
 Electronic copy available at: https://ssrn.com/abstract=2893192

Draft: 1-18-17
Rise of the API Copyright Dead?:

An Updated Epitaph for Copyright Protection
of Network and Functional Features of Computer Software

Peter S. Menell*

ABSTRACT

After a decade of bruising legal battles, the courts and software industry norms largely
resolved the costly war over the scope of copyright protection for computer software. By the mid
1990s, freedom to develop interoperable devices, systems, and software triumphed over broad
copyright protection for network features of computer software. Copyright peace prevailed
throughout the software industry for the next 15 years. But in 2010, Oracle reignited the smoldering
embers of that war when it brought suit alleging that Google infringed copyright in the Java
application program interface packages (APIs) . . .

This article updates and expands upon an earlier “epitaph” for copyright protection of
network features of computer software to address the second API copyright wave. As background,
Part I reviews the first wave of API copyright legislation and litigation. Part II examines the Oracle
v. Google litigation, tracing the development of Java and Android and the subsequent (and still
ongoing) battle over the scope of copyright protection for APIs. Part III critically analyzes the
Oracle v. Google decisions. It explains that copyright law’s fundamental exclusion of protection for
functional features dictates that the labeling conventions and packaging of functions within interface
specifications generally fall outside of the scope of copyright protection even as implementing code
garners thin copyright protection. This interpretation of copyright law comports with fundamental
principles channeling protection among the modes of intellectual property. It also serves the larger
goals of intellectual property law and competition policy.

* Koret Professor of Law and Director of the Berkeley Center for Law & Technology, University
of California at Berkeley School of Law. I am grateful to Jonathan Band, Dylan Hadfield-
Menell, Mark Lemley, David Nimmer, and Tim Simcoe for comments on an earlier draft.

-1-

 Electronic copy available at: https://ssrn.com/abstract=2893192

Rise of the API Copyright Dead?:
An Updated Epitaph for Copyright Protection

of Network and Functional Features of Computer Software

TABLE OF CONTENTS

I. Copyright Protection for Computer Software 1.0
 A. A Personal Account
 B. Setting the Stage

1. The Intellectual Property Backdrop: Legislation and Legislative History
2. Network Economics
3. The Industrial Backdrop

 C. The API Copyright War
1. Jurisprudence

i. The Early Years
ii. The Modern Software Copyright Era

2. Legislative Developments
 D. The End to the API Copyright War and the Logic of the Intellectual Property System

II. Copyright Protection for Computer Software 2.0: The Oracle v. Google Wave
 A. The Technological and Industrial Context

1. The Java Story
i. The Corporate Environment: Sun Microsystems in the 1980s and 1990s
ii. Development of Java
iii. The Setting Sun

2. Google, the Mobile Computing Revolution, and Development of Android
3. Oracle’s Acquisition of Sun Microsystems

 B. The Oracle v. Google Litigation
1. Oracle’s Complaint and Pretrial Case Management
2. 2012 Trial
3. Federal Circuit Reversal

i. Copyrightability
a. Declaring Code
b. SSO of the API Packages

ii. Fair Use
4. Interlocutory Certiorari Petition
5. 2016 Fair Use Trial

i. Opening Arguments
ii. Google’s Case in Chief
iii. Oracle’s Case in Chief
iv. Google’s Rebuttal
v. Closing Arguments
vi. Jury Vedict

-2-

 Electronic copy available at: https://ssrn.com/abstract=2893192

6. The Road Ahead
 C. The Current Murky State of API Copyright Protection

III. The Law and Economics of API Copyright Protection
 A. Legal Analysis

1. Overarching Principles
2. Critique of the Federal Circuit Copyrightability Decision

i. Misinterpreting Section 102(b)
ii. Misreading Ninth Circuit Jurisprudence
 a. Viability of the Lotus Decision in the Ninth Circuit
 b. Disregarding the Sega/Sony Decisions
 c. Resurrecting the Third Circuit’s Apple/Whelan Decisions
iii. Conflation of Expressive and Technological “Creativity”
iv. Overly Rigid Approach to Limiting Doctrines
v. Treating API Design as Variable Expression Rather than Unique Function

3. Proper Legal Frameworks for Analyzing Copyright Protection for Computer Software
i. API Design
ii. Computer Code
iii. Other Software Elements

 B. Policy Analysis
1. Economic Analysis of Legal Protection for Computer Software

i. The Public Goods Problem
ii. Network Externalities

2. The Evolution of Software Markets
3. The Optimality of Limited Copyright Protection for Computer Software
4. Impediments to Achieving the Proper Copyright Balance Posed by the Oracle v.
 Google Litigation

Conclusions

-3-

Rise of the API Copyright Dead?:
An Updated Epitaph for Copyright Protection

of Network and Functional Features of Computer Software

As the great Yogi Berra redundantly said, “It’s like déjà vu all over again.”1 For IP
scholars and practitioners of my generation, Oracle Corporation’s lawsuit alleging that Google’s
Android mobile platform infringes copyright in the Java application program interface (API)
elements has been a stroll down memory lane.2 Or perhaps less nostalgically for those in the
software industry, a zombie horror film set in Silicon Valley.3

I cut my teeth analyzing the scope of copyright protection for network and other
functional features of computer software. My first foray into intellectual property scholarship
examined the interplay among the utilitarian nature of computer programming, the distinctive
network economics of software markets, and the role of copyright protection within the larger

1 See YOGI BERRA, THE YOGI BOOK: I DIDN’T SAY EVERYTHING I SAID 9 (1998) (explaining that
the déjà vu quotation was inspired by Yankees’ sluggers Mickey Mantle and Roger Maris
repeated back-to-back home runs in the early 1960s).

2 As Judge Alsup noted in an early ruling in the Oracle litigation, “[t]he term API is slippery.”
See ORDER PARTIALLY GRANTING AND PARTIALLY DENYING DEFENDANT'S
MOTION FOR SUMMARY JUDGMENT ON COPYRIGHT CLAIM, p.4 Oracle America, Inc.
v. Google Inc. 3:10-cv-03561-WHA (filed Sep. 15, 2011). We will examine the varying and
evolving meaning of API throughout this journey.

3 Cf. List of Zombie Films, https://en.wikipedia.org/wiki/List_of_zombie_films. Commentary
and news reporting of the Oracle case spoke in dire terms. See, e.g., Steven J. Vaughan-Nichols,
Oracle v. Google, and the End of Programming as We Know It, COMPUTERWORLD (May 16,
2016),
http://www.computerworld.com/article/3070001/application-development/oracle-v-google-and-t
he-end-of-programming-as-we-know-it.html; Klint Finley, The Oracle-Google Case Will Decide
the Future of Software, WIRED (May 23, 2016) (opining that “nothing less is at stake [in the
outcome of the Oracle v. Google litigation] than the future of programming”),
http://www.wired.com/2016/05/oracle-google-case-will-decide-future-software/; Joe Mullin,
Second Oracle v. Google Trial Could Lead to Huge Headaches for Developers, arstechnica
(May 8, 2016) (reporting that if those who develop APIs “can use copyright law to control how
programming is done, there will be a sea change in industry practices. For many developers,
especially of open source software, this will be a change for the worse”),
http://arstechnica.com/tech-policy/2016/05/round-2-of-oracle-v-google-is-an-unpredictable-trial-
over-api-fair-use/.

-4-

intellectual property system.4 Along with other scholars and practitioners,5 I wrote about and
filed amicus briefs in battles over interoperability,6 reverse engineering,7 graphical user

4 See Peter S. Menell, Tailoring Legal Protection for Computer Software, 39 STAN. L. REV. 1329
(1987) (based on my third year paper at Harvard Law School); Peter S. Menell, Analysis of the
Scope of Copyright Protection for Application Programs, 41 STAN. L. REV. 1045 (1989); Peter
S. Menell, The Challenges of Reforming Intellectual Property Protection for Computer Software,
94 COLUM. L. REV. 2644 (1994); Dennis S. Karjala & Peter S. Menell, Applying Fundamental
Copyright Principles to Lotus Development Corp. v. Borland Int’l, Inc., 10 HIGH TECH. L.J. 177
(1995).

5 Professors Dennis Karjala, Jerome Reichman, and Pamela Samuelson, copyright treatise
authors Paul Goldstein and David Nimmer, practitioners Jonathan Band, Peter Choy, David
Hayes, Michael Jacobs, Gary Reback, and Richard Stern, economists Joseph Farrell and Brian
Kahin, and computer scientist Randal Davis were among the early fellow travelers. The network
economics research of Professors Joseph Farrell, Michael Katz, Garth Saloner, and Carl Shapiro
provided valuable insights.

As the first wave of copyright API litigation was building, Professors Karjala,
Samuelson, and I convened a broad range of intellectual property scholars, practitioners,
software experts, and economists to examine the emerging issues and jurisprudential puzzles.
That conference produced a consensus report among the legal academics that helped clarify key
software copyright issues and foreshadowed important legal developments. See Donald S.
Chisum, Rochelle Cooper Dreyfuss, Paul Goldstein, Robert A. Gorman, Dennis S. Karjala,
Edmund W. Kitch, Peter S. Menell, Leo J. Raskind, Jerome H. Reichman & Pamela Samuelson,
LaST Frontier Conference on Copyright Protection of Computer Software, 30 JURIMETRICS J. 15
(1989) (hereinafter cited as “LaST Frontier Software Report.” In addition, I advised the U.S.
Congress’s Office of Technology Assessment, which produced several useful reports. See U.S.
CONGRESS, OFFICE OF TECHNOLOGY ASSESSMENT, FINDING A BALANCE: COMPUTER SOFTWARE,
INTELLECTUAL PROPERTY, AND THE CHALLENGE OF TECHNOLOGICAL CHANGE, OTA-TCT-527
(Washington, DC: U.S. Government Printing Office, May 1992),
http://ota.fas.org/reports/9215.pdf; U.S. CONGRESS, OFFICE OF TECHNOLOGY ASSESSMENT,
COMPUTER SOFTWARE AND INTELLECTUAL PROPERTY–BACKGROUND PAPER, OTA-BP-CIT-61
(Washington, DC: U.S. Government Printing Office, March 1990),
http://ota.fas.org/reports/9009.pdf.

6 See Computer Associates Int’l v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992); Apple Computer, Inc.
v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983).

7 See Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1993); see also Sony
Computer Entertainment, Inc. v. Connectix Corp., 203 F.2d 596 (2000); Bateman v. Mnemonics,
Inc., 79 F.3d 1532, 1540 (11th Cir. 1996) (following Sega v. Accolade).

-5-

interfaces,8 and menu command hierarchies.9 After more than a decade of software copyright
wars,10 the hostilities ceased following resolution of the epic battle between Lotus and Borland
over the spreadsheet menu command hierarchy.11 To mark closure of that era, I wrote an
“epitaph” for copyright protection of network features of computer software.12

Although the Supreme Court deadlocked over the Lotus v. Borland appeal,13 the
computer industry achieved detente following a series of cases rejecting copyright protection for
APIs and other high level, functional features of computer software. Congress reinforced these
principles in crafting the anti-circumvention provisions of the Digital Millennium Copyright
Act.14 This is not to say that copyright law does not protect computer software, but rather that the
scope of protection is narrow and focused on expressive or arbitrary, as opposed to functional,
elements of computer programs.

Veterans of the API copyright battles moved on to new software IP battle fronts.

8 See Apple Computer, Inc. v. Microsoft Corp., 799 F.Supp. 1006 (N.D. Cal. 1992), aff’d in part,
rev’d in part, 35 F.2d 1435 (9th Cir. 1994); see also Data East USA, Inc. v. Epyx, Inc., 862 F.2d
204 (9th Cir. 1988).

9 See Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F.Supp. 202 (D. Mass, 1993), 831 F.Supp. 223
(D. Mass, 1993), rev’d 49 F.3d 807 (1st Cir. 1995), aff’d by an equally divided court, 516 U.S.
233 (1996).

10 See JONATHAN BAND AND MASANOBU KATOH, INTERFACES ON TRIAL (1995); N. Margolis,
Users Biggest Losers in Spreadsheet Wars, COMPUTERWORLD 8 (Jul. 16, 1990) (commenting on
the district court ruling finding copyright infringement in Lotus v. Borland). Band and Katoh
published a retrospective several years ago that explores the enactment of the Digital Millennium
Copyright Act and implementation of its interoperability provisions and international
developments. It also touches on patent and antitrust issues. See JONATHAN BAND AND

MASANOBU KATOH, INTERFACES ON TRIAL 2.0 (2011). The book was written before the Oracle
v. Google case triggered the second wave of copyright API litigation.

11 See Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807 (1st Cir. 1995), aff’d by an equally
divided court, 516 U.S. 233 (1996).

12 See Peter S. Menell, An Epitaph for Traditional Copyright Protection of Network Features of
Computer Software, 43 ANTITRUST BULL. 651 (1998).

13 Justice Stevens recused himself. In view of his intellectual property jurisprudence, as reflected
in his opinions in Sony Corp. v. Universal City Studios and Parker v. Flook, he likely would
have joined the four justices voting to affirm the First Circuit’s decision.

14 See 17 U.S.C. § 1201(f) (interoperability exception for anti-circumvention provisions); see
also id. at § 1201(a) (exemption process).

