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An often-told narrative depicts the rise of network science as a sudden event at the very end of the 

twentieth century. Yet, its intellectual roots extend much further back in time, beginning in 1735 

with Leonhard Euler’s Königsberg Bridges1 problem, which is often cited as an early abstraction 

anticipating graph theory. It continues through Santiago Ramón y Cajal’s 1894 discovery2, which 

established that the brain is composed of discrete cells—neurons—rather than continuous tissues, 

effectively framing it as a network. In the social sciences, it traces back to Jacob Moreno's 

sociograms3 of the 1930s and extends to a little-known but foundational manuscript written around 

1960 by Ithiel de Sola Pool and Manfred Kochen4—unpublished until 1978—that nonetheless 

inspired Stanley Milgram's 1967 small-world experiment5 and led to Mark Granovetter’s theories 

of weak ties6 in the 1970s. 

Many of these developments were deeply disciplinary, rooted in mathematics, biology and 

sociology, and were largely unaware of each other. By 2000, this 265-year history of disciplinary 

focus on networks had yielded less than 20,000 papers according to Microsoft Academic Graph 

(MAG7) (Figure 1). Most of these originated in two disjoint communities: graph theory and social 

network research (Figure 2a). According to Figure 1, interest in network research underwent a 

significant shift in the early 21st century, driven primarily by two publications. One of these built 

upon sociological foundations initially laid by de Sola Pool and Kochen, revitalizing decades-long 

discussions in sociology by rigorously examining the small-world property8. The other drew from 

statistical physics and random graph theory, to identify a novel, universal characteristic: the scale-

free structure inherent in real-world networks9. Together, these studies sparked a rapid, cross-

disciplinary surge of interest in network analysis, leading to approximately 192,000 publications 

by 2023 (Figure 1). Furthermore, they provided a unified theoretical framework that attracted 

scholars from diverse fields—including physics, computer science, biology, epidemiology, and 

other disciplines—many of whom had previously shown limited or no interest in connectivity and 

network theory. 

By 2005, when the U.S. National Academies of Science issued the report titled Network Science10, 

it was already documenting the presence of a robust interdisciplinary field with its own 

independent intellectual foundation. Twenty years later, network scientists are no longer seeking 

their place in the scientific canon, but relay on widespread institutional support: multiple 

international conference series, several specialized journals, PhD programs on several continents, 

and countless network-focused institutes and centers, along with dedicated support from funding 

agencies worldwide. This has also fueled a rapidly expanding ecosystem of subfields—ranging 

from network medicine and network neuroscience to network economics and network 

epidemiology—each with its own distinct intellectual pursuits and communities. 

Most chapters in this volume focus on social networks and their applications in social and 

economic systems. My goal is to offer a complementary perspective—one rooted in the physics 
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and the study of complex systems. In response to the request of the 2023 Nobel Symposium 

organizers, the following is not intended as a review of network science, as thorough overviews 

already exist in specialized journals11 12 13 14 monographs15 and textbooks16 17 18 19. Rather, I offer 

an intentionally subjective account of the key conceptual forces that shaped the field, focusing on 

foundational ideas and illustrating how they connect with the broader effort to understand complex 

systems. 

Early Motivations: Percolation and Underground Water Flows 

I can date my interest in networks with unusual precision—it began in December 1994, a few 

months into my brief postdoctoral appointment in the Physics Division at IBM’s T. J. Watson 

Research Center. As the winter holidays brought a predictable slowdown to life at Watson, I 

decided to use the break to learn more about my new environment. At the time, IBM was 

synonymous with computing, so I visited the Watson library in search of an introduction to 

computer science. I left with a book that covered a wide range of topics, from algorithms to 

Boolean logic and NP-completeness. 

One chapter focusing on the minimum spanning tree problem caught my attention. I realized that 

Kruskal's algorithm, used by both graph theorists and engineers to identify the optimal tree in a 

network, was equivalent to a well-known model in statistical physics, invasion percolation, which 

describes flow in porous media. That insight led to my first network paper, submitted on February 

24, 1995, to Physical Review Letters, where I used a network perspective to demonstrate the 

equivalence of two much-studied problems in statistical physics and computer science20. 

Over the next few months, I worked through Béla Bollobás’ classic text on random graphs21, which 

introduced me to the foundational work of Erdős and Rényi22. I spent the remainder of my time at 

IBM finishing a second paper, titled Dynamics of Random Networks: Connectivity and First-Order 

Phase Transitions23, examining how network topology affects system behavior and dynamics. The 

central observation was simple: if one alters the average degree of a random network, the Boolean 

system defined on that network undergoes a dynamical phase transition. Its implications were 

deeper—it pointed toward a question that only became a subject of inquiry a decade later: how the 

structure of a network defines its dynamics. 

I posted the paper on arXiv in November 1995, after it was rejected by four journals—Nature, 

Science, Physical Review Letters, and Europhysics Letters. Despite the many rejections, it marked 

a turning point in my thinking, showing me that networks are not just an abstraction or a way to 

document the dependencies within a complex system, but that changes in the network can 

fundamentally alter a system’s behavior. That realization solidified my interests in the topic, and 

from that moment on, networks became the primary focus of my research. 

Reconciling Network Perspectives: From Infrastructure to Social Systems 

What distinguishes physics from mathematics is its empirical foundation—the need to find 

experimental evidence to support or falsify mathematical theories. So, while I was struggling to 

publish my second network paper, I became increasingly convinced that the next step had to be 

empirical. I must collect data on real networks. 
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This was early 1996—five years after Tim Berners-Lee released the first web protocols, and two 

years before Google was founded. The Web was just beginning to take shape. An odd assortment 

of academic search engines—names like JumpStation, RBSE Spider, and WebCrawler—were 

attempting to map its growing structure. In February 1996, I emailed several researchers engaged 

in developing these early crawlers, asking for a sample of their data. But no one replied. Progress 

stalled until 1998, when Hawoong Jeong joined my group as a postdoc. His knowledge of 

computing was remarkable, so I asked if he could build a crawler—a robot that could map the 

Web. A few weeks later, Hawoong's crawler was online, and I could return to the problem I was 

forced to abandon two years earlier: examining the network behind the World Wide Web (WWW). 

My goal was to answer a foundational question: Is the WWW a single connected network, or a 

collection of isolated clusters? A random network undergoes a phase transition when its link 

density crosses a critical threshold, forming a giant connected component out of many small, 

disconnected parts. If the WWW were random, its degree distribution should follow a Poisson 

distribution, meaning that most nodes have comparable degree, in the close vicinity of the average 

degree, ⟨k⟩. Then all we needed was the critical average degree, ⟨k⟩, to determine if the Web had 

crossed the critical threshold. 

Yet, once the data arrived, the premise of our approach fell apart: the empirically observed degree 

distribution did not follow the Poisson distribution predicted by random network theory. Instead, 

it was well-approximated by a power law, or a fat-tailed distribution (Figure 2). This meant that 

while most webpages had very few links, a few had a vast number—functioning as hubs. Such 

extreme outliers were mathematically impossible in a random graph. 

