieme 2010) or with the hope of achieving
some external objective (Zadrozny, Langford, and Abe 2003).

For a given algorithm, using loss function L in training generates a trained model gL :
X → A.3 The performance of the trained model is assessed on how well its predictions
align with actual outcomes, as specified by the ground truth.4 Because the characteristics
of instances can vary widely for a particular outcome, performance is typically evaluated on
how well it performs on aggregate for each outcome. Formally, aggregate level performance
for each outcome is summarized by performance data P L : A × Y → [0, 1], which is the joint
distribution of predictions and outcomes for the trained model in a test data set,

P L(a, y) = |{x ∈ X|gL(x) = a & f(x) = y}|
|X|

.

Because X is finite, supp(P L
A ), is also finite. As is standard practice in the machine learning

literature, we study algorithmic predictions over a test sample that is independently drawn
from the same population as the data on which the algorithm is trained.

2.2 Application: Data and Algorithm

We demonstrate the potential empirical suitability of our machine learning models by imple-
menting CheXNeXt, an influential deep convolutional neural network for predicting thoracic
diseases from chest X-ray images (Rajpurkar, Irvin, Ball, et al. 2018). Our training models
are generated using the ChestX-ray14 data set, which consists of 112,120 frontal chest X-rays
which were synthetically labeled with the presence of fourteen thoracic diseases (Wang et al.
2017). The main modifications we make to the CheXNeXt training procedure are that we
isolate the task of pneumonia detection as in the earlier implementation of Rajpurkar, Irvin,
Zhu, et al. (2017) and we train the algorithm across various β-weighted cross-entropy loss

3For stochastic algorithms that can generate different predictions for the same input, we take gL to be
an average prediction for each instance across trained models, which is called an ensemble model.

4Our approach can be applied to any set X, but since algorithmic performance is typically evaluated on
a hold-out or test set of instances, a natural interpretation of X is that it is the test set.
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functions:
Lβ(a, y) = −βy log(a) − (1 − β)(1 − y) log(1 − a). (1)

Specifically, we vary the loss function by considering β = 0.7, 0.9, 0.99.5 In addition, we
employ ensemble (model-averaging) methods to isolate the substantive effects of what the
machine learns from random noise inherent to the stochastic training procedure. Using nested
cross-validation methods, this yields an ensemble model prediction at each β for each of the
112,120 X-ray images in the original data. Further technical details of our training procedure
are relegated to Appendix A. We return to our application in Subsection 3.3 after introducing
our fundamental representation of machines as Bayesian expected loss minimizers.

3 Machines as Bayesian Expected Loss Minimizers

In this section we present the information-theoretic foundation of the learning models we con-
sider, the testable implications of this foundation, and positive evidence of this foundations
in our empirical application.

In this foundation we follow the Blackwell (1953) model of experimentation, signal pro-
cessing, and choice. For both feasibility-based and cost-based machine learning, we model
an algorithm as an optimizing agent that i) starts with a prior µ ∈ ∆(Y ) over outcomes, ii)
gets signal realizations that provide information about the outcome, iii) forms posterior be-
liefs γ ∈ ∆(Y ) via Bayesian updating, and iv) chooses predictions based on these posteriors
to minimize expected losses. As in Kamenica and Gentzkow (2011) we define Q as those
distributions of posteriors with finite support that satisfy Bayes’ rule,

Q ≡ {Q ∈ ∆(∆(Y ))|
∑

γ∈supp(Q)
γQ(γ) = µ}.

Posteriors are translated into probabilistic predictions through a prediction function q :
supp(Q) → ∆(A). For a given loss function L and distribution of posteriors Q ∈ Q, the set
of optimal prediction functions is defined as,

q̂(L, Q) ≡ argmin
q

∑
γ∈supp(Q)

Q(γ)
∑
a∈A

q(a|γ)
∑
y∈Y

γ(y)L(a, y).

Note that any pair (Q, q) produces a joint distribution of predictions and outcomes given by
P(Q,q) : A × Y → [0, 1] where,

P(Q,q)(a, y) ≡
∑

γ∈supp(Q)
Q(γ)q(a|γ)γ(y).

With these elements in place we can define the foundation of our subsequent learning models.
5For reference, the class weight used in the analysis of Rajpurkar, Irvin, Zhu, et al. (2017) is approximately

0.99 because the probability of positive pneumonia cases in the data set is 0.0127.
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Definition 1. For a given loss function L, P L has a signal-based representation (SBR)
if there exists a prior µ ∈ ∆(Y ), a Bayes consistent distribution of posteriors Q ∈ Q, and a
prediction function q : supp(Q) → ∆(A) such that:

1. The prior is correct: µ(y) = ∑
a∈supp(P L

A ) P L(a, y).