-6-

Microsoft’s anti-competitive practices in the “browser wars” emerged as a new battleground in
the late 1990s.15 One flank touched on API copyright protection. Sun Microsystems sued
Microsoft over breach of contract and copyright infringement relating to Microsoft’s forking16 of
Sun’s Java™ software platform. That litigation settled with Microsoft paying Sun $20 million
and Sun chose not to assert its copyright infringement claims in court.17 The conduct at issue also
contributed to Sun’s later antitrust and patent infringement lawsuit against Microsoft, which
resulted in a $1.6 billion settlement.18

By the late 1990s, the open source movement was gaining momentum, further reducing
the use of proprietary strategies in the development of APIs. Sun released the core Java language
for use by programmers, although it sought to ensure that the Java platform remained
interoperable. Following the bursting of the dot com bubble in the early 2000 period, software
patent assertion added a new dimension to software litigation. Standard setting organizations
emerged as a principal bulwark in promoting interoperable interface development.19

15 I consulted for a consortium of State Attorneys Generals for nearly decade on that battle and
its aftermath. See Department of Justice, Office of the Attorney General, State of California,
Antitrust Highlights, , Consent Decree (Computer Operating Systems),
https://oag.ca.gov/antitrust/highlights; Stephen D. Houck & Kevin J. O’Connor, Comments on
the States’ Role in the Microsoft Case Re: Working Group on Enforcement Institutions (2007);
New York v. Microsoft Corp., 224 F. Supp. 2d 76 (D.D.C. 2002); see generally United States v.
Microsoft Corp., https://en.wikipedia.org/wiki/United_States_v._Microsoft_Corp.

16 Forking of software code refers to creating an independent branch of a computer program. See
Fork (software development), https://en.wikipedia.org/wiki/Fork_(software_development). This
split from the original program typically “spawns competing projects that cannot later exchange
code, splitting the potential developer community.” See Eric S. Raymond, Promiscuous Theory,
Puritan Practice, in HOMESTEADING THE NOOSPHERE (2002),
http://www.catb.org/~esr/writings/cathedral-bazaar/homesteading/ar01s03.html.

17 I advised Sun Microsystems’ legal team about copyright’s limiting doctrines in 1999. I was
relieved to see the API copyright claims die a quiet death. See, infra, TAN __-__.

18 See Scarlet Pruitt & Paul Roberts, Microsoft to Pay $700 Million for Antitrust Issues, $900
Million to Resolve Patent Dispute, INFOWORLD (Apr. 2, 2004),
http://www.infoworld.com/article/2667124/operating-systems/update--sun--microsoft-settle-suit-
in-billion-dollar-pact.html.

19 See Jorge L. Contreras, Patents, Technical Standards and Standard-Setting Organizations: A
Survey of the Empirical, Legal and Economics Literature, in RESEARCH HANDBOOK ON THE

ECON. OF INTELLECTUAL PROP. LAW- VOL. II ANALYTICAL METHODS (Peter S. Menell & David
Schwartz, eds., forthcoming 2017); Mark A. Lemley, Intellectual Property Rights and
Standard-Setting Organizations, 90 CAL. L. REV. 1889 (2002).

-7-

By the early 2000 period, software copyright disputes, and particularly those relating to
APIs, were rare. Although interoperability skirmishes occasionally emerged,20 the copyright
jurisprudence remained remarkably stable. Silicon Valley moved on, or so many of the API
copyright veterans had thought. Much of the API action shifted to the patent and standard setting
realms.21 Internet piracy emerged as the major copyright battleground and a new war– between
Hollywood and Silicon Valley–took center stage.22

A startling new API copyright case made headlines in August 2010.23 In January of that
year, Oracle Corporation acquired Sun Microsystems for $5.6 billion.24 In August, Oracle sued
Google for patent and copyright infringement over the Android platform, one of the two leading
mobile computing platforms (Apple’s iOS as the other). Google built Android using the Java™
programming language and declarations–principally function names and definitions–from 37 of
the 166 “packages” of the Java™ Platform, Standard Edition API Specification.25 Oracle would

20 See e.g., Patrick Mannion, Ruling for Green Hills Clears Way for Copying of APIs, EE TIMES

(Aug, 21, 2007) (reporting that the arbitration panel held that copyright laws do not extend to the
functionality of APIs in a dispute involving real time operating systems),
http://www.eetimes.com/document.asp?doc_id=1166905. I served as expert witness for Green
Hills in the case.

21 See Jorge L. Contreras, A Brief History of FRAND, 80 ANTITRUST L.J. 39 (2015); Peter S.
Menell & Michael J. Meurer, Notice Failure and Notice Externalities, J. LEG. ANAL. 1 (2013);
Peter S. Menell, Forty Years of Wondering in the Wilderness and no Closer to the Promised
Land: Bilski’s Superficial Textualism and the Missed Opportunity to Return Patent Law to its
Technology Mooring, 63 STAN. L. REV. 1289 (2011).

22 See Peter S. Menell, Can Our Current Conception of Copyright Law Survive the Internet
Age?: Envisioning Copyright Law’s Digital Future, 46 N.Y.L. SCH. L. REV. 63 (2002).

23 See Don Clark & Cari Tuna, Oracle Suit Challenges Google–Silicon Valley Giants Tangle
Over Patents, Copyrights Involving Open Programs Android and Java, WALL ST. J. B1 (Aug.
13, 2010) (noting that the lawsuit was a “surprise move” and “set off shock waves in the Silicon
Valley software community”); see also Cari Tuna & Don Clark, Oracle’s Java Suit Gives a Jolt,
WALL. ST. J. B1 (Aug. 14, 2010) (reporting that “[l]awyers and software developers were
scrambling Friday to analyze whether other Java-based products might run afoul of Oracle’s
intellectual property–and if legal risks may extend to a broader array of what the industry
calls open-source software”).

24 See Sun acquisition by Oracle, https://en.wikipedia.org/wiki/Sun_acquisition_by_Oracle. The
parties agreed to the acquisition in April 2009. Due to regulatory approvals, the transfer did not
occur until January 2010. The sale price was $7.4 billion, resulting in a net price of $5.6 billion
after accounting for Sun’s cash and debt.

25 These packages are compilations of functions. See, infra, TAN __-__.

-8-

ultimately seek over $9 billion in damages and an injunction blocking use of Android.26

The API copyright resurgence is not limited to Oracle v. Google. In 2014, Cisco
Systems, a leading manufacturer of networking equipment, sued Arista Networks for patent and
copyright infringement.27 The copyright claims focus on Cisco’s command line interface (CLI)
for configuring, monitoring, and maintaining Cisco devices. Arista, formed by a Cisco founder
and employing many former Cisco engineers, designs, and sells competing network switches.
Arista allegedly copied more than 500 of Cisco’s CLI commands in developing its EOS
networking operating system.28

With these headlines, I was beginning to feel a bit like the aging Michael Corleone, as
portrayed by Al Pacino, in The Godfather: Part III: “Just when I thought I was out . . . they pull
me back in.” As this article explains, the new wave of API litigation is not entirely “déjà vu all
over again.” Oracle v. Google involves a more complex interface specification than those
involved in the first wave cases. And unlike that wave, Google did not seek to achieve complete
end-user interoperability. Rather Google developed a new operating system that selected among
and augmented the Java API packages to optimize a powerful new mobile platform for
smartphones. Google also used a more permissive licensing model than Sun/Oracle used for the
Java platform.

Although achieving complete end-user interoperability is a functional objective that
limits copyright protection, it is not the sole limiting rationale for excluding functional features
and function labels from copyright protection. The principles explicated in the first “Epitaph”
apply with equal force to this newer API copyright wave. Fundamental copyright doctrines
circumscribe protection for APIs.

26 See Joe Mullin, Oracle will seek a staggering $9.3 billion in 2nd trial against Google, ARS

TECHNICA (Mar. 29, 2016),
http://arstechnica.com/tech-policy/2016/03/oracle-will-seek-a-staggering-9-3-billion-in-2nd-trial
-against-google/.

27 See Quentin Hardy, In Suit, Cisco Accuses Arista of Copying Work, N.Y. TIMES (Dec. 5,
2014), http://bits.blogs.nytimes.com/2014/12/05/in-suit-cisco-accuses-arista-of-copying-work/.

28 See Cisco Systems, Inc., v. Arista Networks, Inc., U.S. District Court, Northern District of
California, Case No. 5:14-cv-5344-BLF, Second Amended Complaint for Copyright and Patent
Infringement (Jul. 13, 2015),
https://www.scribd.com/doc/275061137/Cisco-Second-Amended-Complaint-against-Arista;
Jeffrey Burt, Cisco Sues Networking Rival Arista in Patent Dispute, eWeek (Dec. 5, 2014)
(quoting Mark Chandler, Cisco’s Senior Vice President and General Counsel, pointing to the
copying of more than 500 multi-word command-line expressions in Arista’s EOS operating
system),
http://www.eweek.com/networking/cisco-sues-neworking-rival-arista-in-patent-dispute.html;

-9-

This article updates and expands upon the earlier “Epitaph” to address the second API
copyright wave. As background, Part I reviews the first wave of API copyright legislation and
litigation. Part II examines the Oracle v. Google litigation. Part III critically analyzes the Oracle
v. Google litigation and explains that copyright law’s fundamental exclusion of protection for
functional features dictates that the labeling conventions and packaging of functions within
interface specifications generally fall outside of the scope of copyright protection even though
the implementing code garners protection. This interpretation of copyright law serves the larger
goals of intellectual property law and competition policy.

I. Copyright Protection for Computer Software 1.0

The first wave of computer software litigation frames the modern API battlefront. This
section begins with a personal account highlighting the emergence of the API copyright issue
and putting my early scholarship into perspective. Section B sets the stage for the decade-long
API copyright wars, surveying the copyright law background, the economics of interoperability,
and the industrial backdrop. Section C traces the API copyright protection battle front in the
courts, Congress, and the Copyright Office. The final section summarizes the resolution of the
API copyright wars and how this era reinforced the underlying logic of the intellectual property
system.

 A. A Personal Account

I encountered the economic effects of legal protection for computer software in a
serendipitous way while pursuing graduate programs in economics and law in the early to mid
1980s. In conducting research and completing my Ph.D. dissertation, I faced a familiar
formatting challenge: incorporating integral signs and other mathematical symbols into
dissertation chapters. Mainframe computer technology offered symbolic notation tools, but that
required periodic trips to Forsythe Hall to retrieve printouts on the central laser printer. It was
frustrating to travel across campus only to find a large printout with the words “SYNTAX
ERROR.” There had to be a better way.

I was excited to learn that XyWrite had introduced a computer program that coded
symbolic notation for the newly introduced IBM desktop personal computer (PC). It offered the
capability of printing drafts at the touch of a button on a convenient dot matrix printer attached
to the desktop computer. Unfortunately, the cost of the system was well beyond my means. IBM
was charging $3,000 for the PC.

As a microcomputer hobbyist, I was aware that IBM did not manufacture many of the
components of the system–the disk drives were made by Tandem and the monitor was made by
Amdec. From the advertisements in the back of computer magazines, it was apparent that I could
assemble much of the IBM PC for a fraction of the retail cost. When IBM began selling the
stripped down PC chassis and main boards to university students at a steep discount, I was able
to assemble a fully functional IBM PC at about half the retail cost. To a graduate student
studying microeconomic theory, industrial organization, and antitrust policy, this price

-10-

differential did not make much sense.

Reverting to my rudimentary legal training, I traced the source of IBM’s extraordinary
market power to copyright protection over the Basic Input/Output System (BIOS) firmware
interface–not a particularly innovative piece of the overall computer architecture, but a critical
component for interoperability. Combining law and economics, I came to see that expansive
copyright protection for computer software could undermine both rapid innovation and network
externalities and conflicted with the logic of the intellectual property system.29

Copyright’s foundational idea-expression doctrine provided the key piece to solving the
puzzle and would ultimately prove IBM’s undoing.30 Within a few years, Phoenix and Compaq
reverse engineered the IBM PC BIOS and much less expensive interoperable “clones” displaced
IBM’s dominance.31 Microsoft, which controlled the leading microcomputer operating systems
(DOS and later Windows) and mastered the economics of interoperability, would become the
dominant computer company over the next two decades.

 B. Setting the Stage

In order to appreciate the API copyright controversy, it is important to understand the
intellectual property landscape that existed when the software marketplace took flight in the
early 1980s, the economics of interoperability, and the software industry.

1. The Intellectual Property Backdrop: Legislation and Legislative History

Computer software, by its very nature as written work intended to serve utilitarian
purposes, defies easy categorization within the intellectual property system. It provides the gears

29 See Peter S. Menell, Tailoring Legal Protection for Computer Software, 39 STAN. L.
REV. 1329 (1987).

30 After the emergence of home computers designed and built by start-ups for computing
hobbyists in the late 1970s, IBM sky-rocketed to dominance with the launch of its PC line of
microcomputers for home and business use. See Andrew Pollack, Big I.B.M. Has Done it Again,
N.Y. TIMES, Mar. 27, 1983, § 3 (Magazine), at 1 (reporting that by 1983, [v]irtually every
software company [was] giving first priority to writing programs for the I.B.M. machine”);
Personal Computers: and the Winner is IBM, BUS. WK., Oct. 3, 1983, at 76; IBM’s Personal
Computer Spawns an Industry, BUS. WK., Aug. 15, 1983, at 88.

31 See Sam Whitmore, PC-Compatible ROM BIOS Emerges from Phoenix, PC WK., May 8,
1984, at 5; Leslie Helm, IBM’s ‘Clone Killers’ Don't Scare Phoenix Technologies, BUS. WK.,
Dec. 21, 1987, at 113; see generally Steven Burke, Court Support for ‘Clean Room’ Cloning
May Legalize Intel ‘386 Chip’ Work-Alikes, PC WK., Feb. 27, 1989, at 63; Russell Moy, A Case
Against Software Patents, 17 SANTA CLARA COMPUTER & HIGH TECH. L.J. 67, 70-73 (2000)
(chronicling reverse engineering of the IBM BIOS).