For someone trained in statistical physics, the presence of a power law carried deep significance. 

Indeed, power-law distributions often emerge at the critical point of phase transitions, describing 

phenomena ranging from magnetization to liquid condensation. Physicists have developed both 

the theoretical tools and the experimental intuition to study such behavior—backed by decades of 

evidence and several Nobel Prizes. Thus, the discovery that the Web is characterized by a power-

law degree distribution was not only highly unexpected but also placed networks squarely within 

the realm of statistical physics, offering a rich analytical and numerical tool set to explore this 

emerging structure. 

Excited by this development, we soon submitted the discovery or the power law degree distribution 

to Nature24. We understood, however, that this was merely an empirical observation—an 

experiment, if you will—that nevertheless revealed something truly unexpected about real 

networks. We still lacked the crucial next step physicists typically demand: a theoretical 

framework and a mechanism to explain the origin of the observed power laws. 

Universality 

Social scientists often focus on the particular. When mapping social ties, they pay close attention 

to cultural rituals, status hierarchies, and historical legacies—factors that help explain why certain 

connections form or dissolve. For example, a school’s friendship network may cluster around race, 

gender, or extracurricular interests, while in a neighborhood, class distinctions or shared linguistic 

practices can create “micro-partitions” that influence patterns of connectivity. 
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Physicists, too, recognize that such differences lead to varied outcomes. No one expects the 

friendship network in a low-income urban setting to mirror the networks observed in protein 

interactions or the arrangement of atoms in amorphous materials. To the contrary, any similarity 

would be unexpected.  Consequently, a central objective in physics is to identify evidence of 

universality—patterns or laws that hold despite these obvious local and contextual differences. If 

such universality persists, it indicates deep, unifying principles—potentially even fundamental 

laws of nature—underlying what might otherwise appear to be unrelated phenomena. 

From this perspective, the discovery that the World Wide Web follows a power-law degree 

distribution was initially regarded as a quirk of the medium—perhaps a unique feature of this new 

information network. However, that view changed once we and others observed similar patterns 

across many different real systems. Reports of the scale-free property—a term originating in 

statistical physics to describe power-law distributions—began to surface elsewhere, suggesting the 

possibility that it might indeed be universal. Let me list a few examples. 

Infrastructural Systems (Internet): Unlike the World Wide Web—an information network 

where nodes represent documents and links are URLs—the Internet is an infrastructural network 

composed of routers as nodes, connected by physical links such as copper and optical cables or 

wireless connections. Despite this distinction, Faloutsos, Faloutsos, and Faloutsos found that the 

Internet’s degree distribution also follows a power law25. 

Large Social Networks: With the rise of online social platforms, researchers have started to gain 

access to maps of large social networks. Across a wide range of datasets, from follower networks 

on Twitter and friendship networks on Facebook, a consistent pattern has emerged: the degree 

distribution is fat-tailed and well-approximated by a power law26 27. Notably, while most users 

have only a few connections, a few individuals serve as highly connected hubs. 

Collaboration and Citation Networks: In science collaboration networks, nodes represent 

scientists, linked to those they have co-authored papers with. In citation networks, links represent 

citations from one paper to another. Both types of networks, widely studied in both scientometrics 

and the science-of-science community, consistently display fat-tailed degree distributions. The 

presence of such scale-free features indicates that while most scientists have only a few 

collaborators, a few gather an exceptional number of connections28 29; similarly, while most papers 

receive few (or no) citations, a few prominent discoveries become hubs of the citation network30 
31. 

Biological Systems: The networks discussed so far are the product of human action or design, 

raising the possibility that their observed scale-free architecture stem from intentional choices. To 

determine whether such features require human intervention, we shifted our attention to biological 

systems, where networks arise through evolution rather than human design or individual choices. 

The first discovery came from metabolic networks, where nodes represent metabolites and directed 

edges represent enzyme-catalyzed reactions. In our analysis of 43 species—spanning eukaryotes, 

bacteria, and archaea—we found that while most metabolites participate in only one or two 

reactions, a small subset (such as pyruvate and coenzyme A) act as metabolic hubs32. We observed 

a similar pattern in protein–protein interaction (PPI) networks, which capture the direct binding 
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among proteins33. Across multiple eukaryotic species, including humans, both metabolic and PPI 

networks exhibit scale-free properties. 

The recurring appearance of scale-free networks across a wide range of domains—digital, 

infrastructural, social, and biological—spanning vastly different length scales and time frames, 

suggests a striking form of universality. Their emergence in biological systems with a three-

billion-year evolutionary history indicates that hubs and power-law topologies predate humans and 

therefore do not depend on human intervention. This observation raised the possibility of a shared 

underlying mechanism that drives the formation of hubs and high heterogeneity in networks, 

regardless of their origin. It also pointed to a deeper question: might there exist mechanisms 

governing network evolution that transcend specific systems? In other words, these findings 

suggest that networks may be governed by generic principles—rules independent of any system’s 

form or function. The challenge was thus to identify the mechanisms responsible for these laws 

and to develop a suitable mathematical framework to describe them. 

The Origins of the Scale-Free Property  

From a statistical physics perspective, the observation that the World Wide Web obeys a power-

law degree distribution was an experimental discovery: we had empirical evidence of hubs and 

power law degree distributions, first on the WWW and then in multiple other networks, but we 

still lacked a theoretical explanation for their origin. This prompted Réka Albert and me to ask the 

question: what is missing in the Erdős–Rényi model of random networks that prevents the 

emergence of hubs? 

This inquiry led us to identify two assumptions embedded in the random network paradigm that 

do not hold in real systems. First, the Erdős–Rényi model assumes that links are added between 

nodes within a system of fixed size—that is, the number of nodes remains constant during the 

network’s formation. In contrast, real networks—such as the World Wide Web, citation networks, 

or social systems—exhibit continuous growth, typically through the addition of new nodes. This 

occurs, for example, when new web pages are created and linked to existing ones, or when newly 

published scientific papers cite earlier work. 

Second, the attachment of new links in real systems is not uniform or random, as assumed by the 

Erdős–Rényi model. Instead, there is a systematic bias: nodes that already have many links are 

more likely to acquire additional ones. Indeed, we are more likely to encounter a highly connected 

webpage or a highly cited paper, and since we tend to link to or cite what we know, the process 

inherently favors well-connected nodes. We termed this mechanism preferential attachment, and 

formalized it mathematically by assuming that the probability Π(kᵢ) that a new node connects to 

an existing node i is proportional to its degree kᵢ9 

Π(𝑘𝑖) =
𝑘𝑖

∑ 𝑘𝑗𝑗
 

As we showed in 1999, these two mechanisms—growth combined with preferential attachment—

naturally lead to networks that develop hubs and follow a power-law degree distribution9 34. In the 

model, the more connections a node already has, the faster it accumulates new ones—a “rich-get-
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richer” phenomenon that parallels what Robert Merton called35 the “Matthew Effect.” The model 

offered a testable mechanism to explain the universality of scale-free structures across many real 

networks. Equally important, it provided an analytical framework—based on standard tools of 

statistical physics, like continuum theory and rate equations—that enabled us to predict the 

evolution of multiple network characteristics analytically. Shortly thereafter, mathematicians 

joined the effort, offering exact proofs for the emergence of power laws in the model36. 