2. Predictions are optimal at all possible posteriors: q ∈ q̂(L, Q).

3. Predictions are generated by the model: P L(a, y) = P(Q,q)(a, y).

If P L has an SBR, then it is as if the algorithm makes predictions to minimize the loss
function given the Bayesian posterior beliefs induced by its signal structure.

3.1 Testable Condition: Loss Calibration

Applying the theoretical results of Caplin and Martin (2015) and Bergemann and Morris
(2016), it is straightforward to show that the SBR foundation is characterized by a simple
condition, called loss calibration, which requires that switching wholesale from any prediction
a to any alternative prediction a′ would never strictly reduce losses.6

Definition 2. Performance data P L is loss-calibrated to loss function L if a wholesale
switch of predictions does not reduce losses according to L:

a ∈ argmin
a′∈Rn

∑
y∈Y

P L(a, y)L(a′, y) for all a ∈ supp(P L
A ). (2)

Any algorithm that fails this condition makes predictions that are not suitable for the loss
function and that are thus inconsistent with an SBR and Bayesian expected loss minimiza-
tion.7

Under weighted cross-entropy loss with binary outcomes (1), it is straightforward to show
that loss calibration takes a unique closed form as a function of posterior probabilities. Let
aβ(γ) be the optimal prediction when the class weight is β and the posterior probability that
the outcome is y = 1 is given by γ.

Observation 1. Consider weighted cross-entropy loss (1). For any weight β ∈ (0, 1) and
all posterior probabilities γ ∈ supp(Q) that the outcome is y = 1, the unique loss-calibrated
confidence score is given by:

aβ(γ) = βγ

1 − β − γ + 2βγ
. (3)

6To the best of our knowledge, no such condition has been proposed in the machine learning literature.
7Nevertheless, this is easy to rectify. Whenever this loss function is input into the algorithm, a single line

of code at the end of the computer program making a wholesale switch to predicting a whenever it would
have predicted a′ would make this algorithm loss-calibrated for this loss function.
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In the case of unweighted cross-entropy loss (β = 0.5), the loss-calibrated scoring function
(3) collapses to the optimal prediction being the posterior probability itself, α0.5(γ) = γ.
Thus, as is well-known, unweighted cross-entropy incentivizes truthful revelation of beliefs.

3.2 Calibration in Machine Learning: Theory and Practice

In general, any proper loss function incentivizes truthful reporting under an SBR. Thus, an
observable implication of SBR is that if the loss function is proper, an algorithm should be
(unconditionally) calibrated to ground truth probabilities. That is, each confidence scores
should equal the true probability of the outcome given that score. This form of calibration is
an important and much-studied property in machine learning because calibrated predictions
correctly reflect their uncertainty.

While there is no inherent tension between the aims of accuracy and calibration in our
as if model of the machine, the relationship is more nuanced in the as is practice of machine
learning. This is due to machine learning’s extrapolative nature: a machine learns a model
from a training sample of data in order to predict new instances outside the training sample.
Furthermore, the training sample is often small relative to the potential complexity of the
model.8 The machine must therefore balance the competing aims of capturing the essential
features of the training data (not underfitting) while remaining generalizable to new instances
(not overfitting). Theoretically, this problem of optimal out-of-sample learning from limited
data can be cast as an optimal tradeoff between bias and variance — respectively, how
far predictions depart systematically from truth, and how much predictions depend on the
idiosyncrasies of the training data.9

An optimal resolution of the bias-variance tradeoff often involves introducing bias into
the predictive model in order to reduce variance.10 Introducing bias may also introduce
miscalibration, for example in the case of lasso or ridge regressions that penalize coefficient
size and thereby generate underconfident models whose predictions are biased toward the
overall mean, i.e. shrinkage bias.11 At the other extreme, miscalibration may also arise

8For example, in our application, a data set of 112,120 images is used to train and evaluate an ensemble
of neural networks, each of which has 6,968,206 learnable parameters (Rajpurkar, Irvin, Ball, et al. 2018).

9The tradeoff is clearest for squared (reducible) error, which can be precisely decomposed into a sum of
squared bias and variance; e.g., see Hastie, Tibshirani, and Friedman (2009). For an extension to other loss
functions, see also, e.g., Domingos (2000).