-11-

and levers for digital machines.

As the computer software marketplace emerged in the early 1970s, policymakers faced a
dilemma. Computer software could be expensive to develop and was easily pirated, creating a
severe appropriability problem for the nascent, yet critical, software industry.32 Patent law, which
had long served as the primary form of protection for technological advances in machines and
processes, was thought to be too costly, time-consuming, stringent, and uncertain as a means for
protecting software products against piracy.33 Copyright law had long provided an effective
means of protecting literary works from piracy, but its doctrines excluding ideas and functional
elements from protection34 raised serious questions about its appropriateness for protecting
inherently utilitarian works. Copyright’s low threshold for protection,35 complex scope,36 broad
array of rights,37 and long duration38 created a risk of overbroad protection for computer software
products.

The software protection controversy emerged at an inopportune time. Congress had been

32 See Bill Gates, An Open Letter to Hobbyists (Feb. 3, 1976) (an angry letter written by a young
Bill Gates complaining about widespread piracy of Microsoft’s first software product–Altair
BASIC, written by Bill Gates, Paul Allen, and Monte Davidoff; “As the majority of hobbyists
must be aware, most of you steal your software. Hardware must be paid for, but software is
something to share. Who cares if people who worked on it get paid? Is this fair?),
http://www.lettersofnote.com/2009/10/most-of-you-steal-your-software.html.

33 See Menell, Tailoring Legal Protection for Computer Software, supra note __, at 1347-51.

34 See Baker v. Selden, 101 U.S. 99 (1879) (“To give to the author of the book an exclusive
property in the art described therein, when no examination of its novelty has ever been officially
made, would be a surprise and a fraud upon the public. That is the province of letters-patent, not
of copyright. The claim to an invention or discovery of an art or manufacture must be subjected
to the examination of the Patent Office before an exclusive right therein can be obtained; and it
can only be secured by a patent from the government.”).

35 See Feist Publications, Inc. v. Rural Telephone Service Co., Inc., 499 U.S. 340 (1991).

36 See MARK A. LEMLEY, PETER S. MENELL, & ROBERT P. MERGES, INTELLECTUAL PROPERTY IN

THE NEW TECHNOLOGICAL AGE: 2016, VOL II: COPYRIGHTS, TRADEMARKS & STATE IP
PROTECTIONS, IV(E) (2016).

37 See id.; 17 U.S.C. § 106(2) (right to prepare derivative works).

38 At the time, copyright protection lasted for 56 years from publication, whereas patent
protection lasted for 17 years from grant. Congress was planning to significantly expand
copyright duration (to life of the author plus 50 years or 75 years in the case of entity authors) at
the time that the software protection issue arose.

-12-

working for nearly two decades to overhaul the Copyright Act of 1909 and was nearing closure
in the early to mid 1970s.39 Faced with the difficult challenge of fitting computer and other new
information technologies under the existing umbrella of intellectual property protection,
Congress established the National Commission on New Technological Uses of Copyrighted
Works (CONTU) to study the implications of the new technologies and recommend revisions to
federal intellectual property law.40 As a stopgap, Congress included computers software within
the scope of “literary works” in the Copyright Act of 1976 (“1976 Act”).41 Other provisions of
the 1976 Act, however, maintained traditional exclusions for ideas and functional features.42

After conducting extensive hearings and receiving expert reports, a majority of
CONTU’s blue-ribbon panel of copyright authorities and interest group representatives
concluded that the intellectual work embodied in computer software should be protected under
copyright law, notwithstanding the fundamental principle that copyright cannot protect “any
idea, procedure, process, system, method of operation, concept, principle, or discovery”43 and the

39 See Peter S. Menell, In Search of Copyright’s Lost Ark: Interpreting the Right to Distribute in
the Internet Age, 59 J. COPYRIGHT SOC’Y U.S.A. 1 (2011).

40 Act of Dec. 31, 1974, Pub. L. No. 93-573, § 201, 88 Stat. 1873.

41 The Act includes “literary works” within the class of “works of authorship.” See 17 U.S.C. §
102(a)(1). The House Report explains that “[t]he term ‘literary works’ does not connote any
criterion of literary merit or qualitative value: it includes catalogs, directories, and similar
factual, reference, or instructional works and compilations of data. It also includes computer
data bases, and computer programs to the extent that they incorporate authorship in the
programmer’s expression of original ideas, as distinguished from the ideas themselves.” H.R.
Rep. No. 94-1476, 94th Cong., 2d Sess. 53-54 (1976) (emphasis added).

42 See 17 U.S.C. § 102(b) (“In no case does copyright protection for an original work of
authorship extend to any idea, procedure, process, system, method of operation, concept,
principle, or discovery, regardless of the form in which it is described, explained, illustrated, or
embodied in such work.”); id. at § 101 (“‘Pictorial, graphic, and sculptural works’ include
two-dimensional and three-dimensional works . . . Such works shall include works of artistic
craftsmanship insofar as their form but not their mechanical or utilitarian aspects are concerned;
the design of a useful article, as defined in this section, shall be considered a pictorial, graphic,
or sculptural work only if, and only to the extent that, such design incorporates pictorial, graphic,
or sculptural features that can be identified separately from, and are capable of existing
independently of, the utilitarian aspects of the article”; id. at § 101 (“A ‘useful article’ is an
article having an intrinsic utilitarian function that is not merely to portray the appearance of the
article or to convey information. An article that is normally a part of a useful article is considered
a ‘useful article.’”).

43 17 U.S.C. § 102(b).

-13-

Supreme Court’s foundational decision in Baker v. Selden.44 CONTU recommended two modest
changes to the 1976 Act: (1) adding a definition of a computer program: “A ‘computer program’
is a set of statements or instructions to be used directly or indirectly in a computer in order to
bring about a certain result.”; and (2) expressly immunizing “the rightful possessor of a copy of a
computer program” to run the program and to make a backup copy of the program from
infringement liability.45 Congress implemented CONTU’s recommendation in its 1980
amendments to federal copyright law with one confusing wording change.46

The CONTU FINAL REPORT explained that while”one is always free to make a machine
perform any conceivable process (in the absence of a patent), [] one is not free to take another's
program,” subject to copyright's limiting doctrines-originality and the idea/expression
dichotomy.47 The Report further explained that

 The ‘idea-expression identity’ exception provides that copyrighted language
may be copied without infringing when there is but a limited number of ways to
express a given idea. This rule is the logical extension of the fundamental
principle that copyright cannot protect ideas. In the computer context this means
that when specific instructions, even though previously copyrighted, are the only
and essential means of accomplishing a given task, their later use by another will
not amount to an infringement.48

Thus, while recognizing important limitations on copyright protection for computer

44 See NATIONAL COMMISSION ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FINAL

REPORT 1 (1979) [hereinafter CONTU FINAL REPORT]; but see id. at 27-37 (Commissioner
Hersey, dissenting) (arguing that ‘forcible wrenching’ would be required to protect computer
programs under the copyright law); id. at 37-38 (Commissioner Karpatkin, dissenting) (same);
cf. id. at 26-27 (Commissioner Melville Nimmer, concurring) (warning that CONTU
recommendations might take copyright law ‘beyond the breaking point,’ converting it into a
general misappropriation law).

45 See id. at 12.

46 Act of Dec. 12, 1980, Pub. L. No. 96-517, 94 Stat. 3007, 3028 (codified at 17 U.S.C. §§ 101,
117). For reasons that were not explained in the legislative history of the 1980 amendments,
Congress narrowed CONTU’s category of “rightful possessor” to “rightful owner.” See NIMMER

ON COPYRIGHT § 8.08[B][1][c][ii].

47 See CONTU FINAL REPORT at 20. Courts have treated the CONTU FINAL REPORT as
legislative history to the 1980 amendments to the 1976 Act. See Vault Corp. v. Quaid Software
Ltd., 847 F.2d 255, 260-61 (5th Cir. 1988); Apple Computer, Inc. v. Franklin Computer Corp.,
714 F.2d 1240, 1252 (3d Cir. 1983).

48 CONTU FINAL REPORT at 20 (footnote omitted).

-14-

software, including the § 102(b) limitations, Congress intended that software programmers
would garner protection for their programming design and coding choices to the extent that the
expression was separable from the underlying ideas. In this way, the general programming ideas
and unoriginal programming choices remain free for others to use while the creative effort in
particularized programming choices and compilations, especially in complex programs, gains
protection from copyists.

2. Network Economics

The computer and software industries ushered in a revolutionary economic era. Whereas
the major conventional markets–from automobiles to conventional appliances, raw materials,
food, and consumer products–have thrived on competition among many suppliers, computer
hardware and software markets tended toward a single or few dominant players for a distinctive
reason. That is largely because consumers, programmers, and system users care about features
and network effects. They want to communicate among devices and software running on their
devices. They value the investment that they have made in learning software interfaces. They
care about the interoperability–among hardware devices, between software and hardware
devices, and across software. Once consumer or programmer bandwagons take hold, markets tip
decisively toward an emerging dominant platform.

Robert Metcalfe, a co-inventor of the Ethernet,49 captured this dynamic in simple
mathematical and economic terms: “the value of a telecommunications network is proportional
to the square of the number of connected users of the system.”50 Like human languages, common
(and interoperable) computer languages and interfaces are incredibly important. Such network
effects have come to dominate computer hardware, software, and Internet markets.

Network effects generated new strategies among computer hardware and software
companies. The ability to control interfaces through intellectual property protection,
technological protections (digital rights management), and contracts became a major part of
these industries. Having innovative, competitively-priced products continued to be important,
but establishing and building a successful software-based platform became the key to success.51

Companies could use API stratgies to lock-in consumers and lock-out competitors.

As my anecdote about the IBM PC illustrated,52 hardware companies that had a large
installed base of users could attract software developers to write for their platform, thereby

49 See Ethernet, https://en.wikipedia.org/wiki/Ethernet.

50 See Metcalfe’s law, WIKIPEDIA, https://en.wikipedia.org/wiki/Metcalfe%27s_law.

51 See CARL SHAPIRO & HAL R. VARIAN, INFORMATION RULES: A STRATEGIC GUIDE TO THE

NETWORK ECONOMY 103-226 (1999).

52 See, supra, TAN __-__.

-15-

generating a virtuous feedback loop: what economists call increasing returns. As more software
became available for the IBM PC, the functionality of the base computer expanded, which
spurred greater demand for the IBM PC. This growth fueled programmers to write programs for
that platform. It was only after Phoenix and Compaq successfully reverse-engineered and
produced clean room versions of the IBM BIOS that IBM’s hold on the microcomputer
marketplace loosened, resulting in robust competition and a dramatic drop in microcomputer
prices. Other computer companies used APIs strategies to control access to their video game
platforms, cell phone networks, replacement parts (such as ink cartridges for printers), and
graphical user interfaces.

The contours of the intellectual property rules–copyright, patent, trade secret, anti-
circumvention laws as well as the preemption of contractual restrictions–governing
interoperability strategies became a major battleground.

3. The Industrial Backdrop

Companies and programmers lined up on all sides on the role of intellectual property
protection in controlling APIs. Many established hardware and software entities, such as IBM,
Digital Equipment Corporation, Apple Computer Corporation, and Lotus Development
Corporation, in conjunction with leading industry trade organizations (Computer and Business
Equipment Manufacturers Association (CBEMA) and the Software Publishers Association),
advocated for strong copyright protection for computer interfaces.53

The free and open source software movement, formed through grass-roots organizing
among programmers and academic researchers who valued collaborative research and sharing of
software, opposed intellectual property protection for computer software.54 These researchers
believe that proprietary limitations on access to and use of software undermines freedom and
innovation.

Open source software traces its origins to the early 1970s and the culture of collaborative
research on computer software that existed in many software research environments.55 To
perpetuate that model in the face of increasingly proprietary software, Richard Stallman, a
former researcher in MIT’s Artificial Intelligence Laboratory, established the Free Software
Foundation (FSF) to promote users’ rights to use, study, copy, modify, and redistribute computer

53 See generally JONATHAN BAND & MASANOBU KATOH, INTERFACES ON TRIAL: INTELLECTUAL

PROPERTY AND INTEROPERABILITY IN THE GLOBAL SOFTWARE INDUSTRY xvii, 120-22 (1995).

54 See STEVEN WEBER, THE SUCCESS OF OPEN SOURCE (2004).

55 See id.; ERIC S. RAYMOND, THE CATHEDRAL AND THE BAZAAR: MUSINGS ON LINUX AND OPEN

SOURCE BY AN ACCIDENTAL REVOLUTIONARY (1999).

-16-

programs.56 Such rights diverge from copyright law’s traditional bundle of rights. For that
reason, FSF developed the GNU (“GNU’s Not Unix!”) General Public License (GPL), an
unconventional licensing agreement (referred to as “copyleft”) designed to prevent programmers
from building proprietary limitations into “free” software.57 The General Public License
guarantees end users the freedoms to run, study, share (copy), and modify the software so long as
the users permit use of any derivative works on the same terms.58 In this way, GPL software
“infects” derivative works and spreads, like a virus, through the ecosystem in an effort to liberate
computer software from proprietary rights.