In the scale-free model the power law emerges from the combined effects of growth and 

preferential attachment. The fact that real networks are the result of a growth process was self-

evident—we can witness networks expanding over time through the addition of new nodes. 

However, for a while preferential attachment remained only a hypothesis, a mathematical necessity 

to explain the empirically observed power laws. While physics has a long tradition of developing 

mathematical formalisms that successfully account for empirical data, even when their underlying 

mechanisms are not immediately understood, we recognized that preferential attachment could not 

remain a purely theoretical construct. To complete the scale-free paradigm, preferential attachment 

must be measurable, testable, and ultimately falsifiable. 

Soon we learned that the presence or absence of preferential attachment can indeed be decided in 

real networks for which we have temporal data. For example, if we have access to two snapshots 

of a network—taken at times t and t+Δt, we can measure the probability Π(k) that a node with 

degree k acquires a new link. If preferential attachment is present, Π(k) must increase with k; in 

contrast, if link formation is purely random, then Π(k) should be independent of k. 

Such temporal network data started to become available around 2002, allowing us to measure Π(k) 

in multiple real systems37, from collaboration to citation networks, and even in protein 

interactions38.  These measurements indicated that in real networks, the attachment probability 

Π(k) increases with node degree, confirming the presence of preferential attachment. These 

findings—and many subsequent studies—demonstrated that preferential attachment is not merely 

a theoretical construct, but a measurable phenomenon supported by empirical data. These results 

also helped resolve a long-standing question about whether alternative or unknown mechanisms 

might be needed to explain the scale-free property. On one hand, there now existed a robust 

analytical framework showing how growth and preferential attachment together give rise to the 

scale-free state, accurately predicting network structures observed in data. On the other hand, the 

mechanism of preferential attachment could now be empirically detected and quantified in real 

systems, leaving little room for alternative explanations. 

Evolving Networks 

The scale-free model was never intended as a direct representation of any specific real system, 

such as the World Wide Web or a cellular network. Rather, in the tradition of physics, which often 

relies on idealized models—such as the Ising model for magnetism, the harmonic oscillator for 

molecular vibrations, or the hydrogen atom for quantum mechanics—the scale-free model aimed 

to capture the essential mechanisms responsible for the emergence of hubs and power laws. Real 

networks are shaped by a broad range of additional processes that were purposefully excluded 

from the model—for example, competition between nodes (formally captured by node fitness), 

node and link deletion, and node aging, to name only a few. These and other phenomena that 
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influence how networks evolve—and ultimately shape their topology—have motivated the 

development of a general theory of evolving networks, capable of analytically predicting the 

impact of each elementary process on network structure. 

The results revealed that many of these processes can alter the degree exponent, can induce low-

degree saturation, and predicted multiple testable deviations from a simple power law. The key 

insight is that, to understand the topology of a network, one must first map out the local processes 

that define the placement of nodes and links. In this view, network topology is not the input—it is 

the consequence. 

Degree Heterogeneity and its Consequences 

A central question in network science is whether the presence of a certain structural features, like 

power-law degree distribution, changes a system's behavior. Early insights into this question came 

from the study of network robustness, asking how many nodes must fail before a network fragment 

into isolated clusters39. For instance, how many router outages do we need to break the Internet 

into mutually unreachable subnetworks? The framework for answering this question lies in 

percolation theory, a branch of statistical physics40. Percolation theory predicts that randomly 

removing nodes or edges can induce a phase transition from a single connected component to a 

fragmented network of disconnected clusters. However, as we found in 2000, this transition 

effectively disappears in scale-free networks39. Rather, networks with a power-law degree 

distribution exhibit extraordinary robustness to random node failure—an attribute not shared by 

random networks. Mathematically, the critical threshold for network fragmentation depends on the 

second moment of the degree distribution, ⟨k²⟩, a measure of degree heterogeneity. Specifically, 

when a fraction f of nodes is randomly removed from a network, the system undergoes 

fragmentation at a critical threshold given by41 

𝑓𝑐 = 1 −
1

〈𝑘2〉

〈𝑘〉
−1

    (1) 

where ⟨k⟩ is the average degree and ⟨k²⟩ is the second moment of the degree distribution P(k). In 

scale-free networks, this second moment depends on the size of the network (number of nodes N), 

as 

〈𝑘2〉

〈𝑘〉
~𝑁

3−𝛾

𝛾−1    (2) 

In other words, for large N, the second moment diverges. Consequently, the ratio ⟨k²⟩/⟨k⟩ increases, 

causing f꜀ in (1) to approach 1. In practical terms, this means that a network with a large ⟨k²⟩ 
remains intact under random failures unless nearly all nodes are removed.  

At the same time, this very heterogeneity renders scale-free networks highly vulnerable to targeted 

attacks39 42. Removing just a few hubs—nodes with an unusually high number of connections—

can rapidly dismantle the network, fragmenting it into isolated pieces. This dual behavior became 

known as the “Achilles’ heel” property39: scale-free networks are highly resilient to random 

failures but fragile when their hubs are deliberately targeted. 



8 
 

We soon learned that this dependence on network heterogeneity is not limited to network 

robustness. Indeed, a dependence on ⟨k²⟩ was shown to emerge in epidemic models capturing the 

spread of a pathogen on the contact network of individuals. The epidemic threshold, defined as the 

critical transmission rate λ꜀ below which an infection cannot persist, is given by43 

𝜆𝑐 =
〈𝑘2〉

〈𝑘〉
   (3)       

Hence, as the second moment ⟨k²⟩ increases, λ꜀ converges to zero. This implies that in 

heterogeneous networks even a weakly transmissible pathogen can spread, explaining why real 

contact and sexual networks are particularly susceptible to epidemic outbreaks, from SARS to 

HIV44.An analogous relationship appears in synchronization phenomena, relevant to systems as 

diverse as magnetic oscillators, power grids, neural circuits, and synchronized fireflies45 46 47 48. In 

such systems, the threshold coupling strength required to achieve global synchrony scales as49 50 
51 

𝐽𝑐 = 2√
2

𝜋

〈𝑘〉2

〈𝑘2〉
   (4) 

Once again, a large second moment lowers the coupling threshold, promoting more rapid or robust 

global coordination. 

Taken together, these findings underscore the critical role of degree heterogeneity—a hallmark of 

scale-free networks—in shaping network behavior and dynamics. Notably, they reveal that 

observing a statistically rigorous power-law distribution is not a prerequisite for detecting the 

effects of heterogeneity. Analytical results indicate that the magnitude of the second moment, a 

robust and easily measurable parameter, is sufficient to capture these effects. 

This is particularly important because, as discussed above, continuum models predict that in real 

systems, a pure power-law behavior is inevitably modified by various processes—just as most 

atoms contain more than a single electron, rendering the simple Bohr model insufficient and 

requiring more advanced quantum mechanical descriptions to accurately compute orbitals. 