10This is a central distinction of machine learning relative to the regression-based methods traditionally
employed in economics to address questions of causal inference (Kleinberg, Ludwig, Mullainathan, and
Obermeyer 2015).

11Formally, miscalibration implies bias but bias does not imply miscalibration. A simple example of bias
without miscalibration is extreme shrinkage bias: a constant prediction of the average training outcome,
regardless of features.
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from high variance, for example in the case of overconfident models whose out-of-sample
confidence scores are biased toward the extremes due to overfitting of the training data.
Since the machine aims to balance the competing objectives of reducing bias and variance,
calibration and its relationship to accuracy are ultimately empirical questions.

Deep learning convolutional neural networks have been shown to suffer from miscali-
bration, specifically overconfidence, with the severity of miscalibration increasing in model
size (Guo, Pleiss, Sun, and Weinberger 2017). Along with the good calibration properties
of earlier and simpler neural networks (Niculescu-Mizil and Caruana 2005), this seems to
suggest that miscalibration in practice is an inevitable cost of improvements in accuracy
stemming from increasing model complexity.12 However, calibration of deep neural nets is
improved with regularization procedures such as weight decay (Guo, Pleiss, Sun, and Wein-
berger 2017) as well as model ensembling (Lakshminarayanan, Pritzel, and Blundell 2017).
This is consistent with the intuition that both of these procedures reduce overconfidence.
Model ensembling is also well-known to improve model accuracy (e.g. Dietterich 2000), which
suggests there need not be a tension between accuracy and calibration per se.

The most recent evidence further supports that there is no inherent tradeoff between
accuracy and calibration. In particular, Minderer et al. (2021) conduct a comprehensive
comparison of 180 image classification models and find that the most accurate current models,
such as non-convolutional MLP-Mixers (Tolstikhin et al. 2021) and Vision Transformers
(Dosovitskiy et al. 2021), are not only well-calibrated compared to earlier models, but also
that their calibration is more robust to distributions that differ from training. This body of
evidence suggests that future improvements in model accuracy might only benefit calibration.
Thus, our SBR representation is likely to remain a useful foundation for modeling machines
even as (and perhaps because) they become increasingly complex.

3.3 Application: Loss Calibration

In the deep learning algorithm we consider — which regularizes through early stopping and
aggregates over an ensemble of trained neural nets — we find that confidence scores are
loss-calibrated as in (3) across various weights in weighted cross entropy loss (1). Recall that
this includes unconditional calibration for unweighted cross-entropy loss (β = 0.5), which is
a proper loss function.

Graphical evidence of calibration and loss calibration is provided in the left and right pan-
els of Figure 1, respectively. In each plot, the horizontal axis represents the confidence score,

12The relationship between accuracy and model complexity is itself more complex than suggested by the
classical bias-variance tradeoff. A recent finding is that, as a function of model complexity, accuracy may
eventually increase again for sufficiently complex models that perfectly interpolate the training data (Belkin,
Hsu, Ma, and Mandal 2019).
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Figure 1: Theoretical relationship between confidence score and pneumonia rate for a loss-
calibrated algorithm with calibration target (solid lines), loss calibration targets varying
class weights (dashed lines), and empirical decile-binned calibration curves (shapes) for the
pneumonia-detection algorithm presented in Subsection 2.2. All objects are displayed on a
log-10 scale to improve readability. This figure provides visual evidence that the algorithm
is calibrated for β = 0.5 (left panel) and loss-calibrated generally (left and right panels).
This ensures an SBR representation and simplifies computation of the objects introduced in
Section 4.

and the vertical axis the corresponding pneumonia rate in the data (both on a log scale).
The shapes in the figure provide the empirical decile-binned calibration curves (DeGroot and
Fienberg 1983; Niculescu-Mizil and Caruana 2005). The solid lines represent the situation
where confidence scores are calibrated. Thus, we observe the algorithm appears effectively
calibrated for the unweighted loss function β = 0.5, and miscalibrated otherwise. The dashed
lines in the right plot show the theoretical relationship between scores and pneumonia rates
for the relative positive class weights β = 0.7, 0.9, 0.99 if an algorithm is loss-calibrated
(note that the loss-calibrated and calibrated lines coincide on the left when β = 0.5). As
β increases, the algorithm is increasingly incentivized to provide a score that is higher than
the machine’s actual “belief” about the probability of pneumonia, which causes the lines to
bow out. The alignment of theoretical predictions and empirical estimates strongly suggests
that the algorithm is generally very close to being loss-calibrated, and very close to being
calibrated when the loss function is unweighted.