Stallman set forth a task list for the development of a viable UNIX-compatible open
source operating system.59 Many programmers throughout the world contributed to this effort on
a voluntary basis, and by the late 1980s most of the components had been assembled. The project
gained substantial momentum in 1991 when Linus Torvalds developed a UNIX-compatible
kernel,60 which he called “Linux.” Torvalds structured the evolution of his component on the
GNU GPL “open source” model. The integration of the GNU and Linux components resulted in
a UNIX-compatible open source program (referred to as GNU/Linux) and has since become
widely used throughout the computing world.61 In the process, it has spawned a large community
of computer programmers and service organizations committed to the principles of open source
development. The growth and success of Linux brought the open source movement into the
mainstream computer software industry.

A parallel effort, spearheaded by the Computer Systems Research Group (CSRG) of the

56 See Richard Stallman, https://en.wikipedia.org/wiki/Richard_Stallman.

57 See GNU General Public License,
https://en.wikipedia.org/wiki/GNU_General_Public_License.

58 See Brian W. Carver, Share and Share Alike: Understanding and Enforcing Open Source and
Free Software Licenses, 20 BERKELEY TECH. L.J. 443 (2005).

59 See GNU Project, https://en.wikipedia.org/wiki/GNU_Project. The UNIX operating system,
initially developed by researchers at MIT, AT&T, and General Electric in the late 1960s and
early 1970s, became a foundation for modern computer operating system design. See History of
Unix, https://en.wikipedia.org/wiki/History_of_Unix; Marshall Kirk McKusick, Twenty Years of
Berkeley Unix: From AT&T Owned to Freely Redistributable, in OPEN SOURCES: VOICES FROM

THE OPEN SOURCE REVOLUTION 31, 36-39 (Chris DiBona et al. eds., 1999).

60 The kernel is a computer program that constitutes the central core of a computer’s operating
system. See Kernel (operating system), https://en.wikipedia.org/wiki/Kernel_(operating_system).

61 For example, the Linux kernal it is an integral component of the Android operating system.
See Android (operating system), WIKIPEDIA,
https://en.wikipedia.org/wiki/Android_(operating_system).

-17-

University of California, Berkeley from 1977 to 1995, produced another Unix operating system
derivative. Bill Joy, one of the founders of Sun Microsystems, played a key role in the
development of Berkeley Unix.62 In contrast to the GPL, the Berkeley Software Development
(BSD) project offered its software on a less restrictive basis.63 The distinction between GPL and
more permissive open software licenses plays a central role in the second wave of API copyright
litigation.64

Recognizing the importance of interoperability to consumers, competition, and
cumulative innovation, a new generation of technology companies formed the American
Committee for Interoperable Systems (ACIS) in the early 1990s to advocate for less protectionist
intellectual property policies for computer software.65 Sun Microsystems and Oracle were among
ACIS’s founding members.66 Peter M.C. Choy, Sun’s Deputy General Counsel, served as
ACIS’s Chairman. In a letter to President-Elect William Clinton’s transition team, Choy
advocated a scope of copyright protection for computer software “which balances incentives for
developers with the public interest in competitiveness, open systems and incremental innovation.
Sun believes, as its fellow members of ACIS believe, that the over-protection of technology
under intellectual property law may lead. . . . to ‘monopolistic stagnation’ in the industry.”67 Sun
and Oracle play a central role in the second wave of API litigation.

 C. The API Copyright War

These conditions produced a multi-front war over copyright protection for network

62 See Berkeley Software Distribution,
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution; Bill Joy,
https://en.wikipedia.org/wiki/Bill_Joy.

63 See Permissive software licence, https://en.wikipedia.org/wiki/Permissive_software_licence.

64 See, infra, TAN __.

65 See id.; ACIS, Statement of Principles (“ACIS was created . . . to support policies and
principles of intellectual property law providing for a careful balance between the goals of strong
protection and rewards for innovation, and the goals of interoperability, fair competition and
open systems.”), contained in attachment to Letter from Peter M.C. Choy to Professor Barry E.
Carter (Nov. 5, 1992),
https://www.ccianet.org/wp-content/uploads/2014/10/ACIS-Letter-to-Clinton-Admin-1992.pdf.

66 See attachment to Letter from Peter M.C. Choy to Professor Barry E. Carter (Nov. 5, 1992),
https://www.ccianet.org/wp-content/uploads/2014/10/ACIS-Letter-to-Clinton-Admin-1992.pdf.

67 See Letter from Peter M.C. Choy to Professor Barry E. Carter (Nov. 5, 1992),
https://www.ccianet.org/wp-content/uploads/2014/10/ACIS-Letter-to-Clinton-Admin-1992.pdf.

-18-

features of computer software.68 The war played out across various markets–from microcomputer
operating systems to job scheduling software for mainframe computers, mobile phone networks,
computer-user interfaces, video game devices, printer cartridges, garage door openers, and all
manner of application programs (business systems, design programs, video games, and
spreadsheets). Nearly every major software copyright litigation involved interoperability
elements. Controlling the access features of software platforms produced the large-scale profits
that could justify the costs of federal copyright litigation.

The courts faced daunting challenges in applying a complex new statute to a rapidly
developing, technologically complex industry. Perhaps not surprisingly, they initially struggled
to find the right balance. As I wrote in 1998, “[o]ver the course of the past decade, the federal
courts have reasserted fundamental limitations on the scope of copyright, effectively excluding
network features from the domain of copyright protection.”69 I attributed the dramatic turnaround
to copyrights’s adaptability to technological change, education of the courts about the proper
interpretation of copyright law, and the ability of the federal judiciary “to correct false starts and
further the purposes and maintain the property role of copyright law within the broader
framework of our intellectual property system.”70

In order to understand the confusion that has emerged in the contemporary wave of API
copyright litigation, it will be useful to trace the historical development of software copyright
jurisprudence, as well as subsequent developments in copyright legislation.

1. Jurisprudence

The aphorism “bad facts make bad law”71 captures early development of software
copyright jurisprudence. Such cases produced an inauspicious start to software copyright
jurisprudence. By the early 1990s, courts came to better appreciate both the technical aspects of
computer programming and how such works fit within copyright law.

 i. The Early Years

68 See generally Peter S. Menell, An Epitaph for Traditional Copyright Protection of Network
Features of Computer Software, 43 Antitrust Bull. 651 (1998).

69 Id. at 652.

70 Id. at 653-54.

71 See, e.g., Haig v. Agee, 453 U.S. 280, 319 (1981) (Brennan, J., dissenting) (“bad facts make
bad law”); see also N. Sec. Co. v. United States, 193 U.S. 197, 400 (1904) (Holmes, J.,
dissenting) (“Great cases, like hard cases, make bad law.”); cf. Frederick Schauer, Do Cases
Make Bad Law?, 73 U. Chi. L. Rev. 883, 884 (2006) (arguing that the act of deciding cases itself
under the common law makes bad law).

-19-

The first major cases to address copyright protection for interoperable features of
computer software pitted Apple Computer Corporation, then a young, break-out microcomputer
company, against cavalier, unscrupulous competitors offering discount “interoperable” Apple II
clones.72 The clone makers quickly entered the market by simply copying, bit by bit, Apple’s
operating system and application programs. In one case, the competitor had the audacity to call
their competing computer system “Pineapple.”73 Not only did these companies not write the
computer programs, they did not even know what was in the source code. That is why Apple was
able to prove factual copying by pointing out a suspicious similarity between Franklin
Computer’s code and Apple’s code: the presence of the an Apple programmer’s name in a
comment field.74

The defendants in these cases argued that copyright protection did not extend to non-
human readable (object code) formats of computer software and that the idea-expression doctrine
barred copyright protection for operating system programs. They further argued that copyright
protection should not stand in the way of their selling computers that can run programs written
for the Apple II.

Given the hard work that Apple put into developing the Apple II computer system and
the bundled operating system and application programs, the courts has little trouble validating
Apple’s complaint that verbatim copying of millions of bits of code constituted copyright
infringement. The 1976 Act, in conjunction with the CONTU REPORT, clearly extended
copyright protection in this circumstance.75 In that sense, the cases were easy.

Yet, due to the “bad facts”–blatant and cavalier piracy76–the Third Circuit went

72 See Apple Computer, Inc. v. Franklin Computer Corp., 545 F.Supp. 812 (E.D. Pa. 1982),
rev’d, 714 F.2d 1240 (3d Cir. 1983); Apple Computer, Inc. v. Formula Int’l, Inc., 562 F. Supp.
775 (C.D. Cal. 1983), aff’d, 725 F.2d 521, 524-25 (9th Cir. 1984).

73 Apple Computer, Inc. v. Formula Int’l, Inc., 562 F. Supp. at 777, 785 (C.D. Cal. 1983), aff’d,
725 F.2d at 526.

74 Apple Computer, Inc., 714 F.2d at 1245.

75 See Note, Copyright Protection of Computer Object Code, 96 HARV. L. REV. 1723, 1743-44
(1983). The emulation of particular aspects of a computer program, such as input formats,
however, raised more complex API issues. See, e.g., Synercom Technology, Inc. v. University
Computing Co., 462 F.Supp. 1003, 1011-12 (N.D.Tex. 1978).

76 After reporting that “Apple estimated the ‘works in suit’ took 46 man-months to produce at a
cost of over $740,000, not including the time or cost of creating or acquiring earlier versions of
the programs or the expense of marketing the programs,” the Third Circuit noted that Franklin’s
vice-president of engineering “admitted copying each of the works in suit from the Apple
programs” because “it was not feasible for Franklin to write its own operating system programs.”

-20-

overboard in some of its dicta. In addressing the defendant’s interoperability argument, the court
opined that “total compatibility with independently developed application programs . . . is a
commercial and competitive objective which does not enter into the somewhat metaphysical
issue of whether particular ideas and expressions have merged.”77 Since two entirely different
programs can achieve the same “certain result[s]”–for example, generate the same set of
protocols needed for interoperability–the court was not justified in making such an expansive
statement about the scope of copyright protection for computer program elements. CONTU was
clear that “[o]ne is always free to make the machine do the same thing as it would if it had the
copyrighted work placed in it, but only by one’s own creative effort rather than by piracy.”78

Given the verbatim copying of millions of bits of object code, there was no need to address the
interoperability issue. The defendant offered no explanation of which elements of the program
were protectable and which were not.

The next major software copyright appellate decision also arose from the Third Circuit.
The “bad facts” in this case involved a messy consulting arrangement. In Whelan Associates,
Inc. v. Jaslow Dental Laboratory, Inc.,79 the owner of a dental laboratory hired a custom
software firm to develop a computer program that would organize the bookkeeping and
administrative tasks of its business. Whelan, the principal programmer, interviewed employees
about the operation of the laboratory and then developed a program to run on the laboratory’s
IBM Series One computer. Under the terms of an agreement, Whelan retained the copyright in
the program and agreed to use its best efforts to improve the program while Jaslow Laboratory
agreed to use its best efforts to market the program. Rand Jaslow, an officer and shareholder of
the laboratory, created a version of the program that would run on other computer systems.
Whelan sued for copyright infringement.

At trial, the evidence showed that the Jaslow program did not literally copy Whelan’s
code, but there were overall structural similarities between the two programs. As a means of
distinguishing protectable expression from unprotectable idea, the court reasoned:

[T]he purpose or function of a utilitarian work would be the work’s idea, and
everything that is not necessary to that purpose or function would be part of the
expression of the idea. Where there are many means of achieving the desired
purpose, then the particular means chosen is not necessary to the purpose; hence,
there is expression, not idea.80

Apple Computer v. Franklin Computer Corp., 714 F.2d at 1245.

77 See Apple Computer v. Franklin Computer Corp., 714 F.2d at 1253.

78 See CONTU REPORT, supra note __, at 21.

79 797 F.2d 1222 (3d Cir. 1986).

80 Id. at 1236 (emphasis in original; citations omitted).

-21-

In applying this rule, the court defined the idea as “the efficient management of a dental
laboratory,” for which countless ways of expressing the idea would be possible.81 Drawing the
idea/expression dichotomy at such a high level of abstraction implies an expansive scope of
copyright protection. Furthermore, the court’s conflation of merger analysis and the
idea/expression dichotomy implicitly allows copyright protection of procedures, processes,
systems, and methods of operation, that are expressly excluded under § 102(b).82

Although the case did not directly address copyright protection for interoperable features
of computer code, the court’s mode of analysis expanded the scope of copyright protection for
all aspects of computer programs. If everything below the general purpose of the program was
protectable under copyright law, then it would follow that particular protocols were protectable
because there would be other ways of serving the same general purpose of the program. Such a
result would effectively bar competitors from developing interoperable programs and computer
systems.

The next appellate decision to address the scope of protection for computer software also
involved “bad facts,” the “rogue employee(s)” scenario.83 Johnson Controls had developed
automated process control systems for wastewater treatment plants. Several of its former
employees who were intimately familiar with this software formed Phoenix Control Systems, a
competing company offering similar software products and services. After Johnson Controls
sued for copyright infringement, misappropriation of trade secrets, unfair competition, trade
libel, and interference with contractual relations, the district court granted a preliminary
injunction prohibiting Phoenix Control Systems from copying, distributing, preparing derivatives
of, publishing, or representing that they have the ability to use Johnson Controls’ computer
software.

Based on a detailed special master report identifying various similarities between the
parties’ programs, the district court concluded that there was ample basis for finding substantial
similarity of protected expression. In affirming grant of the preliminary injunction, the Ninth
Circuit explained that “[w]hether the non-literal components of a program, including the

81 Id.

82 The Whelan decision was embraced by lawyers representing plaintiffs in the early major cases
who pushed for analogizing computer software to literary and dramatic works. See Anthony L.
Clapes, Patrick Lynch & Mark R. Steinberg, Silicon Epics and Binary Bards: Determining the
Proper Scope of Copyright Protection for Computer Programs, 34 U.C.L.A. L. REV. 1493
(1987) (counsel for IBM and Lotus); Arthur Miller, Copyright Protection for Computer
Programs, Databases, and Computer-Generated Works: Is Anything New Since CONTU?, 106
HARV. L. REV. 977 (1993) (counsel for Lotus); Jack Brown, ‘Analytical Dissection’ of
Copyrighted Computer Software-Complicating the Simple and Confounding the Complex, 25
ARIZ. ST. L.J. 801 (1993) (counsel for Apple Computer Corp.)