Consequently, statistical exercises that aim to fit ideal power laws are expected to fail unless they 

test the precise (and often rather complex) functional form of the degree distribution predicted by 

theoretical models. However, Eqs. (1), (3), and (4) indicate that such precise fits are not required 

to capture the true implications of the scale-free state: a high degree of heterogeneity—quantified 

by the second moment—is sufficient to reproduce the key features associated with scale-free 

networks. 

The results discussed so far do not give justice to the breath of theoretical developments that 

network science has offered in the past decades. The field has seen remarkable advances across 

many directions, from the characterization and detection of network communities52 53 54 55, the 

identification of network motifs56 , modeling degree assortativity57, the development of multiplex 

and multilayer systems58,59 60 59 , temporal and dynamic networks61 62, higher-order interactions 

and hypergraphs63 64 65, controllability and observability of networked systems66 67 68 69 70 67, 

network inference and reconstruction methods58 71, network embeddings and graph neural 
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networks72, resilience73 and percolation in interdependent networks, resulting in a family of 

network growth models that offer accurate predictions for the structure and the dynamics of a wide 

range of real-world systems.   

Applications across disciplines have been equally striking. The emergence of network 

neuroscience has enabled the mapping of functional and structural brain networks, providing 

insights into cognition, disease and brain control74 75 76. Network medicine has developed new 

tools to understand the molecular underpinnings of complex diseases77, and to repurpose drugs 

based on network proximity in protein interaction maps78 79. Network science has helped transform 

our understanding of ecosystems80, economic and social development81 82 83 , and the dynamics of 

scientific innovation84, illustrating its remarkable capacity to unify insights across diverse systems. 

Unable to do justice to all these developments, I will next focus on a defining feature of network 

science: its falsifiability. This principle, central to the physical sciences, demands that theoretical 

claims yield testable predictions—subject to empirical or experimental validation or refutation. In 

network science, models are not merely descriptive; they are predictive, offering quantitative 

forecasts of system behavior. Over the past decade, many of these predictions have been 

experimentally tested—and in several cases, have given rise to practical applications and 

technologies now in routine use. 

Network Epidemiology: From Theory to Practice 

Traditional epidemic models assumed homogeneous mixing—treating all individuals as having 

equal chances of encountering a pathogen. In reality, however, disease spreads across 

heterogeneous contact networks, where a small number of highly connected individuals—hubs or 

superspreaders—play a disproportionate role in transmission dynamics. For decades, 

epidemiology lacked the tools to systematically account for such structural complexity. 

A conceptual breakthrough came with the work of Pastor-Satorras and Vespignani43, who 

reformulated the classical epidemic models to incorporate network topology. Over the next two 

decades, Vespignani transformed these theoretical advances into predictive frameworks that 

integrate real-time transportation and mobility data to forecast the spread of emerging pathogens. 

The major test came during the 2009 H1N1 pandemic85, marking the first instance in which global 

disease spread was predicted months in advance using network-based simulations.  

By the time COVID-19 emerged, these tools were fully operational, allowing network scientists 

and physicists, such as Alessandro Vespignani (US, Italy), Vittoria Colizza (France), and Dirk 

Brockmann (Germany) to take leading roles in advising their respective governments. They 

employed network-based models to forecast infection trajectories and evaluate the effectiveness 

of intervention strategies. Their predictions shaped policies on travel restrictions, vaccine 

prioritization, and public health interventions86. 

Importantly, these were not retrospective fits, but forward-looking forecasts grounded in the real-

time evolution of the pandemic—predictions that were successfully validated as events unfolded. 

And the utility of network epidemiology has not ended with COVID-19. The same models are now 

used to track and anticipate the spread of Zika, Ebola, Mpox, Marburg, and other emerging threats. 
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In doing so, they demonstrate that network epidemiology is not a one-time success, but a 

generalizable and testable framework—one that builds on network science, to integrate data and 

public health practice in real time. It has become an indispensable, routinely used tool in guiding 

health interventions when confronting emerging pathogens. 

Network Control: Predicting and Experimentally Falsifying Neuronal Roles 

One of the clearest experimental demonstrations of the falsifiability of network theory comes from 

its application to biological systems via network control. Network control poses a fundamental 

question: given the architecture of a network and the dynamics it supports, can we predict where—

and how—to intervene to steer the system toward a desired state? Introduced in 201166, the 

framework of network control has since spurred broad developments across both network science 

and control theory68 69 70 87. Its experimental validation arrived in 2017 through a precise inquiry: 

given a fully mapped neural system, can network control predict which neurons are required for a 

specific behavior, such as locomotion? 

The test case was Caenorhabditis elegans, at that time the only organism with a complete 

connectome. Over decades, ablation studies had identified approximately twelve neuronal classes 

as essential for movement. Remarkably, network control theory—starting only from the network 

structure—predicted precisely the same set of twelve neuronal classes, recovering 30 years of 

experimental work. More significantly, the theory identified the neuron PDB, previously 

uncharacterized in this context, as critical for locomotion. This was a falsifiable, forward-looking 

prediction. When PDB was experimentally ablated to test the network control predictions, the 

worm exhibited a collapse in dorsoventral coordination, confirming the neuron’s essential role88. 

The model also made finer predictions. Within known neuronal classes, like the GABAergic motor 

neurons DD, it predicted that specific members—such as DD04 and DD05—would impair 

posterior body movement if individually ablated, but other members of the same family, like DD02 

and DD03—should not have an effect, serving as controls. These predictions, too, were confirmed 

experimentally. These experiments demonstrated that network science can produce accurate, 

experimentally falsifiable predictions not only about the global state of a system, but also about 

the functional and mechanistic roles of individual neurons. 

Interdependent Networks: Falsifying Theory through Experiment 

A major theoretical advance in network science concerns interdependent networks—systems in 

which the functionality of one network depends on another58 59. A 2010 study demonstrated that 

even small failures in one layer of such systems can cascade catastrophically through others, 

prompting a wave of research into the dynamics of interdependence58. In contrast to isolated 

networks, which often become more robust as their degree distribution becomes broader, 

interdependent networks exhibit the opposite trend: increasing heterogeneity leads to greater 

fragility, as tightly coupled dependencies create vulnerability to cascading failures. 

For years, these predictions remained purely theoretical, supported only by numerical simulations, 

as no experimental platform could replicate the necessary bidirectional dependencies. This is not 

to say that we lack systems that behave like interconnected networks—many from technological 
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to environmental systems do. We just lacked the possibility to do controlled experiments on these. 

Recently, however, Bonamassa et al.89 built a system composed of two disordered superconducting 

films separated by an insulating layer. Large electrical currents introduced Joule heating, which 

coupled the layers via electrothermal feedback—creating a real-world mechanism for link 

interdependency. 