Finally, note that our finding of calibration with an unweighted loss function is consistent
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with previously documented calibration for deep learning convolutional neural networks that
use regularization (i.e., weight decay in Guo, Pleiss, Sun, and Weinberger 2017) and deep
ensembling (Lakshminarayanan, Pritzel, and Blundell 2017). With a viable SBR in hand,
we now turn to our models of what the machine learns.

4 Models of Machine Learning

SBR leaves open the question of how a machine learning algorithm arrives at its signal
structure – that is, what the machine decides to learn based on the incentives provided by
the loss function. We now propose and characterize two nested alternatives: choosing among
a set of feasible signal structures or choosing among signal structures of different costs.

4.1 Feasibility-Based Machine Learning

Our first model class assumes the algorithm chooses among a set of feasible signal structures
to best match the incentives provided by the loss function.

To translate this into the SBR framework of Section 3, we define a feasible set of ex-
periments Q∗ ⊂ Q. This feasible set depends only on the algorithm’s capability and is not
specific to the loss function provided. We define the algorithm’s strategy space Λ to include
both Q and q:

Λ = {(Q, q)|Q ∈ Q, q : supp(Q) → ∆(A)}.

For a given loss function L and feasible set Q∗, the set of optimal strategies Λ̃(L, Q∗) is,

Λ̃(L, Q∗) ≡ arg inf
(Q,q)∈Λ,Q∈Q∗

∑
γ∈supp(Q)

Q(γ)
∑
a∈A

q(a|γ)
∑
y∈Y

γ(y)L(a, y).

With this we can define all performance data sets that are consistent with optimality for a
given feasible set Q∗ as,

P̃ (L, Q∗) ≡ {P(Q,q)|(Q, q) ∈ Λ̃(L, Q∗)}.

Feasibility-based machine learning requires that there exist a feasible set Q∗ such that the
performance data produced by an algorithm are optimal given that feasible set for all L ∈ L.

Definition 3. An algorithm is consistent with feasibility-based machine learning if
there exists a feasible set Q∗ ⊂ Q such that P L ∈ P̃ (L, Q∗) for all L ∈ L.
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4.2 Cost-Based Machine Learning

Our second model class assumes the algorithm chooses among signal structures of different
costs. Once again, these are not the monetary costs incurred in running the algorithm,
instead they reflect the intrinsic difficulty the algorithm has in learning the true outcome
given its training procedures and the available training data. One way to interpret these
costs is as the resource costs of different mathematical operations.

To formalize this, we define a learning cost function K : Q → R and denote the set of all
possible learning cost functions as K. An algorithm’s learning cost function depends only
on its capabilities and is not specific to the loss function provided.

Given loss function L ∈ L and learning cost function K ∈ K, the resource-adjusted loss
L̂ of strategy (Q, q) is,

L̂((Q, q)|L, K) ≡
∑

γ∈supp(Q)
Q(γ)

∑
a∈A

q(a|γ)
∑
y∈Y

γ(y)L(a, y) + K(Q).

The corresponding set of optimal strategies Λ̂(L, K) is then defined as,

Λ̂(L, K) ≡ arg inf
(Q,q)∈Λ

L̂((Q, q)|L, K).

This optimization problem formalizes the way in which the algorithm trades off losses with
learning costs. Given any L ∈ L the set of all performance data sets that are consistent with
optimality for a given learning cost function K ∈ K are,

P̂ (L, K) ≡ {P(Q,q)|(Q, q) ∈ Λ̂(L, K)}.

Definition 4. An algorithm is consistent with cost-based machine learning if there
exists a learning cost function K ∈ K such that P L ∈ P̂ (L, K) for all L ∈ L.

The second learning model generalizes the first model because a feasible set of posterior
distributions Q∗ is equivalently specified as a learning cost function K∗ for which the cost is
zero for every feasible posterior distribution Q ∈ Q∗ and infinite otherwise.

4.3 Testing the Models

In order to simplify the characterizations of these models, we restrict consideration to per-
formance data sets with an SBR representation (or its empirically verifiable counterpart, loss
calibration). Because indexing will be useful in what follows, we will take as given a finite
set of M loss functions, indexed by 1 ≤ m ≤ M . For notational simplicity, we denote the
performance data set from training the algorithm with the m-th loss function as P m = P Lm .
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Our characterization of feasibility-based learning is taken directly from Caplin, Martin,
and Marx (2022), who characterize capacity constrained learning for human decision makers.
In the context of machine learning, the key idea is to ensure that losses cannot be lowered
by counterfactually switching to the predictions from training with a different loss function.
All such comparisons are visible in the cross-loss matrix G with generic element Gmn in row
m and column n that specifies the minimized expected losses when the loss function is Lm

and the performance data is P n:

Gmn ≡
∑

a∈supp(P n
A)

min
a′∈A

∑
y∈Y

Lm(a′, y)P n(a, y).