83 See Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173 (9th Cir. 1989).

-22-

structure, sequence and organization and user interface, are protected depends on whether, on the
particular facts of each case, the component in question qualifies as an expression of an idea, or
an idea itself.”84 The court’s terse analysis notes the sophistication of the Johnson Controls’
program and comments that the creativity in the structure of the program “will no doubt be
revisited at trial.”85 The decision does not refer to interoperability or APIs. It concludes merely
that “[n]onliteral components of computer software may be protected by copyright where they
constitute expression, rather than ideas.”86 The decision neither cites the Whelan case, which was
decided more than two years prior to the Ninth Circuit argument, nor adopts its expansive
analytic framework.

 ii. The Modern Software Copyright Era

The Whelan test was roundly criticized by commentators87 and other courts began
developing alternative approaches to the scope of copyright protection that better comported
with the fundamental principles of copyright protection. A few months after the Whelan
decision, the Fifth Circuit confronted a similar claim of copyright infringement based upon
structural similarities between two programs designed to provide cotton growers with
information regarding cotton prices and availability, accounting services, and a means for
conducting cotton transactions electronically.88 In declining to follow the Whelan approach, the
court found that the similarities in the programs were dictated largely by standard practices in the
cotton market–what the court called “externalities”–such as the “cotton recap sheet” for
summarizing basic transaction information, which constitute unprotectable ideas.89

In 1992, the Second Circuit adapted Judge Learned Hand’s seminal abstraction-filtration-

84 Id. at 1175.

85 Id. at 1176.

86 Id. at 1177.

87 See, e.g., LaST Frontier Copyright Report, supra note __, at 20-21; Menell, Analysis of the
Scope of Copyright Protection for Application Programs, supra note __, at 1074; John Englund,
Idea, Process, or Protected Expression?: Determining the Scope of Copyright Protection of the
Structure of Computer Programs, 88 MICH. L. REV. 866, 881 (1990); 3 NIMMER ON COPYRIGHT

§ 13.03(F), at 13-62.34.

88 Plains Cotton Cooperative Assoc. v. Goodpasture Computer Service, Inc., 807 F.2d 1256 (5th
Cir. 1987).

89 Id. at 1262. The court found persuasive the decision in Synercom Technology, Inc. v.
University Computing Co., 462 F. Supp. 1003, 1013 (N.D.Tex. 1978), which
analogized the “input formats” of a computer program (the organization and configuration of
information to be inputted into a computer) to the “figure-H” pattern of an automobile stick shift.

-23-

comparison90 to computer software analysis.91 Like many of the early software copyright cases,
Computer Associates v. Altai also involved “bad facts”: the rogue employee scenario. But unlike
the Third Circuit in Franklin and Whelan, the Second Circuit focused on the foundational
principles undergirding the larger intellectual property system and avoided loose and expansive
dicta.

Computer Associates (CA), a leading mainframe software provider, had developed
SCHEDULER, a job scheduling program that worked with IBM mainframe computers. Part of
the success of this program was that it had a sub-component, called ADAPTER, which
interoperated with any of the three IBM mainframes (DOS/VSE, MVS, and VM/CMS). As a
result, the user did not need to customize its programs for each of the IBM mainframes.
ADAPTER ensured that programs written for SCHEDULER would run on any of the three IBM
mainframes.

Altai was developing its own job scheduling software92 for the IBM mainframes. It hired
James Arney, a former CA programmer. Unbeknownst to Altai’s management, Arney copied
30% of OSCAR's code from CA’s ADAPTER program into Altai’s ZEKE program.93 When
Altai management learned of the copying, the company initiated a clean room94 rewrite of the
program. Altai accepted responsibility for copyright infringement based on Arney’s misdeeds
and was ordered to pay $364,444 in damages.95

Altai did not challenge this ruling, but sought to market the revised clean room version of
OSCAR. CA claimed that this version was also infringing due to structural similarities at various
levels, such as flow charts, inter-modular relationships, parameter lists, and macros. The district
court criticized Whelan’s “simplistic test” for determining similarity between computer

90 See Nichols v. Universal Pictures Corp., 45 F.2d 119 (2d Cir.1930).

91 See Computer Associates International v. Altai, Inc., 982 F.2d 693 (2nd Cir. 1992).

92 See Job scheduler, WIKIPEDIA, https://en.wikipedia.org/wiki/Job_scheduler.

93 982 F.2d at 699.

94 A clean room process insulates programmers from copyright protected code in producing code
that accomplishes the same functions as a target program based solely on the functional
specifications. Such a process ensures a program is independently written and hence not copied
except with regard to unprotectable elements. See generally P. Anthony Sammi, Christopher A.
Lisy, & Andrew Gish, Good Clean Fun: Using Clean Room Procedures in Intellectual Property
Litigation, 25 No. 10 INTELL. PROP. & TECH. L.J. 3 (2013); infra TAN __-__.

95 982 F.2d at 696.

-24-

programs,96 rejecting the notion that there is but one idea per program and that as long as there
were alternative ways of expressing that one idea, then any particular version was protectable
under copyright law. Focusing on the various levels of the computer programs at issue, the court
determined that the similarities between the programs were dictated by external factors–such as
the interface specifications of the IBM operating system and the demands of functionality–and
hence no protected code was infringed.

On appeal, the Second Circuit fleshed out a detailed analytical framework for
determining copyright infringement of computer code:

In ascertaining substantial similarity . . ., a court would first break down the
allegedly infringed program into its constituent structural parts. Then, by
examining each of these parts for such things as incorporated ideas, expression
that is necessarily incidental to those ideas, and elements that are taken from the
public domain, a court would then be able to sift out all non-protectable material.
Left with a kernel, or perhaps kernels, of creative expression after following this
process of elimination, the court’s last step would be to compare this material
with the structure of an allegedly infringing program.97

The court’s abstraction-filtration-comparison test recognized that an idea could exist at multiple
levels of a computer program and not solely at the most abstract level. Furthermore, the ultimate
comparison is not between the programs as a whole but must focus solely on whether protectable
elements of the program were copied. Of most importance with regard to fostering
interoperability, the court held that copyright protection did not extend to those program
elements where the programmer’s “freedom to choose” is

circumscribed by extrinsic considerations such as (1) mechanical specifications of
the computer on that a particular program is intended to run; (2) compatibility
requirements of other programs with which a program is designed to operate in
conjunction; (3) computer manufacturers’ design standards; (4) demands of the
industry being serviced; and (5) widely accepted programming practices within
the computer industry.98

96 775 F. Supp. 544, 558 (E.D.N.Y. 1991).

97 982 F.2d at 706.

98 Id. at 709-10. The court observed that “[w]hile, hypothetically, there might be a myriad ways
in which a programmer may effectuate certain functions within a program–i.e., express the idea
embodies in a given subroutine–efficiency concerns may so narrow the practical range of choice
as to make only one or two forms of expression workable operations.” Id. at 708.

-25-

Directly rejecting the dictum in Apple v. Franklin,99 the Second Circuit recognized that external
factors such as interface specifications, de facto industry standards, and accepted programming
practices are not protectable under copyright law. The formulation of the Second Circuit test
judges these external factors at the time of the allegedly infringing activities (i.e., ex post), not at
the time that the first program is written.100

Commentators warmly embraced the Altai decision101 and the abstraction-filtration-
-comparison approach has been universally adopted by the courts.102

The Computer Associates case addressed programmers’ freedom to write code to
interoperate with externally-established APIs–in that case by IBM. IBM had not challenged
either CA’s or Altai’s used of its interface specifications. It welcomed other companies
developing software for its mainframes. Thus, the case did not specifically address whether the
API developer could assert a copyright infringement claim based on unauthorized use of their
interface specifications. That issue would emerge in a series of cases involving video games and

99 See Apple Computer v. Franklin Computer Corp., 714 F.2d at 1236.

100 The court emphasized that the first to write a program for a particular application should not
be able to “‘lock up’ basic programming techniques as implemented in programs to perform
particular tasks.” 982 F.2d at 712 (quoting Menell, Analysis of the Scope of Copyright Protection
for Application Programs, 41 STAN. L. REV. 1045, 1087 (1989)).

101 See Bender, Computer Associates v. Altai: Rationality Prevails, THE COMPUTER LAWYER,
Aug. 1992, at 1; Peter S. Menell, The Challenges of Reforming Intellectual Property Protection
for Computer Software, 94 COLUM. L. REV. 2644, 2652 (1994); Mark A. Lemley, Convergence
in the Law of Software Copyright?, 10 HIGH TECH. L.J. 1 (1995).

102 See Peter S. Menell, Envisioning Copyright Law’s Digital Future, 46 N.Y.L. SCH. L. REV. 63,
84-85 (2002); Lemley, supra note __ (collecting cases). In Gates Rubber v. Bando Chem. Indus.,
Ltd., 9 F.3d 823, 836-43 (10th Cir. 1993), the Tenth Circuit expressly expanded the range of
external factors to be used in filtering out unprotectable elements to include hardware standards
and mechanical specifications, software standards and compatibility requirements, industry
programming practices, and practices and demands of the industry being serviced. The court also
noted that processes used in designing a computer system, or components therein (e.g., modules,
algorithms), must also be filtered out as unprotectable under § 102(b). While not ruling that
interface specifications are uncopyrightable as a matter of law, the Eleventh Circuit’s decision
in Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1547 (11th Cir. 1996), held that “external
considerations such as compatibility may negate a finding of infringement.” The court
commented that “[i]t is particularly important to exclude methods of operation and processes
from the scope of copyright in computer programs because much of the content of computer
programs is patentable. Were we to permit an author to claim copyright protection for those
elements of the work that should be the province of patent law, we would be undermining the
competitive principles that are fundamental to the patent system.” Id. at 1542, n.21.

-26-

spreadsheets.

The “bad facts” pattern continued in Atari Games Corp. v. Nintendo of America,103 an
early video game interoperability case. Nintendo embedded software security code in a patented
computer chip on its entertainment console and authorized game cartridges. Nintendo kept the
lock-out code secure by distributing it only on computer chips. Atari Games sought to decrypt
that code so that it could sell video games for the Nintendo game console without having to
license the proprietary chip. After failing to hack the chip, Atari Games gained access to
Nintendo’s source code from the Copyright Office based on a misleading assertion that it was
facing actual or prospective litigation.104 With the source code in hand and in violation of
Copyright Office regulations,105 Atari Games deciphered the lock-out code and developed an
interoperable program. After finding that Atari Games copied “more [computer code] than was
needed to make a game work on the [Nintendo] console,” the district court granted a preliminary
injunction enjoining Atari Games from manufacturing or distributing Nintendo’s computer
program.106

Atari Games appealed the decision to Federal Circuit.107 Applying Ninth Circuit law, the
Federal Circuit affirmed grant of the preliminary injunction. The court further explained that:

Nintendo seeks to protect the creative element of its program beyond the literal
expression used to effect the unlocking process. The district court defined the
unprotectable [] idea or process as the generation of a data stream to unlock a
console. This court discerns no clear error in the district court’s conclusion. The
unique arrangement of computer program expression which generates that data
stream does not merge with the process so long as alternate expressions are
available. Formula Int’l, 725 F.2d at 525. In this case, Nintendo has produced

103 18 U.S.P.Q.2d 1935 (N.D. Cal. 1991), aff’d, 975 F.2d 832 (Fed. Cir. 1992).

104 See 975 F.2d at 841.

105 Requesters agree “not to copy . . . the material to be inspected.” See U.S. COPYRIGHT OFFICE,
COMPENDIUM OF COPYRIGHT OFFICE PRACTICES II § 1902.01,
http://www.copyright.gov/history/comp/compendium-two-1988.pdf; see also 37 U.S.C. §
201.2(d)(2) (as amended through July 1, 1986) (permitting “reproduction only if: (1) the
copyright owner grants permission, (2) a court orders reproduction, or (3) . . . (ii) The Copyright
Office receives a written request from an attorney on behalf of either the plaintiff or defendant in
connection with litigation, actual or prospective, involving the copyrighted work. . . .”).

106 18 U.S.P.Q.2d at ___.

107 The patent infringement claims in the case vested exclusive appellate jurisdiction with the
Federal Circuit. See Atari Games Corp. v. Nintendo of Am., Inc., 897 F.2d 1572, 1575 (Fed.
Cir.1990).

-27-

expert testimony showing a multitude of different ways to generate a data stream
which unlocks the [Nintendo] console.108

The Federal Circuit implies that Atari Games could have avoided copyright infringement if it
had gained access to the lock-out code legitimately and had independently written the
implementing code: “[w]hen the nature of a work requires intermediate copying to understand
the ideas and processes in a copyrighted work, that nature supports a fair use for intermediate
copying. Thus, reverse engineering object code to discern the unprotectable ideas in a computer
program is a fair use.”109 The clear implication is that the particular lock-out code is an
unprotectable idea. Nonetheless, the court rejected Atari Games’ fair use defense on the ground
that it procured Nintendo’s source code unlawfully.110 The court further chastised Atari Games
for replicating more computer code from the unlock chip in its game cartridges than was
necessary to accomplish the unlock function.111

108 972 F.2d at 840.