The experimental results aligned strikingly with theory: cascading failures, mutual phase 

transitions, and critical phenomena emerged exactly as predicted. More importantly, the study 

showed that failures propagate not only through structural dependencies, but also through adaptive, 

feedback-driven dynamics—expanding the theoretical framework to include more realistic modes 

of interdependence. With that, for the first time, cascading interdependent collapse was observed 

in a material system, offering experimental validation of more than a decade of work needed to 

develop the underlying theoretical framework. 

Symmetry Breaking in Network Dynamics: Theory Meets Experiment 

 

A surprising theoretical prediction in network dynamics emerged from the study of oscillator 

networks: symmetry in structure does not guarantee symmetry in behavior, and conversely, 

asymmetric networks can sometimes exhibit perfectly symmetric dynamics. This phenomenon, 

known as converse symmetry breaking (CSB), was first predicted by Nishikawa and Motter46. 

Their work demonstrated that network topology alone does not dictate synchronization patterns, 

challenging long-standing assumptions about structural determinism in complex systems. 

The prediction remained theoretical until it was experimentally tested in 2020. Molnar et al.90 

engineered networks of coupled optoelectronic oscillators, allowing precise manipulation of both 

topology and coupling. They confirmed that structurally asymmetric networks could sustain 

symmetric synchronous states—validating the central claim of CSB. The results offered rare 

experimental evidence for a deep theoretical principle, also revealing new pathways to design and 

control symmetry in real-world networks. 

Experimental Validation of Network-Based Drug Repurposing 

The COVID-19 pandemic provided another unprecedented opportunity to experimentally falsify 

a central claim of network science—its ability to predict drug repurposing opportunities. With no 

time for de novo drug development in 2000, the medical community urgently needed to identify 

existing drugs that might disrupt host–virus interactions. The first network-based drug repurposing 

methodology had emerged several years prior to the pandemic91, built on the insight that only 

drugs targeting the immediate network vicinity of a disease module are likely to exert therapeutic 

effects. Initial validation drew on a healthcare database covering over 220 million patients, where 

pharmacoepidemiologic analyses showed that the use of hydroxychloroquine, predicted to target 

the coronary artery disease (CAD) module, was indeed associated with decreased CAD risk78.  

COVID-19 introduced a compelling testbed for direct, falsifiable predictions. Faced with the 

urgent need to evaluate thousands of existing compounds, in March 2020, we applied a network-

based drug repurposing approach to predict the efficacy of all approved drugs against COVID-
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1979. The study integrated network diffusion, network proximity, and AI-based modeling to 

computationally screen 6,340 compounds, ranking them based on their predicted ability to disrupt 

the host–virus interaction network. 

Following these predictions, 918 drugs were experimentally tested on SARS-CoV-2–infected cell 

lines (a number later extended to over 6,000 drugs92). The outcome was striking: 62% of the top-

ranked compounds inhibited viral infection, compared to a mere 0.8% hit rate observed in 

unguided high-throughput screens. The study did more than offer a promising shortlist during a 

global emergency—it provided direct, falsifiable, and experimentally confirmed validation of a 

network-based prediction. It also underscored where networks models excel --- not by identifying 

compounds that bind directly to viral proteins, which are always potential drug target candidates—

yet only one of the 78 drugs that worked were in this category. Rather, network-based predictions 

were able to identify the 77 so-called network drugs, that successfully modulated the subcellular 

networks to reach the desired infection outcomes. 

Network Science in the Clinic: PrismRA and Personalized Medicine 

 

Network science has also entered clinical practice. A notable example is PrismRA, a blood-based 

diagnostic test rooted in network-based analysis of the immune system.  Developed using the 

network medicine toolset created in our lab93, PrismRA is designed to guide treatment decisions 

for rheumatoid arthritis (RA), a chronic autoimmune disorder affecting more than 18 million 

people worldwide. While TNF-inhibitor therapies remain the most prescribed biologics for RA, 

only about 30% of patients respond, and it typically takes six months or more to assess their 

efficacy. 

PrismRA addresses this challenge by predicting, prior to treatment, whether a patient is unlikely 

to benefit from TNF inhibitors. It does so through a blood test that captures the activity of key 

proteins within the disease-relevant subnetworks known as the disease module77 and infer the 

drug’s ability to perturb the state of the module in a patient. The diagnostic allows physicians to 

bypass ineffective therapies and consider alternative treatments earlier, resulting in reduced time 

to care, lower healthcare costs, and decreased patient burden94. To date, more than thirty thousand 

patients have benefited from this network-informed diagnostic tool. What began as an attempt to 

apply network science to medicine has now become part of routine clinical decision-making, 

demonstrating how abstract network science models can yield tangible improvements in patient 

outcomes. 

Economic Network Analysis: Mapping the Path to Development 

 

Network science has also proven valuable in shaping economic strategy and development policy, 

offering a data-driven, falsifiable framework for understanding how countries diversify and grow. 

There are numerous examples of such applications, several of which are detailed in this book. 

Here, I will focus on one that I was personally involved in: in collaboration with Ricardo 

Hausmann and César Hidalgo, we applied network methods to analyze the bipartite network 

linking countries to the products they export competitively95. The central insight from this 
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analysis—the foundation of the "Product Space"—is path dependency: nations are more likely to 

succeed in industries that are closely related to their current capabilities. For example, a transition 

from growing apples to cultivating pears is far more feasible than a leap to semiconductor 

fabrication. 

Today, network-inspired approaches to economic development, such as economic complexity and 

the product space, are increasingly informing industrial development strategies adopted by 

governments worldwide. Malaysia’s New Industrial Master Plan1, for instance, explicitly defines 

economic complexity as the core objective of the country’s industrial strategy, while Mexico’s 

Ministry of Economy has integrated economic complexity principles as a foundational element in 

the creation of its national data dissemination platform, DataMexico.org. In Europe, the report on 

competitiveness led by Mario Draghi employs economic complexity metrics to compare the 

technological positioning of Europe, the United States, and China, underscoring the strategic value 

of these tools in guiding policy97. Collectively, such developments reflect the incorporation of 

network-based tools into the standard analytical and decision-making toolkit used by policymakers 

confronting the challenges of industrial development in an increasingly complex and 

interconnected global economy. 

Conclusions 

Across diverse fields—epidemics, brain science, materials science, clinical diagnostics, and 

antiviral discovery—network science has passed a critical test: its predictions are falsifiable and 

withstand experimental scrutiny. What began for me three decades ago as a curiosity-driven 

framework, inspired by statistical physics and graph theory, has matured into a robust scientific 

discipline with profound impact across the physical sciences, biology, medicine, and public health. 

This trajectory echoes some of the most transformative advances in physics, whose true power was 

realized far beyond their original domain. Electron microscopy revolutionized cell biology and 

virology. Magnetic resonance became the foundation of MRI and reshaped diagnostic medicine. 

Statistical mechanics laid the foundations for modern machine learning and Artificial Intelligence. 

These examples underscore a fundamental truth: physics is not defined by what it studies, but by 

the universality of the frameworks it offers. In this spirit, network science has emerged as a highly 

interdisciplinary heir of both physical sciences and mathematics, with applications spanning a wide 

range of inquiry and technologies. 