The operation on the right hand side of the equation takes any prediction a ∈ supp(P n
A),

picks some alternative prediction a′ ∈ A to replace it wholesale, computes the corresponding
expected losses for Lm, and then minimizes.

A feasibility-based machine learning representation requires that no such switch of per-
formance data can lower losses. To formalize we define the M × M direct loss difference
matrix D0 by,

Dmn
0 ≡ Gmn − Gmm. (4)

An algorithm with an SBR is strongly loss-adapted if for all 1 ≤ m, n ≤ M ,

Dmn
0 ≥ 0, or equivalently Gmn ≥ Gmm.

The results in Caplin, Martin, and Marx (2022) can be used to show that, together with
loss-calibration, an algorithm being strongly loss-adapted is necessary and sufficient for
feasibility-based machine learning. To apply their results one maps utility maximization
to loss minimization and action sets to loss functions.

The corresponding characterization of cost-based learning is based on paths of switches.
Define H(m, n) as all sequences of indices h⃗ = (h(1), h(2), . . . , h(J (⃗h)) in which the first
J (⃗h) − 1 entries are distinct. The indirect loss-difference matrix D computes minimizing
summed loss differences on such paths

Dmn ≡ min
{h⃗∈H(m,n)}

J (⃗h)−1∑
j=1

D
h(j)h(j+1)
0 . (5)

Formally, an algorithm with an SBR is loss-adapted if for all 1 ≤ m ≤ M ,

Dmm ≥ 0.

This condition requires that no cycle of switches could lower losses. Applying the results in
Caplin and Dean (2015), an algorithm with an SBR has a cost-based explanation if and only
if it is loss-adapted.
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Caplin, Martin, and Marx (2022) show that if an algorithm is loss-adapted, then the
loss-difference matrix can be computed in polynomial time by applying the Floyd-Warshall
algorithm to the complete weighted directed graph with weight Dmn

0 on the directed edge
from node 1 ≤ m ≤ M to node 1 ≤ n ≤ M . Loss adaptedness is easily verified by the
Floyd-Warshall procedure: an algorithm is loss-adapted if and only if the candidate matrix
thus computed has a zero diagonal.

4.4 Qualifying Costs of Learning

Building on Caplin and Dean (2015), Caplin, Martin, and Marx (2022) show how to identify
all qualifying costs {Km}M

m=1 that rationalize the observed performance data according to
cost-based learning, in that costs are minimized by choosing performance data set P m at
cost Km when the loss function is Lm

Dmm
0 + Km ≤ Dmn

0 + Kn, (6)

for all 1 ≤ m, n ≤ M . For present purposes, a key observation is that, normalizing to
KM = 0, qualifying learning costs {Km}M

m=1 define a convex polyhedron in RM−1 with the
sign-inverted M -th row (−DM1, · · · , −DM(M−1)) and M -th column (D1M , · · · , D(M−1)M)
providing a subset of the extreme points. Furthermore, the average cost K̄ across normal-
izations is potentially appealing as a representative learning cost because it is “central,”
qualifying, and easy to compute.13

4.5 Application

The main products of our empirical application are estimates of the cross-loss and indirect
loss-difference matrices G and D introduced in the previous Subsection 4.3. To facilitate
their computation, we rely on the strong evidence for an SBR representation provided in
Subsection 3.3. This strong evidence of loss calibration allows us to compute cross-losses in
the G matrix, as given below, by directly recalibrating confidence scores to recover optimal
confidence scores across weights.14

13Denti (2022) provides a linear program that recovers the minimum learning cost function in which
not learning is free. For human decision-makers, it is natural to assume that inattention is free, but this
assumption is less natural for algorithms. Also, the minimal monotone learning cost might be quite different
from the rest of the qualifying learning costs, and so might not be very representative.

14In turn, this analytical mapping circumvents the need to bin data to recover posterior beliefs, avoiding
the finite sample issues associated therewith. Note, however, that the evidence of loss calibration still involved
binning the data into deciles.
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G = 0.01

P 0.7 P 0.9 P 0.99
3.750 3.752 3.762 L0.7

3.349 3.352 3.362 L0.9

1.365 1.366 1.370 L0.99

Recall that a necessary and sufficient condition for feasibility-based machine learning is
that the algorithm is strongly loss-adapted:

H0 : Dmn
0 ≡ Gmn − Gmm ≥ 0 for all 1 ≤ m, n ≤ M .