109 The Federal Circuit emphasized the principle that the fair use doctrine generally “permits an
individual in rightful possession of a copy of a work to undertake necessary efforts to understand
the work’s ideas, processes, and methods of operation.” 975 F.2d at 842. The court noted that
“[a]n author cannot acquire patent-like protection by putting an idea, process, or method of
operation in an unintelligible format and asserting copyright infringement against those who try
to understand that idea, process, or method of operation.” Id. Applying these principles, the court
reasoned that “[w]hen the nature of a work requires intermediate copying to understand the ideas
and processes in a copyrighted work, that nature supports a fair use for intermediate copying.
Thus, reverse engineering object code to discern the unprotectable ideas in a computer program
is a fair use.” 975 F.2d at 843.

110 972 F.2d at 841-44 (“To invoke the fair use exception, an individual must possess an
authorized copy of a literary work.” (emphasis added)).

111 972 F.2d at 843-45 (“Any reproduction of protectable expression must be strictly necessary to
ascertain the bounds of protected information within the work.”). The court notes that “Nintendo
modified its . . . chip program in 1987. This modification deleted some instructions from the
original [] program. Nonetheless the [Atari Games] program contains instructions equivalent to
those deleted from the original [Nintendo] program. These unnecessary instructions strongly
suggest that the [Atari Games] program is substantially similar to the [Nintendo] program. See,
e.g., M. Kramer Mfg. Co. v. Andrews, 783 F.2d 421, 446 (4th Cir.1986) (“Courts have
consistently viewed ‘common errors’ as strongest evidence of copying.”) . . .” Id. at 845. This
passage indicates that the Federal Circuit conflated factual copying (which focuses on probative
similarity) with legal copying (which focuses on substantial similarity of protected expression).
See Johnson v. Gordon, 409 F.3d 12 (1st Cir. 2005); 4, NIMMER ON COPYRIGHT §13.03[A]
(explicating the distinction between probative and substantial similarity). In any case, without
seeing how much code was copied into the Atari Games’ video games, it is not possible to assess
the Federal Circuit’s assertion that Atari Games’ copying of Nintendo code constituted

-28-

The Ninth Circuit’s decision later that year in Sega Enterprises Ltd. v. Accolade112

expressly recognized the legitimacy of deciphering and copying particular lock-out codes for
purposes of developing interoperable products. Like Nintendo, Sega developed a successful
video game platform (Genesis) for which it licensed access to video game developers. Accolade,
a video game manufacturer, wanted to distribute versions of its game on the Genesis platform. It
did not, however, want to limit distribution exclusively to Genesis, as Sega required. Rather than
license access to Sega’s code, Accolade reverse engineered the access code through a
painstaking effort that entailed making hundreds of intermediate copies of Sega’s computer code.
Accolade then incorporated only those code elements (approximately 25 bytes in games
containing between 500,000 and 1.5 million bytes) that were necessary to achieve
interoperability with the Genesis platform into Accolade game cartridges.113

Sega sued Accolade for copyright and trademark infringement.114 In view of the
relatively small amount of Sega code in the Accolade game cartridges, Sega focused its
copyright claim on the making of intermediate copies of its full computer program made during
the process of reverse engineering. The district court rejected Accolade’s argument that such
intermediate copies constituted fair use and granted a preliminary injunction.115

The Ninth Circuit reversed the district court decision, holding that “disassembly of object
code in order to gain an understanding of the ideas and functional concepts embodied in the code
is a fair use that is privileged by section 107 of the Act.”116 The court determined that the policies
underlying the Copyright Act authorize disassembly of copyrighted object code and the making
of intermediate copies to determine those elements of code that are not protected by copyright
law.117 In reaching this conclusion, the Ninth Circuit ruled that the functional requirements for
compatibility with the Genesis [video game console are] aspects of Sega’s programs that are not

substantial similarity of protected expression.

112 977 F.2d 1510 (9th Cir. 1993).

113 977 F.2d at 1516.

114 The basis for the trademark claim was that the initialization code prompted a visual display
for approximately three seconds which read “PRODUCED BY OR UNDER LICENSE FROM
SEGA ENTERPRISES LTD.” 977 F.2d at 1515-16.

115 See Sega Enterprises Ltd. v. Accolade, Inc., 785 F.Supp. 1392, 1397-00 (N.D. Cal. 1992),
rev’d, 977 F.2d 1510 (9th Cir. 1993).

116 977 F.2d 1517.

117 See id.

-29-

protected by copyright.”118

In discussing the nature of the copyrighted work, the second fair use factor, the Ninth
Circuit addressed the application of the idea/expression dichotomy to computer code. The court
rejected the Whelan approach as “simplistic and overbroad” and endorsed the Altai approach as
the appropriate framework.119 “Under a test that breaks down a computer program into its
component subroutines and sub-subroutines and then identifies the idea or core functional
element of each, such as the test recently adopted by the Second Circuit in [Altai], many aspects
of the program are not protected by copyright.”120 In explaining why disassembly and
reproduction of object code constitutes fair use, the court explains that the “functional
specifications” of a computer program are unprotectable.121 In Sega, such specifications operate
the lock-out functionality. Thus, the court holds that the particular code or process for
interoperating with a copyrighted computer program is not protected by copyright law.122

The Ninth Circuit based its analysis on the architecture of the intellectual property
system:

If disassembly of copyrighted object code is per se an unfair use, the owner of the
copyright gains a de facto monopoly over the functional aspects of his
work—aspects that were expressly denied copyright protection by Congress. 17
U.S.C. § 102(b). In order to enjoy a lawful monopoly over the idea or functional
principle underlying a work, the creator of the work must satisfy the more
stringent standards imposed by the patent laws. Bonito Boats, Inc. v. Thunder
Craft Boats, Inc., 489 U.S. 141, 159–64 (1989). Sega does not hold a patent on
the Genesis console.123

The Ninth Circuit reaffirmed and expanded the Sega analysis in Sony Computer Entertainment,

118 977 F.2d at 1522 (citing 17 U.S.C. § 102(b)).

119 See id. at 1524-25.

120 See id. at 1525.

121 See id. at 1526.

122 The court notes that its fair use analysis “does not, of course, insulate Accolade from a claim
of copyright infringement with respect to its finished products. Sega has reserved the right to
raise such a claim, and it may do so on remand.” See id. at 1528. The fact that Accolade copied
only 25 bytes of code needed for interoperability explains why the issue was never pursued.

123 See id.

-30-

Inc. v. Connectix Corp.124

The Northern District of California and the Ninth Circuit later applied the Altai
framework to the graphical user interface features of a computer program in Apple Computer,
Inc. v. Microsoft Corp.125 Apple Computer alleged Microsoft’s Windows operating system
infringed Apple’s copyrights in the desktop graphical user interface for its Macintosh computer
system. The copyright issue was somewhat muddied by the existence of a licensing agreement
authorizing the defendants to use aspects of Apple’s graphical user interface. The court
determined, however, that the licensing agreement was not a complete defense to the copyright
claims and therefore undertook an analysis of the scope of copyright protection for a large range
of audiovisual elements of computer screen displays.126

In framing the analysis, the district court expressly recognized the relevance of network
externalities and the cumulative nature of innovation to the scope of copyright protection:

 Copyright’s purpose is to overcome the public goods externality resulting from
the non-excludability of copier/free riders who do not pay the costs of creation.
Peter S. Menell, An Analysis of the Scope of Copyright Protection for Application
Programs, 41 STAN. L. REV. 1045, 1059 (1989). But overly inclusive copyright
protection can produce its own negative effects by inhibiting the adoption of
compatible standards (and reducing so-called ‘network externalities’). Such
standards in a graphical user interface would enlarge the market for computers by
making it easier to learn how to use them. Id. at 1067-70. Striking the balance
between these considerations, especially in a new and rapidly changing medium
such as computer screen displays, represents a most ambitious enterprise. Cf.
Lotus Dev. Corp. v. Paperback Software Int’l, 740 F.Supp. 37 (D. Mass. 1990).
 While the Macintosh interface may be the fruit of considerable effort by its
designers, its success is the result of a host of factors, including the decision to
use the Motorola 68000 microprocessor, the tactical decision to require uniform
application interfaces, and the Macintosh’s notable advertising. And even were
Apple to isolate that part of its interface's success owing to its design efforts,
lengthy and concerted effort alone ‘does not always result in inherently
protectible expression.’ [quoting Computer Associates v. Altai, 982 F.2d at 711.]
 By virtue of having been the first commercially successful programmer to put
these generalized features together, Apple had several years of market dominance
in graphical user interfaces until Microsoft introduced Windows 3.0, the first

124 203 F.3d 596 (2000).

125 799 F. Supp. 1006 (1992), aff’d in part, rev’d in part, 35 F.2d 1435 (1994).

126 See Apple Computer, Inc. v. Microsoft Corp., 709 F. Supp. 925, 930 (N.D.Cal. 1989); Apple
Computer, Inc. v. Microsoft Corp., 717 F. Supp. 1428 (N.D.Cal. 1989); Apple Computer, Inc. v.
Microsoft Corp., 759 F. Supp. 1444 (N.D.Cal. 1991).

-31-

DOS-based windowing program to begin to rival the graphical capability of the
Macintosh. . . . To accept Apple’s ‘desktop metaphor’/‘look and feel’ arguments
would allow it to sweep within its proprietary embrace not only Windows and
NewWave but, at its option, also other desktop graphical user interfaces which
employ the standardized features of such interfaces, and to do this without
subjecting Apple’s claims of copyright to the scrutiny which courts have
historically employed. Apple’s copyrights would hold for programs in existence
now or in the future–for decades. One need not profess to know for sure where
should lie the line between expression and idea, between protection and
competition to sense with confidence that this would afford too much protection
and yield too little competition.
 The importance of such competition, and thus improvements or extensions of
past expressions, should not be minimized. The Ninth Circuit has long shown
concern about the uneasy balance which copyright seeks to strike:

 What is basically at stake is the extent of the copyright owner’s
monopoly—from how large an area of activity did Congress intend
to allow the copyright owner to exclude others?127

The court found that all of the alleged similarities between Apple’s works and
Microsoft’s Windows not authorized by the licensing agreement were either not protectable or
subject to at least one of the limiting doctrines. As a result, the court applied the “virtual
identity” standard in comparing the works as a whole128 and determined that no infringement had
occurred. On appeal, the Ninth Circuit affirmed the district court’s dissection of the work in
question to determine which elements are protectable, its filtering out of unprotectable elements,
and its application of the “virtual identity” standard in this context.129

The copyrightability of command systems for computer software arose most directly in
litigation surrounding spreadsheet technology. Building upon the success of the Visicalc
program developed for the Apple II computer, Lotus Corporation marketed an enhanced and
faster operating spreadsheet program incorporating many of Visicalc’s features and commands
into its 1-2-3 program for the IBM PC platform. Lotus 1-2-3 quickly became the market leader
for spreadsheets running on IBM and IBM-compatible machines, and knowledge of the program
became a valuable employment skill in the accounting and management fields. The 1-2-3

127 799 F. Supp. at 1025-26 (quoting Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d
738, 742 (9th Cir.1971)).

128 The Ninth Circuit developed the heightened “virtual identity” standard for evaluating thinly
protected works such as compilations of simple, narrowly protected elements, such as the visual
layout of a day planner (comprising a calendar and ruled lines), see Harper House, Inc. v.
Thomas Nelson, Inc., 889 F.2d 197 (9th Cir. 1989), and the audiovisual elements for a karate
videogame, Data East USA, Inc. v. Epyx, Inc., 862 F.2d 204 (9th Cir. 1988).

129 35 F.3d 1435 (9th Cir. 1994).

-32-

command hierarchy was particularly attractive because it provided a logical structuring of more
than 200 commands (see Figure 1) and it enabled users to developed customized programs
(called macros) to automate particular accounting and business planning functions in their
workplace. Businesses and users increasingly became “locked-in” to the 1-2-3 command
structure as their human capital investments in learning the system and library of macros grew.130

By the late 1980s, software developers seeking to enter the spreadsheet market could not ignore
the large premiums that many consumers placed on being able to use their investments in the
1-2-3 system in a new spreadsheet environment, even where a new spreadsheet product offered
significant technical improvements over the Lotus spreadsheet.131

In the mid 1980s, Paperback Software International introduced a spreadsheet program
(VP-Planner) that largely emulated the operation of the Lotus 1-2-3 product.132 Paperback was
careful to ensure that the program code did not copy the 1-2-3 source or object code.
Nonetheless, Lotus sued Paperback for copyright infringement, alleging that VP-Planner
inappropriately copied the 1-2-3 menu structure, which included the choice of command terms,
the structure and order of those terms, their presentation on the screen, and the long prompts.
Relying on the Third Circuit’s Whelan framework and hence focusing simply upon whether such
elements could be expressed in a variety of ways, Judge Keeton of the District Massachusetts
found for Lotus. Facing bankruptcy, Paperback agreed not to appeal the judgment as part of a

130 See Neil Gandal, Hedonic Price Indexes for Spreadsheets and an Empirical Test for Network
Externalities, 25 RAND J. ECON. 160 (1994).

131 See Hogan, Product Outlook: Fresh from the Spreadsheet Oven, PC WORLD, Feb. 1988, at
100-02; Magid, ‘Surpass’ Spreadsheet Program Lives Up to Name, Beats Lotus 1-2-3, WASH.
POST, Apr. 25, 1988, at 26.