What still puzzles me is how completely disjoint the communities thinking about networks were 

before 1999. As Figure 2a shows, in 1997 the landscape was dominated by two isolated 

communities. One was a small social network community, with intellectual roots stretching back 

to the 1940s. The other was a graph-theoretic community, focused on random graphs. Before 2000, 

sociology papers rarely engaged with the growing body of mathematical advances on graph theory. 

Likewise, graph theorists made no reference to the social network literature—not even passing 

acknowledgments of small-world ideas. These disciplines existed in parallel, non-communicating 

intellectual islands. 

 
1 Malaysian Government, “The New Industrial Master Plan (NIMP 2030).” 
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The emergence of network science around 2000 dramatically reshaped the intellectual landscape. 

By 2007 the scientific community had attracted a highly interdisciplinary cohort—physicists, 

computer scientists, applied mathematicians, and biologists—who bridged the longstanding divide 

between formal graph theory and social network research (Figure 2b). This convergence 

established a shared intellectual foundation and a common canon. Network science served as a 

unifying framework—one that not only integrated the tools and insights of both graph theory and 

social networks, but also introduced new concepts grounded in statistical physics and computer 

science. 

This revolution has profoundly changed social network analysis (SNA) as well. The field has its 

roots in sociology and anthropology—where it served as a methodological tool for mapping and 

interpreting social structures—and it remained, for decades, largely confined within the realm of 

these disciplines. The same is true for graph theory: it was, for much of its history, a deeply 

disciplinary subject practiced and followed primarily by mathematicians. 

The reach and influence of both social network analysis and graph theory expanded dramatically 

with the emergence of network science. Physicists and computer scientists—often ignorant of the 

traditions and the internal motivations of social science and graph theory—pragmatically 

integrated the tools of both disciplines and shaped network science into a field with its own 

intellectual identity, focused research questions, robust theoretical and computational foundations 

and empirical framework. Armed with this portable toolkit, disciplines that had previously shown 

limited interest in networks—including economics, neuroscience, political science, epidemiology, 

and biology—suddenly acquired the means to pursue a network-based inquiry, reframing 

foundational questions through the lens of connectivity and structure. 

This transition is well documented through bibliometric analyses. As shown in Figure 1, the 

number of publications related to network science have surged dramatically around 2000—far 

outpacing the growth trajectories of both social network analysis (SNA) and graph theory. Yet the 

rise of network science also reshaped the trajectories of its intellectual predecessors, catalyzing 

their renewed growth. This is most clearly reflected in the citation patterns of two foundational 

works: Erdős and Rényi’s seminal paper on random graphs, central to graph theory, and 

Granovetter’s classic study on the strength of weak ties, foundational to SNA (Figure 5). For 

decades, each received steady but discipline-specific attention—Erdős and Rényi’s work averaged 

about ten citations per year, primarily from mathematics, while Granovetter’s paper drew around 

one hundred citations annually before 2000, mainly from sociology and economics. Following the 

emergence of network science, however, both papers experienced a dramatic rise in citations.  This 

surge reflects the dynamic feedback loop emerged between the traditions of SNA and the 

expanding domain of network science. Classical SNA constructs—including centrality, 

homophily, and structural holes—were extended and formalized through the tools of graph theory 

and statistical mechanics. The theoretical agenda of network science increasingly incorporated 

sociological concerns such as diffusion, community structure, and collective behavior. This mutual 

enrichment spurred methodological innovations, including community detection algorithms, 

models of multiplex and temporal networks, and computational approaches to social contagion. 

By 2023, the transformation was both profound and expansive (Figure 4). MAG records over 

192,000 papers labeled as network-related—reflecting not just steady growth, but remarkable 
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diversification. Increasing specialization has also led to the emergence of new subfields, appearing 

as distinct professional modules on the co-citation graphs of Figure 4—network neuroscience, 

network medicine, network epidemiology, machine learning, economics, and engineering—each 

contributing to and drawing from a shared network vocabulary. 

Today the study of social networks is no longer a standalone field—it is now deeply integrated, 

methodologically, conceptually, and empirically, with work on infrastructure systems, biological 

processes, and information networks (Figure 4). In other words, understanding the current trends 

in social network analysis requires viewing them not as isolated subjects of the social sciences, but 

as part of a broader intellectual shift: a science of connectivity grounded in shared principles of 

network growth, structure, dynamics, and function across both natural and engineered systems. 

Ultimately, the story of network science is the story of how seemingly disparate systems—from 

the human brain and the Internet to ecosystems and protein–protein interaction networks—exhibit 

deep structural commonalities, governed by common laws and mechanisms. By identifying these 

universal features, researchers across disciplines can better understand, analyze, predict, and 

optimize the networks that shape our world. By contrast, the social sciences often thrive by 

focusing on the specific—the unique circumstances that shape social phenomena. Network science 

is indispensable for this agenda as well: we must first uncover and understand the generic 

principles and underlying mechanisms that govern these features, because only then can we 

meaningfully identify the specific. 
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Figure 1. According to the Microsoft Academic Graph (MAG), a database of scholarly data 

(discontinued at the end of 2021), between 1900 and 2021 there were 192,000 papers classified as 

related to network science, across all disciplines. The plot splits this corpus of 192,000 papers  into 

three groups, showing the temporal evolution of the number of papers classified as Social 

Networks (orange) and Graph Theory (blue), and Network Science (green), which encompasses 

all papers focusing on networks, that are classified neither social networks nor graph theory.  
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Figure 2. The Emergence of Network Science. 

(a) The co-citation network of papers classified as network related by MAG, and published before 

1997, i.e. before the emergence of networks science. The graph reveals two largely disconnected 

subfields: one focused on graph theory and random graphs (top), and the other on social networks 

(bottom). 

(b) The same network ten years later, in 2007, after the emergence of network science. The new 

network science papers, published in physics, computer science as well as numerous cross-

disciplinary venues, have bridged the gap between the graph theory and the social network 

communities through publications that draw from both traditions while establishing a distinct 

intellectual agenda. 

 

 

 

(a) 1997 (b) 2007
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Figure 3: The Discovery of Scale-Free Networks  

The incoming (a) and outgoing (b) degree distribution of the WWW sample mapped in the 1999 

study of Albert et al.24, that lead to the discovery of scale-free networks.  The degree distribution 

is shown on double logarithmic axis (log-log plot), in which a power law follows a straight line. 

The symbols correspond to the empirical data, and the line corresponds to the power-law fit, with 

degree exponents γin= 2.1 and γout = 2.45. We also show as a green line the degree distribution 

predicted by a Poisson function with the average degree 〈kin〉 = 〈kout〉 = 4.60 of the WWW sample. 

After 17 

Scale-Free Network 
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Figure 4: The Cross-Disciplinary Impact of Network Science. 

By 2022, over 192,000 papers are labeled as network science in the Microsoft Academic Graph 

(MAG). For clarity, the figure displays only the top 1% most cited subset of these publications and 

their co-citation network, Colors correspond to the different subfields and are defined by MAG, 

illustrating the range of disciplines that active contribute to and use network science. 
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Figure 5. The Emergence of Network Science 

 

While the study of networks has a long history, with roots in graph theory and sociology, the 

modern chapter of network science emerged only during the first decade of the 21st century. 