In order to statistically test this multivariate one-sided hypothesis, we first estimate a 9 × 9
covariance matrix for the cross-loss matrix G via 10,000 bootstrap samples from the data
set of ensemble predictions. We then compute p-values for the constituent univariate one-
sided Wald tests and apply a Bonferroni correction. Even using this conservative approach
to bounding the family-wise error rate, we reject the null hypothesis at standard levels of
significance with p = 0.0014. Further inspection of G reveals a systematic reason for why we
reject the null hypothesis: loss functions have a common preference for the performance data
from training with lower β. Thus, while the predictions for the loss function with weight
β = 0.7 are consistent with the algorithm being strongly loss-adapted, the predictions for
the loss functions with weight β = 0.9, 0.99 are not.

Our second question is whether the algorithm is loss-adapted, and thereby consistent
with cost-based learning:

H0 : Dmm ≥ 0 for all 1 ≤ m ≤ M .

The estimated D matrix, given below, satisfies this null hypothesis.

D = 0.15

P 0.7 P 0.9 P 0.99
0 2.548 12.467 L0.7

−2.529 0 9.938 L0.9

−6.993 −4.463 0 L0.99

We therefore fail to reject that the algorithm is consistent with cost-based learning at any
level of significance.15 Intuitively, a necessary condition for this is that, even though all loss
functions are minimized by switching to lower-β performance data, the gains from switching
are lower for higher-β loss functions.

15Pointwise consistency with loss-adaptedness is satisfied in 53% of our bootstrap samples.
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Figure 2: Recovery of cost polyhedron (red) when K0.99 is normalized to zero, with two
extreme points (triangles) and the representative cost (square) marked. The relationship
between K0.7 and K0.9 is nearly point identified by the data. Furthermore, any rationalizing
cost function has the feature that K0.99 ≤ K0.9 ≤ K0.7. For legibility, the axis values are
re-scaled by a factor of 105.

Because the algorithm in our application is consistent with cost-based learning as in
Section 4, we can also recover all qualifying costs. Normalizing K0.99 = 0, the cost polyhedron
for remaining costs K0.7 and K0.9 is illustrated in Figure 2. The figure also plots the pair of
extreme costs identified by D (triangles) and the representative cost (square). Given that
the value of performance data is decreasing in the β of the weighted loss function, the costs
of learning must also be decreasing in β in order to rationalize the observed choices.

Finally, we conclude with a brief observation on the power of our test for cost-based
learning: any reordering of chosen information structures would have resulted in a pointwise
rejection of pairwise loss-adaptedness, and therefore also of full loss-adaptedness. This simple
reasoning means that we failed to reject the null hypothesis in spite of — rather than in the
absence of — a powerful test.

5 Discussion

Machine learning is increasingly central both to the modern economy and to the field of
economics itself, where it has yielded improvements in policy-relevant predictions (Klein-
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berg, Ludwig, Mullainathan, and Obermeyer 2015), causal inference with high-dimensional
data (Belloni, Chernozhukov, and Hansen 2014, Athey 2017), and the analysis of rich new
sources of data (Gentzkow, Kelly, and Taddy 2019).16 Furthermore, machine learning has
been usefully applied in microeconomic theory, for example as a complement to economic
theory (Fudenberg and Liang 2019) and as a benchmark of model completeness (Fudenberg,
Kleinberg, Liang, and Mullainathan 2022).

However, state-of-the art machine learning algorithms lack what Lipton (2018) refers to
as algorithmic transparency: an understanding of why an algorithm chooses the prediction
model that it does. For example, standard OLS has high algorithmic transparency because
the resulting model is the unique solution to a convex optimization problem and has a closed-
form expression in terms of the training data. Because modern machine learning algorithms
lack such transparency, we propose two parsimonious as if representations of them. As
with human decision-making, having a parsimonious representation that reasonably approx-
imates machine learning behavior could enhance the theoretical and empirical analysis of
modern machine learning, and more generally, would open the door to applying many tools
of economics to better understand the latest approaches in machine learning.