132 See Licklider, Ten Years of Rows and Columns, BYTE, Dec. 1989, at 324.

-33-

settlement.133

After three years of intensive development efforts, Borland International, developer of
several successful software products including Turbo Pascal and Sidekick, introduced Quattro
Pro, its entry into the spreadsheet market. Unlike Paperback’s VP-Planner spreadsheet, which
offered little beyond the 1-2-3 product, Quattro Pro made substantial design and operational
improvements and earned accolades in the computer product review magazines.134 Also unlike
VP-Planner, Quattro Pro offered a new interface for its users, which many purchasers of
spreadsheets preferred over the 1-2-3 interface. Nonetheless, because of the large number of
users already familiar with the 1-2-3 command structure and those who had made substantial
investments in developing macros to run on the 1-2-3 platform, Borland considered it essential to
offer an operational mode based on the 1-2-3 command structure as well as macro compatibility.
Unlike VP-Planner, Borland’s visual representation of the 1-2-3 command mode substantially
differed from the 1-2-3 screen displays.

In order to clarify the legal status of its product, Borland brought a declaratory judgment
action in California. Through astute jurisdictional maneuvering, Lotus was able to have the case
consolidated with the Paperback case before Judge Keeton. After protracted litigation,135 Judge
Keeton found for Lotus. Using the Whelan framework, he held that a menu command structure
was protectable if there were many such structures theoretically available. He also found that
Borland was not permitted to achieve macro compatibility with the 1-2-3 product, distinguishing
the treatment of external constraints noted in the Altai decision on the ground that such
constraints had to exist at the time that the first program was created. Thus, Judge Keeton
effectively ruled that constraints governing the design of computer systems must be analyzed ex
ante (based on technical considerations at the time the first program is written) and not ex post
(after the market has operated to establish a de facto standard).

By the time that Borland’s appeal reached the First Circuit Court of Appeals, the Second

133 See Ould, Legal Dispute Kept Paperback from Lotus Appeal, PC WEEK, Jan. 21, 1991, at 138.

134 See Spreadsheet; Borland International Inc.’s Quattro Pro for Windows and Quattro Pro 4.0
for DOS, PC-COMPUTING, Dec. 1992, at 140 (“No doubt about it: Quattro Pro for DOS is the
best DOS spreadsheet there is. Period.”); Borland’s Quattro Pro Tops 2.5 Million Units Shipped,
BUSINESS WIRE, Jul. 1, 1992 (“Since its introduction in October 1989, Quattro Pro has won an
unprecedented 42 industry awards and honors worldwide from users and product reviewers.”);
Software Review, Quattro Pro 4.0; Borland International Inc.’s Spreadsheet Software,
COMPUTER SHOPPER, Jun. 1992, at 536 (“Quattro Pro 4.0 simply shames other DOS-based
spreadsheets, especially Lotus 1-2-3 r2.”).

135 See Lotus Dev. Corp. v. Borland Int’l, Inc., 788 F. Supp. 78 (D. Mass. 1992); Lotus Dev.
Corp. v. Borland Int’l, Inc., 799 F. Supp. 203 (D. Mass. 1992); Lotus Dev. Corp. v. Borland
Int’l, Inc., 831 F. Supp. 202 (D. Mass. 1993); Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F.
Supp. 223 (D. Mass. 1993).

-34-

Circuit’s Altai decision had received a favorable reception in the professional and academic
journals and its approach had been adopted by a number of courts. The Ninth Circuit and the
Federal Circuit had issued the Sega and Atari Games decisions, further emphasizing the
legitimacy of developing interoperable systems. In addition, the Supreme Court’s decision in
Feist Publications, Inc. v. Rural Telephone Service Co.,136 denying copyright protection for
alphabetically organized telephone directories for lack of originality, repudiated the “sweat of
the brow” doctrine137 and reaffirmed the “long recognized” principle “that the fact/expression
dichotomy limits severely the scope of protection in fact-based works.”138 In addition, the
Borland case had attracted tremendous interest among academics and interest groups.139

The First Circuit viewed the case as one of first impression: “[w]hether a computer menu
command hierarchy constitutes copyrightable subject matter.”140 The court properly
distinguished Altai as dealing with protection of computer code as opposed to the results of such
code. Instead, the First Circuit saw the subject matter of the Lotus case as a “method of
operation” falling directly within the exclusions from copyright protection set forth in §
102(b).141

 We think that ‘method of operation,’ as that term is used in § 102(b), refers to
the means which a person operates something, whether it be a car, a food
processor, or a computer. Thus a text describing how to operate something would
not extend copyright protection to the method of operation itself; other people
would be free to employ that method and to describe it in their own words.
Similarly, if a new method of operation is used rather than described, other people
would still be free to employ or describe that method.
 We hold that the Lotus menu command hierarchy is an uncopyrightable
‘method of operation.’ The Lotus menu command hierarchy provides the means

136 499 U.S. 340 (1991).

137 Several lower courts had found that copyright could be established on the basis of substantial
effort in gathering facts. See, e.g., Leon v. Pacific Telephone & Telegraph Co., 91 F.2d 484 (9th
Cir. 1937); Jeweler’s Circular Publishing Co. v. Keystone Publishing Co., 281 F. 83 (2d Cir.
1922). The Supreme Court’s Feist decision rejected this “sweat of the brow” theory in holding
that originality is a requirement of copyright and therefore, unless a factual work exhibits
originality as a compilation, it cannot receive protection under the Copyright Act.

138 499 U.S. at 350.

139 Amicus briefs were filed on behalf of computer scientists, intellectual property professors,
and computer industry organizations.

140 49 F.3d at 813.

141 49 F.3d at 814.

-35-

by which users control and operate Lotus 1-2-3. If users wish to copy material, for
example, they use the ‘Copy’ command. If users wish to print material, they use
the ‘Print’ command. Users must use the command terms to tell the computer
what to do. Without the menu command hierarchy, users would not be able to
access and control, or indeed make use of, Lotus 1-2-3’s functional capabilities.
 The Lotus menu command hierarchy does not merely explain and present
Lotus 1-2-3’s functional capabilities to the user; it also serves as the method by
which the program is operated and controlled. . . .142

The U.S. Supreme Court granted certiorari and affirmed without opinion by an equally divided
vote.143

Subsequent appellate decisions reached similar outcomes, although they had not fully
adopted to the First Circuit’s reasoning. In MiTek Holdings, Inc. v. ARCE Engineering Co.,144 the
holder of a copyright in an application program that designed and arranged wood trusses for the
framing of building roofs brought an infringement action against the maker of a competing
program that featured a similar menu command tree and user interface. Affirming the lower
court’s decision, the Eleventh Circuit held that the menu and submenu command structure of the
truss design program was uncopyrightable under § 102(b) of the Copyright Act because it
represents a process.145 The court did not need to reach the broader question, addressed in Lotus,
of whether all menu command structures are uncopyrightable as a matter of law.

In Mitel, Inc. v. Iqtel, Inc.,146 Mitel, the maker of a widely adopted computer system for
automating the selection of a particular telephone long distance carrier and remotely activating
optional telecommunications features such as speed dialing, sued a competing firm which used
the identical command codes for copyright infringement. Because Mitel’s system had become a
de facto standard in the marketplace, Iqtel defended its use of compatible controller codes on the
ground that “technicians who install call controllers would be unwilling to learn Iqtel’s new set
of instructions in addition to the Mitel command code set, and the technician’s employers would
be unwilling to bear the cost of additional training.”147As Borland had done, Iqtel’s product
included both its own set of command codes as well as a “Mitel Translation Mode.” While

142 49 F.3d at 815.

143 516 U.S. 233 (1996) (Justice Stevens recused himself from participation in consideration of
the case).

144 89 F.3d 1548 (11th Cir. 1996).

145 Id. at 1556-57.

146 124 F.3d 1366 (10th Cir. 1997).

147 Id. at 1369.

-36-

commenting that a method of operation may in some circumstances contain copyrightable
expression, the Tenth Circuit nonetheless concluded that the Mitel command codes, which were
arbitrarily assigned, lacked the minimal degree of creativity necessary to qualify for copyright
protection.148 The court further held that Mitel’s command codes should be denied copyright
protection under the scènes à faire doctrine because they are largely dictated by external factors
such as compatibility requirements and industry practices.149

Thus, although the Eleventh and Tenth Circuits did not expressly hold that all menu
command hierarchies are uncopyrightable as a matter of law, the outcomes of MiTek and Mitel
aligned with the First Circuit’s holding in Lotus. There were no further reported addressing
copyright protection for APIs over the next 15 years

2. Legislative Developments

The uncopyrightability of interoperable features of computer software arose as part of
legislative deliberation over passage of the Digital Millennium Copyright Act of 1998.150 Title I
generally prohibits circumvention of technical protection measures put in place by copyright
owners to protect copyrighted works.151 Various interest groups advocated exempting
circumvention for the purpose of developing interoperable computer programs and devices.
Congress obliged by enacting § 1201(f)(1), which provides that

a person who has lawfully obtained the right to use a copy of a computer program
may circumvent a technological measure that effectively controls access to a
particular portion of that program for the sole purpose of identifying and
analyzing those elements of the program that are necessary to achieve
interoperability of an independently created computer program with other
programs, and that have not previously been readily available to the person
engaging in the circumvention, to the extent any such acts of identification and
analysis do not constitute infringement under this title.152

The legislative history notes that this provision is:

intended to allow legitimate software developers to continue engaging in certain

148 Id. at 1373-74.

149 Id. at 1374-76.

150 Pub. L. 105-304, 112 Stat. 2860 (1998).

151 See WIPO Copyright and Performances and Phonograms Treaties Implementation Act,
codified at 17 U.S.C. §§ 1201-05.

152 17 U.S.C. § 1201(f).

-37-

activities for the purpose of achieving interoperability to the extent permitted by
law prior to the enactment of this chapter. The objective is to ensure that the
effect of current case law interpreting the Copyright Act is not changed by
enactment of this legislation for certain acts of identification and analysis done in
respect of computer programs. See, Sega Enterprises Ltd. v Accolade, Inc., 977
F.2d 1510, 24 U.S.P.Q.2d 1561 (9th Cir. 1992.). The purpose of this section is to
foster competition and innovation in the computer and software industry.153

D. The End of the API Copyright War and the Logic of the Intellectual Property
System

After an inauspicious start, the federal courts implemented a balanced framework for
both protecting computer software against piracy and interpreting the idea/expression doctrine
ensure that copyright law excludes functional features of computer technology. These decisions
have effectuated the subtle balance to which the CONTU REPORT referred.154 The courts have
come to appreciate that “creativity” must be understood contextually. While programming a
computer can unquestionably be termed “creative” in a general sense, it is not necessarily
“creative” in a copyright sense. Just as the design of an efficient mechanical machine can be
creative, such devices are not eligible for copyright protection unless the aesthetic features can
be separated from the functional attributes.155 Lines of code are the gears and levers of digital
machines. The fact that computer software, like a sculptural work, is eligible for copyright
protection does not authorize protection for functional features.156

The courts have come to recognize that APIs have significant functional dimensions.
They serve in many contexts as the basis for interoperability of computer technologies and that
the particular functional specifications, as opposed to the implementing code, can be fairly
characterized as “methods of operation.” Although the Supreme Court’s split decision in Lotus v.
Borland left some uncertainty,157 the resolution of that litigation marked the end of the major API

153 See Senate Judiciary Committee, the Digital Millennium Copyright Act of 1998, Senate Rep.
No. 105-190, at 13; see also id. at 32-34 (section-by-section analysis).

154 See generally, Epitaph, supra note __, at 707-08.

155 See 17 U.S.C. § 101 (“Pictorial, graphic, and sculptural works” include two-dimensional and
three-dimensional works . . .; the design of a useful article . . . shall be considered a pictorial,
graphic, or sculptural work only if, and only to the extent that, such design incorporates pictorial,
graphic, or sculptural features that can be identified separately from, and are capable of existing
independently of, the utilitarian aspects of the article.”).

156 See 17 U.S.C. § 102(b).

157 Notwithstanding the divided result, Justice Stevens likely would have sided with the First
Circuit. He had generally sided taken less protectionist positions in intellectual property cases.

-38-

copyright litigations that had raged since the early 1980s.

The Apple v. Franklin dictum “total compatibility with independently developed
application programs . . . is a commercial and competitive objective which does not enter into
the somewhat metaphysical issue of whether particular ideas and expressions have merged”158

had been replaced by precedential rulings applying copyright law’s limiting doctrines to the
functional elements of software. The Whelan framework for analyzing the structure, sequence,
and organization of computer software had been widely rejected. The DMCA’s interoperabilty
exemption to the anti-circumvention provisions reinforced jurisprudential authority limiting
copyright protection for interoperable features of computer software. Furthermore, the Supreme
Court’s unanimous decision in TrafFix Devices, Inc. v. Marketing Displays, Inc.159–guarding
against protection of functional features of trade dress– reinforced the principle that utility patent
law was the sole regime for protecting functional features and that courts should carefully guard
against overprotection of intellectual works. By the turn of the millennium, the first API
copyright war had come to an end.160

II. Copyright Protection for Computer Software 2.0: The Oracle Wave

Following resolution of the first API copyright war, the software engineering community
came to view high level functions, labeling conventions, and APIs to be unprotected by

See, e.g., Sony Corp. of America v. Universal City Studios, Inc., 464 U.S. 417 (1984) (limiting
indirect copyright liability of device manufacturers); Parker v. Flook, 437 U.S. 584 (1978)
(limiting patent protection for computer-related technologies).

158 Apple Computer v. Franklin Computer Corp., 714 F.2d at 1253.

159 532 U.S. 23 (2001).