The explosive interest in networks is well documented by the citation pattern of two classic papers, 

the 1959 paper by Paul Erdős and Alfréd Rényi that marks the beginning of the study of random 

networks in graph theory [2] and the 1973 paper by Mark Granovetter, the most cited social 

network paper [3]. The figure shows the yearly citations each paper acquired since their 

publication. Both papers were highly regarded within their discipline but had only limited impact 

outside their field. The explosive growth of citations to these papers in the 21st century is a 

consequence of the emergence of network science, drawing a new, interdisciplinary attention to 

these classic publications. 

 

 

  



21 
 

Bibliography. 

 

1. Euler, L. Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. Imp. 

Petropolitanae 8, 128–140 (1741). 

2. Ramón y Cajal, S. The Croonian Lecture: La fine structure des centres nerveux. Proc. R. Soc. 

Lond. 55, 444–468 (1894). 

3. Moreno, J. L. Who Shall Survive? A New Approach to the Problem of Human Interrelations. 

(Nervous and Mental Disease Publishing Company, Washington, DC, 1934). 

4. de Sola Pool, I. & Kochen, M. Contacts and Influence. (1958). 

5. Milgram, S. The Small World Problem. Psychol. Today 1, 61–67 (1967). 

6. Granovetter, M. S. The Strength of Weak Ties. Am. J. Sociol. 78, 1360–1380 (1973). 

7. Sinha, A. et al. An Overview of Microsoft Academic Service (MAS) and Applications. in 

Proceedings of the 24th International Conference on World Wide Web 243–246 (ACM, 

Florence Italy, 2015). doi:10.1145/2740908.2742839. 

8. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 

440–442 (1998). 

9. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–

512 (1999). 

10. Network Science. 11516 (National Academies Press, Washington, D.C., 2005). 

doi:10.17226/11516. 

11. Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of networks. Adv. Phys. 51, 1079–1187 

(2002). 



22 
 

12. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: 

Structure and dynamics. Phys. Rep. 424, 175–308 (2006). 

13. Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167–256 

(2003). 

14. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 

47–97 (2002). 

15. Newman, M., Barabási, A.-L. & Watts, D. J. The Structure and Dynamics of Networks. 

(Princeton University Press, Princeton, 2006). 

16. Newman, M. Networks: An Introduction. (Oxford University Press, Oxford, 2010). 

17. Barabási, A.-L. Network Science. (Cambridge University Press, Cambridge, 2016). 

18. Caldarelli, G. Scale-Free Networks: Complex Webs in Nature and Technology. (Oxford 

University Press, 2007). 

19. Menczer, F., Fortunato, S. & Davis, C. A. A First Course in Network Science. (Cambridge 

University Press, 2020). 

20. Barabási, A.-L. Invasion Percolation and Global Optimization. Phys. Rev. Lett. 76, 3750–

3753 (1996). 

21. Bollobás, B. Random Graphs. (Cambridge University Press, Cambridge, 2001). 

22. Erdős, P. & Rényi, A. On the Evolution of Random Graphs. Publ. Math. Inst. Hung. Acad. 

Sci. 5, 17–61 (1960). 

23. Barabási, A.-L. Dynamics of Random Networks: Connectivity and First-Order Phase 

Transitions. Phys. Rev. Lett. 76, 3750–3753 (1995). 

24. Albert, R., Jeong, H. & Barabási, A.-L. Diameter of the World-Wide Web. Nature 401, 130–

131 (1999). 



23 
 

25. Faloutsos, M., Faloutsos, P. & Faloutsos, C. On Power-Law Relationships of the Internet 

Topology. in 251–262 (Cambridge, MA, USA, 1999). doi:10.1145/316194.316229. 

26. Cameron, M. P. Zipf’s Law Across Social Media. https://ideas.repec.org/p/wai/econwp/22-

07.html (2022). 

27. Slattery, R. E., McHardy, R. R. & Bairathi, R. On the Topology of the Facebook Page 

Network. ArXiv Prepr. ArXiv13072189 https://arxiv.org/abs/1307.2189 (2013). 

28. Newman, M. E. J. Coauthorship Networks and Patterns of Scientific Collaboration. Proc. 

Natl. Acad. Sci. 101, 5200–5205 (2004). 

29. Barabási, A.-L. et al. Evolution of the social network of scientific collaborations. Phys. Stat. 

Mech. Its Appl. 311, 590–614 (2002). 

30. Price, D. J. de S. Networks of Scientific Papers. Science 149, 510–515 (1965). 

31. Redner, S. How popular is your paper? An empirical study of the citation distribution. Eur. 

Phys. J. B 4, 131–134 (1998). 

32. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale 

organization of metabolic networks. Nature 407, 651–654 (2000). 

33. Jeong, H., Mason, S. P., Barabási, A.-L. & Oltvai, Z. N. Lethality and centrality in protein 

networks. Nature 411, 41–42 (2001). 

34. Barabási, A.-L., Albert, R. & Jeong, H. Mean-field theory for scale-free random networks. 

Phys. Stat. Mech. Its Appl. 272, 173–187 (1999). 

35. Merton, R. K. The Matthew Effect in Science: The Reward and Communication Systems of 

Science Are Considered. Science 159, 56–63 (1968). 

36. Bollobás, B., Riordan, O., Spencer, J. & Tusnády, G. The degree sequence of a scale-free 

random graph process. Random Struct. Algorithms 18, 279–290 (2001). 



24 
 

37. Jeong, H., Néda, Z. & Barabási, A.-L. Measuring preferential attachment in evolving 

networks. Europhys. Lett. 61, 567–572 (2003). 

38. Eisenberg, E. & Levanon, E. Y. Preferential Attachment in the Protein Network Evolution. 

Phys. Rev. Lett. 91, 138701 (2003). 

39. Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. 

Nature 406, 378–382 (2000). 

40. Stauffer, D. & Aharony, A. Introduction to Percolation Theory. (Taylor & Francis, London, 

1994). doi:10.1201/9781315274386. 

41. Cohen, R., Erez, K., ben-Avraham, D. & Havlin, S. Resilience of the Internet to Random 

Breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000). 

42. Cohen, R., Erez, K., ben-Avraham, D. & Havlin, S. Breakdown of the Internet under 

Intentional Attack. Phys. Rev. Lett. 86, 3682–3685 (2001). 

43. Pastor-Satorras, R. & Vespignani, A. Epidemic Spreading in Scale-Free Networks. Phys. 

Rev. Lett. 86, 3200–3203 (2001). 

44. Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E. & Åberg, Y. The web of human 

sexual contacts. Nature 411, 907–908 (2001). 

45. Motter, A. E. & Nishikawa, T. Introduction to Focus Issue: Patterns of Network 

Synchronization. Chaos 26, 094601 (2016). 

46. Nishikawa, T. & Motter, A. E. Symmetric States Requiring System Asymmetry. Phys. Rev. 

Lett. 117, 114101 (2016). 