Our analysis illustrates several advantages to applying models from information eco-
nomics and bounded rationality to machine decision makers. First, the machine’s loss func-
tion is a known and manipulable primitive of the decision problem, whereas a human’s utility
function must be inferred and is only indirectly manipulable. In direct contrast, Pattanayak
and Krishnamurthy (2021) assume that each algorithm has an unobservable “utility” function
that dictates the priorities it assigns to correct and incorrect predictions rather than treating
the algorithm’s objective as known and subject to external control as we do. A second advan-
tage to applying models from the information economics and bounded rationality literatures
to machine decision makers is that machines naturally generate state-dependent stochastic
choice data (Caplin and Martin 2015), which is particularly well-suited for analyzing such
models. Finally, machines may better approximate and emulate the rational paradigm. Hu-
man decisions contain strong and possibly immutable deviations from Bayesian updating
and optimal choice, as documented by an extensive literature in behavioral economics. For
example, a human may update beliefs in a biased manner, possibly for self-protective reasons.

While there are notable exceptions (e.g. Zhao, Ke, Wang, and Hsieh (2020) embed
behavioral forces in a neural net structure, and Danan, Gajdos, and Tallon (2020) apply
decision-theoretic approaches to recommendation systems), it is striking how little is known
about algorithms as decision makers. By providing a parsimonious as if representation for
opaque machine learners, we hope to open the door to applying the tools of economic analysis
to better understand these important learners.

16See Varian (2014), Mullainathan and Spiess (2017), Athey (2018), and Athey and Imbens (2019).
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A Application: Technical Details

Here we summarize the technical details of Section 2.2. Our model training procedure
essentially follows that of the CheXNeXt algorithm (Rajpurkar, Irvin, Ball, et al. 2018),
in which a deep neural network was trained using the ChestX-ray14 data set of Wang et
al. (2017). The ChestX-ray14 data set consists of 112,120 frontal chest X-rays that were
synthetically labeled with up to fourteen thoracic diseases. Our code for model training is
adapted from the publicly available CheXNeXt codebase of Rajpurkar, Irvin, Ball, et al.
(2018). However, we follow the earlier CheXNet implementation of Rajpurkar, Irvin, Zhu,
et al. (2017) in three ways. First, we restrict to the binary classification task of pneumonia
detection, where the labels of interest are pneumonia (y = 1) or not (y = 0). In addition,
we trade off a higher batch rate of 16 at the expense of a slightly smaller imaging scaling
size of 224 by 224 pixels (instead of a batch size of 8 and an image rescaling of 512 by 512
pixels, respectively). As in Rajpurkar, Irvin, Ball, et al. (2018), we adopt random horizontal
flipping, and normalize based on the mean and standard deviation of images in the ImageNet
data set (Deng et al. 2009). For each model, we train a 121-layer dense convolutional neural
network (DenseNet, Huang, Liu, Weinberger, and Maaten 2016) with weights of the network
initialized to those pretrained on ImageNet, using Adam with standard parameters 0.9 and
0.999 (Kingma and Ba 2014), and using batch normalization (Ioffe and Szegedy 2015). We
use an initial learning rate of 0.0001 that is decayed by a factor of 10 each time the validation
loss plateaus after an epoch, and we conduct early stopping based on validation loss. Each
model was trained using either an Nvidia Tesla V100 16GB GPU or an Nvidia Tesla A100
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40GB GPU on the Louisiana State University or Northwestern University high performance
computing clusters, respectively.

Given the inferential nature of our exercise, we deviate substantively from this prior
art in two ways. First, we induce variation in the cross-entropy loss function (1) across
multiple positive class weights β1 = 0.7, 0.9, 0.99, with 0.99 approximately equal to the
inverse probability class weights for pneumonia detection adopted in Rajpurkar, Irvin, Zhu,
et al. (2017). In addition to varying class weights, the main difference in our implementation
and the implementation of Rajpurkar, Irvin, Zhu, et al. (2017) are our data splits and
our recourse to additional ensemble methods to account for randomness in the training
procedure. This use of ensemble methods also likely explains why our confidence scores are
loss-calibrated, despite recent evidence that deep neural networks and cross-entropy loss may
inherently produce poor calibration because of overconfidence (Bai, Mei, Wang, and Xiong
2021, Liu et al. 2022). Specifically, we adopt a nested cross-validation approach where we
randomly split the data set into ten approximately equal folds and then iterate through 70-
20-10 train-validation-test splits (the split distribution also used in Wang et al. 2017 and a
secondary application of Rajpurkar, Irvin, Zhu, et al. 2017). We train a total of 480 models,
yielding an ensemble of 96 trained models for each observation in the data set where that
observation was in a test fold. The final score for each observation in the data set is then
obtained by averaging confidence scores across the observation’s ensemble. This procedure
is repeated on the same set of data splits for each weight β = 0.7, 0.9, 0.99 we consider.

B The Loss-Difference Matrix

B.1 Derivation Example

To illustrate, consider the following loss functions for binary predictions and outcomes:

L1 =

y = 0 y = 1( )
0 .5 a = 0
.5 0 a = 1

L2 =

y = 0 y = 1( )
0 .6 a = 0
.4 0 a = 1

and suppose an algorithm produces the following performance data:

P 1 =

y = 0 y = 1( )
.25 .1 a = 0
.25 .4 a = 1

P 2 =

y = 0 y = 1( )
.3 .2 a = 0
.2 .3 a = 1
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for k=1:M
for i=1:M

for j=1:M
if W(i,j)>W(i,k)+W(k,j)

W(i,j)=W(i,k)+W(k,j);
end

end
end

end

Figure 3: Using the Floyd–Warshall algorithm to generate the D matrix.

The cross-loss matrix can be computed as:

D0 =

P 1 P 2( )
.175 .2 L1

.16 .2 L2

Note that D0 contains two rows and columns with binary variation in the loss function
M = 2. Based on this cross-loss matrix, the loss-difference matrix D is

D =

P 1 P 2( )
−.015 .025 L1

−.04 −.015 L2

The off-diagonal elements D12 and D21 are both defined by the direct change in losses caused
by the corresponding switches of loss function. The diagonal elements D11 and D22 reflect
indirect paths. Starting from L2 the indirect path back to L2 involves first lowering losses
by 0.2 − 0.16 = 0.04 switching P 2 to P 1, then raising them by 0.2 − 0.175 = 0.025 switching
P 1 to P 2. Therefore D22 = −0.015 < 0; analogous logic explains why D11 = −0.015 < 0.

B.2 Computing the D Matrix with Floyd-Warshall

The Floyd-Warshall algorithm, which identifies the minimal cost of weighted paths between
nodes in a weighted directed graph, can be used to generate the D matrix when the algorithm
is loss-adapted. This algorithm, presented in Figure 3, is trivial to apply. It takes as an input
a directed graph with weight W (i, j) on the vertex from node i to node j and cycles through
these weights.
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Perhaps the most important point is that the well-known Floyd-Warshall algorithm is
polynomial: it has a complexity of O(V 3). To determine whether an algorithm is not loss-
adapted, it is sufficient to add a simple check at each step in the Floyd-Warshall algorithm.
If i = j and W (i, j) < 0, then the algorithm has identified a negative cycle, meaning that the
algorithm is not loss-adapted. Note that if the algorithm is not loss-adapted, the candidate
matrix computed by Floyd-Warshall need not coincide with the loss-difference matrix D. For
example, it does not coincide with the true D matrix computed in the previous derivation
(Appendix B.1); nevertheless, it generally recovers whether the algorithm is loss-adapted.

C An Illustrative Example of Cost Recovery

This appendix provides an alternative example and illustration of cost recovery. Consider
the following hypothetical D matrix in the case of three loss functions, M = 3.

D =

P 1 P 2 P 3
0 −2 1 L1

3 0 3 L2

1 −2 0 L3

(7)

The algorithm is consistent with cost-based machine learning because the diagonal elements
of D are zero. This raises the question of what we can recover about the algorithm’s costs
of learning.

(-1,2) and (1,3) are extreme points of the cost polyhedron normalized to K3 = 0. Quali-
fying costs satisfy Km − Kn ≤ Dmn, so

K1 − K2 ≤ −2;
K2 − K1 ≤ 3.

Combining yields K1 − K2 ∈ [−2, −3]. By analogous reasoning and the normalization
K3 = 0, we have K1 ∈ [−1, 1] and K2 ∈ [2, 3]. The resulting cost polyhedron is illustrated
in Figure 4. To illustrate the representative cost, consider again the previous example (7).
The average of the last row is −1

3 , and the average of the last column is 4
3 , so

D̄M∗ − D̄∗M

2 = −5
6

Thus,

K̄ = (K̄1, K̄2, K̄3) = (D̄1∗ − D̄∗1

2 + 5
6 ,

D̄2∗ − D̄∗2

2 + 5
6 , −5

6 + 5
6) = (0, 2.5, 0).

This representative cost is illustrated by the black square in Figure 4.
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Figure 4: Example 2-dimensional learning cost polyhedron with representative cost function.
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