47. Zou, Y., Pereira, T., Small, M., Liu, Z. & Kurths, J. Synchronization in Complex Networks 

and Its Application – A Survey of Recent Advances and Challenges. Phys. Rep. 544, 1–122 

(2014). 



25 
 

48. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in 

Complex Networks. Phys. Rep. 469, 93–153 (2008). 

49. Restrepo, J. G., Ott, E. & Hunt, B. R. Onset of Synchronization in Large Networks of 

Coupled Oscillators. Phys. Rev. E 71, 036151 (2005). 

50. Lee, D.-S. Synchronization Transition in Scale-Free Networks: Clusters of Synchrony. Phys. 

Rev. E 72, 026208 (2005). 

51. Ichinomiya, T. Frequency Synchronization in Random Oscillator Network. Phys. Rev. E 70, 

026116 (2004). 

52. Fortunato, S. & Hric, D. Community Detection in Networks: A Multidisciplinary Review. 

Phys. Rep. 659, 1–44 (2016). 

53. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of 

communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008). 

54. Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 

103, 8577–8582 (2006). 

55. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. 

Proc. Natl. Acad. Sci. 99, 7821–7826 (2002). 

56. Milo, R. et al. Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 

824–827 (2002). 

57. Newman, M. E. J. Assortative Mixing in Networks. Phys. Rev. Lett. 89, 208701 (2002). 

58. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic Cascade of 

Failures in Interdependent Networks. Nature 464, 1025–1028 (2010). 

59. Brummitt, C. D., D’Souza, R. M. & Leicht, E. A. Suppressing Cascades of Load in 

Interdependent Networks. Proc. Natl. Acad. Sci. 109, E680–E689 (2012). 



26 
 

60. De Domenico, M. et al. Multilayer Networks. Nat. Phys. 10, 780–786 (2014). 

61. Holme, P. & Saramäki, J. Temporal Networks. Phys. Rep. 519, 97–125 (2012). 

62. Stopczynski, A. et al. Measuring large-scale social networks with high-resolution. Sci. Rep. 

4, 5604 (2014). 

63. Battiston, F. et al. Networks Beyond Pairwise Interactions: Structure and Dynamics. Phys. 

Rep. 874, 1–92 (2020). 

64. Bianconi, G. Higher-Order Networks. (Cambridge University Press, 2021). 

65. Battiston, F. & Petri, G. Higher-Order Systems. (Springer, 2022). 

66. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of Complex Networks. Nature 

473, 167–173 (2011). 

67. Wang, W.-X. & Chen, G. Pinning control of complex networks: A decade after and beyond. 

Annu. Rev. Control 44, 47–63 (2017). 

68. Liu, Y.-Y. & Barab’asi, A.-L. Control principles of complex systems. Rev. Mod. Phys. 88, 

035006 (2016). 

69. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms 

for complex networks. IEEE Trans. Control Netw. Syst. 1, 40–52 (2014). 

70. Sun, J. & Motter, A. E. Controllability transition and nonlocality in network control. Phys. 

Rev. Lett. 110, 208701 (2013). 

71. Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: Methods and 

applications. IEEE Data Eng. Bull. 40, 52–74 (2017). 

72. Leskovec, J. & others. To Embed or Not: Network Embedding as a Paradigm in 

Computational Biology. Front. Genet. 10, 381 (2019). 



27 
 

73. Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. 

Nature 530, 307–312 (2016). 

74. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017). 

75. Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis. 

(Academic Press, London, 2016). 

76. Barabási, D. L. et al. Neuroscience needs network science. J. Neurosci. 43, 5989–5995 

(2023). 

77. Menche, J. et al. Uncovering disease-disease relationships through the incomplete 

interactome. Science 347, 1257601 (2015). 

78. Cheng, F. et al. Network-Based Approach to Prediction and Population-Based Validation of 

In Silico Drug Repurposing. Nat. Commun. 

https://barabasi.com/media/pub_imports/files/1007.pdf (2018). 

79. Gysi, D. M. et al. Network Medicine Framework for Identifying Drug Repurposing 

Opportunities for COVID-19. Proc. Natl. Acad. Sci. 

https://barabasi.com/media/pub_imports/files/1115.pdf (2021). 

80. Pascual, M. & Dunne, J. A. Ecological Networks: Linking Structure to Dynamics in Food 

Webs. (Oxford University Press, 2006). 

81. Jackson, M. O. Social and Economic Networks. (Princeton University Press, 2008). 

82. Easley, D. & Kleinberg, J. Networks, Crowds, and Markets: Reasoning About a Highly 

Connected World. (Cambridge University Press, 2010). 

83. Goyal, S. Connections: An Introduction to the Economics of Networks. (Princeton University 

Press, 2007). 

84. Wang, D. & Barabási, A.-L. The Science of Science. (Cambridge University Press, 2021). 



28 
 

85. Balcan, D. et al. Seasonal transmission potential and activity peaks of the new influenza 

A/H1N1: a Monte Carlo likelihood analysis based on human mobility. BMC Med. 7, 45 

(2009). 

86. Kraemer, M. U. et al. The effect of human mobility and control measures on the COVID-19 

epidemic in China. Science 368, 493–497 (2020). 

87. Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015). 

88. Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis 

elegans connectome. Nature 550, 519–523 (2017). 

89. Bonamassa, I., Gross, B. & Havlin, S. A multilayer superconductor acts as an interdependent 

network. Nat. Phys. 19, 1086–1087 (2023). 

90. Molnár, F., Derzsy, N., Szymanski, B. K. & Korniss, G. Consensus formation on activity-

driven networks. Nat. Phys. 16, 351–356 (2020). 

91. Guney, E., Menche, J., Vidal, M. & Barabási, A.-L. Network-based in silico drug efficacy 

screening. Nat. Commun. 7, 10331 (2016). 

92. Patten, J. J. et al. Identification of potent inhibitors of SARS-CoV-2 infection by combined 

pharmacological evaluation and cellular network prioritization. iScience 25, 104925 (2022). 

93. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach 

to human disease. Nat. Rev. Genet. 12, 56–68 (2011). 

94. Curtis, J. R., Strand, V., Golombek, S., & et al. Patient outcomes improve when a molecular 

signature test guides treatment decision-making in rheumatoid arthritis. Expert Rev. Mol. 

Diagn. 22, 973–982 (2022). 

95. Hidalgo, C. A., Klinger, B., Barabási, A.-L. & Hausmann, R. The Product Space Conditions 

the Development of Nations. Science 317, 482–487 (2007). 



29 
 

96. Malysian Goverernmen. The New Industrial Master Plan (NIMP 2030). 

https://www.nimp2030.gov.my/. 

97. Draghi, M. The Future of European Competitiveness: A Competitiveness Strategy for Europe 

(Part A). https://commission.europa.eu/document/download/97e481fd-2dc3-412d-be4c-

f152a8232961_en?filename=The+future+of+European+competitiveness+_+A+competitiven

ess+strategy+for+Europe.pdf (2024). 

 

 

 