160 See Menell, Epithaph, supra note __.

-39-

copyright law.161 These norms were reinforced by the spread of open source software.162

Furthermore, as the economics of network effects and interoperability suggests, many computer
hardware and software companies actively sought platform adopters.163 The Internet ushered in a
new economic era in which companies could give away software and services while earning
money from other sources, principally advertisers. Consistent with these patterns, Jonathan
Schwartz, Sun’s Chief Executive Officer, publicly congratulated Google on its decision to use
Java software in Android,164 proclaiming that Google had “strapped another set of rockets to the
[Java] community’s momentum–and to the vision defining opportunity across our (and other)
planets.”165

Thus, Oracle’s filing of a lawsuit against Google over the Android platform’s use of Java
came as a surprise to many in the high technology community.166 Yet to Sun and Google

161 See Brian Profitt, The Impact of Oracle’s Defense of API Copyrights, ITWORLD (Aug. 23,
2011) (observing that “[h]istorically, APIs have been regarded as not falling under copyright–the
reasoning being that APIs are not creative implementations but rather statements of fact,” but
also noting the issue had been clouded by the distinction of “open” and “closed” APIs),
http://www.itworld.com/article/2738675/mobile/the-impact-of-oracle-s-defense-of-api-copyright
s.html; Michael Hussey, Copyright Captures APIs: A New Caution For Developers,
TECHCRUNCH (Nov. 3, 2015) (observing that “[s]oftware developers routinely treat APIs as
exempt from copyright protection”),
https://techcrunch.com/2015/11/03/copyright-captures-apis-a-new-caution-for-developers/; but
see Edward J. Naughton, Copyright in APIs: The Sky Won’t Fall, and The Clouds Are Safe,
EMERGING TECHNOLOGIES BLOG (May 30, 2012) (questioning the validity of the “long-held
practice of API copyright exemption”).

162 See STEVEN WEBER. THE SUCCESS OF OPEN SOURCE (2005).

163 See Joe Mullin, Sun’s Jonathan Schwartz at Trial: Java Was Free, Android Had No Licensing
Problem, ARSTECHNICA (May 11, 2016) (quoting former Sun CEO testifying that Sun
Microsystems welcomed widespread use of the Java programming language and APIs.); see
generally INFORMATION RULES, supra note __, at 173-93, 196-203.

164 See Juan Carlos Perez, Google Releases Android SDK [Software Development Kit],
MACWORLD (Nov. 12, 2007).

165 See Jonathan’s Blog, Congratulations Google, Red Hat and the Java Community! (Nov. 5,
2007),
http://web.archive.org/web/20101023072550/http://blogs.sun.com/jonathan/entry/congratulation
s_google; but see infra, TAN __-__ (reporting that Schwartz congratulatory note masked
disappointment about Google’s unwillingness to enter into a licensing arrangement).

166 See supra note __. <Don Clark & Cari Tuna, Oracle Suit Challenges Google–Silicon Valley
Giants Tangle Over Patents, Copyrights Involving Open Programs Android and Java, WALL ST.

-40-

insiders, the writing was on the wall. Schwartz and his Sun colleagues were gravely concerned
about Google’s Android strategy at the time that Schwartz publicly celebrated release of the
Android Software Development Kit (SDK).167 Sun’s hardware business had long been in decline
and the company desperately needed to find ways to recoup its ongoing investments in Java. It
actively pursued a strategy to establish its the Java ME (Micro Edition) platform for embedded
and mobile devices.168 The congratulatory blog post was aimed at bringing Google to the
negotiating table. When licensing negotiations with Google reached an impasse, something had
to give.169

Oracle’s acquisition of Sun brought legal action against Google into play. Larry Ellison,
Oracle’s co-founder and CEO, had a reputation for brash business tactics. Whereas Sun’s
leadership had embraced open technology with religious fervor, Oracle’s approach had been
strategic.170 Furthermore, Oracle had enjoyed recent success in high stakes copyright
enforcement.171 Oracle’s leadership team sought to pursue a far more aggressive Java licensing
strategy.

J. B1 (Aug. 13, 2010)>.

167 See infra TAN __-__.

168 The Java Platform, Micro Edition (ME) was launched in late 2006. See Java Platform, Micro
Edition, WIKIPEDIA, https://en.wikipedia.org/wiki/Java_Platform,_Micro_Edition. One
significant difference is that Sun opted to distribute ME using the GNU GPL license.

169 See Oracle Buys Sun Microsystems For $7.4B, CBS News (Apr. 20, 2009) (reporting that
analysts had long said that Sun could not stand on its own and were surprised when merger talks
with IBM in late 2008 broke down),
http://www.cbsnews.com/news/oracle-buys-sun-microsystems-for-74b/.

170 While Oracle opposed strong intellectual property protection for computer software in the
early 1990s, it began to build its IP arsenal as IP threats emerged.

171 In 2007, Oracle sued SAP for copyright infringement by one of its subsidiaries. The jury
awarded Oracle damages of $1.3 billion in 2010, the largest copyright award in U.S. history. See
Verne F. Kopytoff, SAP Ordered to Pay Oracle $1.3 Billion, N.Y. TIMES (Nov. 23, 2010); Karen
Gullo, Oracle Wins $1.3 Billion Verdict for Closed SAP Unit’s Illegal Downloading,
BLOOMBERG,
http://www.bloomberg.com/news/articles/2010-11-23/sap-must-pay-oracle-1-3-billion-over-unit-
s-downloads. Although the trial judge overturned the damages award as excessive, the parties
eventually settled for $359 million. See Jim Henschen, Oracle Lawsuit Against SAP Settled at
Law, INFORMATIONWEEK (Nov. 14, 2016),
http://www.informationweek.com/cloud/software-as-a-service/oracle-lawsuit-against-sap-settled
-at-last/d/d-id/1317483.

-41-

This Section examines the tumultuous history leading up to and through the Oracle v.
Google litigation as background for understanding the larger copyright issues. Section A
explains the technological and industrial context. Section B examines the first six years of the
Oracle v. Google litigation saga. Section C discusses the uncertain state of play surrounding API
copyright protection in the wake of the Oracle v. Google litigation. Part III critically analyzes the
Oracle v. Google decisions and explores the policy considerations surrounding copyright
treatment of APIs.

 A. The Technological and Industrial Context

A confluence of forces set the stage for the Oracle v. Google litigation: (1) the
development, widespread adoption, and use of the Java programming language for website
design; (2) the smartphone revolution and Google’s decision to develop an open, distinctive
mobile platform using the Java language as well as aspects the Java Standard Edition API; and
(3) Oracle’s acquisition of Sun Microsystems at a critical stage of Android’s ascendance. The
story illustrates the complex interplay of technological evolution, industry norms, bargaining
leverage, ambiguity surrounding the meaning of “open” technology, and lingering uncertainty
about the scope of copyright protection for APIs.

1. The Java Story

The Java ecosystem emerged from Sun Microsystem’s distinctive, and somewhat quirky,
business, technological, and innovative culture.172

i. The Corporate Environment: Sun Microsystems in the 1980s and 1990s

In 1982, Vinod Khosla, Andy Bechtolsheim, and Scott McNealy from Stanford
University and Bill Joy, a University of California at Berkeley computer scientist who played an
integral role in developing the Berkeley Software Development (BSD) Unix operating system,173

172 See David Bank, The Java Saga, WIRED (Dec. 1, 1995),
http://www.wired.com/1995/12/java-saga/ (noting that while “Sun’s machines had a reputation
for being too complicated, too ugly, and too nerdy for mass consumption,” it’s leadership was
willing “to loosen[] the reins on some of its most precocious [programmer] talent”); Tekla Perry,
After the Sun (Microsystems) Sets, the Real Stories Come Out, IEEE SPECTRUM (May 30, 2014),
http://spectrum.ieee.org/view-from-the-valley/at-work/tech-careers/after-the-sun-microsystems-s
ets-the-real-stories-come-out.

173 Originally developed by Bell Labs, MIT, and General Electric, Unix established the
foundation for time sharing of mainframe computers. It was historically developed as a closed,
proprietary system. The BSD project developed an interoperable version of Unix, see Berkeley
Software Distribution, WIKIPEDIA,
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution; Bill Joy, WIKIPEDIA,

-42-

envisioned a breakthrough networked computer engineering workstation.174 During graduate
school and their early careers, they were exposed to the remarkable technologies being
developed at the Xerox Palo Alto Research Center–the Alto computer, bitmap displays, and the
Ethernet.175 They formed Sun Microsystems in 1982 to bring their visionary system to the
marketplace.

Sun hit profitability in its first quarter of operations and quickly developed a reputation
for high performance, networked Unix-based workstations with high-quality graphics.176 Their
technology fueled Silicon Valley’s meteoric rise. Although less widely known than Apple,
Microsoft, or IBM because its products were sold to other technology companies rather than the
general public, Sun commanded the respect of the high technology sector. Sun expanded into
processors and servers and became one of the most successful technology companies. Sun went
public in 1986 under the stock symbol SUNW, for Sun Workstations (later Sun WorldWide),177

and hit $1 billion in revenues in 1988, a record for a Silicon Valley company.178 Thanks to its
reputation for cutting-edge products and engineer-friendly culture, the company attracted a
talented and eclectic group of engineers and programmers.

Sun’s revenues and market value grew steadily from its founding into the mid 1990s and
skyrocketed during the dot-com boom.179 Flush with venture capital investment, many start-ups

https://en.wikipedia.org/wiki/Bill_Joy, featuring a permissive free software licensing framework
with minimal restriction of the redistribution of software built on this foundation. See BSD
licenses, WIKIPEDIA, https://en.wikipedia.org/wiki/BSD_licenses. The BSD diverged from the
viral, open source (sometimes referred to as “copyleft”) licenses that require that software built
on open source code to be made available to other developers on an open source basis–the so-
called share-alike requirement. See Brian Carver, Share and Share Alike: Understanding and
Enforcing Open Source and Free Software Licenses, 20 BERKELEY TECH. L.J. 443 (2005).

174 See Perry, supra note __; William Joy (1954-), Programmer; Found of Sun Microsystems, in
THE INTERNET: BIOGRAPHIES 138 (Hilary W. Poole (ed.) 2005).

175 See PARC (company), WIKIPEDIA, https://en.wikipedia.org/wiki/PARC_(company); Sun
Microsystems, WIKIPEDIA, https://en.wikipedia.org/wiki/Sun_Microsystems; MICHAEL A.
HILTZIK, DEALERS OF LIGHTNING: XEROX PARC AND THE DAWN OF THE COMPUTER AGE (2000).

176 See Sun Microsystems, WIKIPEDIA, https://en.wikipedia.org/wiki/Sun_Microsystems.

177 See Sun Microsystems, WIKIPEDIA, https://en.wikipedia.org/wiki/Sun_Microsystems.

178 See William Joy (1954-), Programmer; Founder of Sun Microsystems, in THE INTERNET:
BIOGRAPHIES 138 (Hilary W. Poole (ed.) 2005).

179 See Sun Microsystems, WIKIPEDIA, https://en.wikipedia.org/wiki/Sun_Microsystems; Lee
Devlin, The Sun Also Sets, K0LEE.com (Oct. 2, 2009) (tracing Sun’s meteoric stock rise form

-43-

wanted the best workstations and servers for their engineering and programming teams. Sun’s
outlook was bright as the Internet age commenced.

ii. Development of Java

Sun’s foray into developing a new programming language began in 1990 as a
skunkworks project180 triggered by an effort to retain a top programmer and aimed initially at
developing a new generation of software to replace Sun’s C++ and C APIs and tools.181 Sun’s
leaders recognized that the success of the project required that the elite team be insulated from
the rest of Sun’s operations, especially the business pressures to meet quarterly targets.182 The
so-called “Green Project” team took up residence in rented office space elsewhere in Silicon
Valley.

The project evolved into developing a computer language and hand-held device that
could be used for both digitally controlled consumer products (such as televisions) and
computers.183 Such a language needed to be scaled for embedded systems–computer systems
with a dedicated function within other systems.184 The team initially focused on developing a
distributed computing environment for set-top boxes, interactive TV, and video cassette
recorders through a wireless network.185 Such a system would have more limited functionality
than general purpose computers and required a more compact footprint.

1982 to 2000, and fall), http://k0lee.com/2009/10/sun-also-sets/

180 A skunkswork project refers to “a project developed by a small and loosely structured group
of people who research and develop a project primarily for the sake of radical innovation.” See
Skunkswork project, https://en.wikipedia.org/wiki/Skunkworks_project. The term, derived from
the name of the moonshine factory in the Li’l Abner comic book series, traces to Lockheed’s
World War II Advanced Developments Program.

181 See David Bank, The Java Saga, WIRED (Dec. 1, 1995),
http://www.wired.com/1995/12/java-saga/; History of the Java™ Programming Language, JAVA

PROGRAMMING, https://en.wikibooks.org/wiki/Java_Programming/History.

182 See David Bank, The Java Saga, WIRED (Dec. 1, 1995),
http://www.wired.com/1995/12/java-saga/.

183 See History of the Java Programming™ Language, WIKIBOOKS,
https://en.wikibooks.org/wiki/Java_Programming/History.

184 See Embedded system, WIKIPEDIA, https://en.wikipedia.org/wiki/Embedded_system.

185 See James Gosling (1956-), Inventor of Java, in THE INTERNET: BIOGRAPHIES 132-36 (Hilary
W. Poole (ed.) 2005).

-44-

James Gosling took the lead in developing the software.186 He designed a secure, reliable,
object-oriented,187 platform-independent language that could interpret other languages and could
function on small computer chips embedded in consumer devices. By 1993, the software (code-
named Oak) was integrated into a versatile device that could work with interactive TV
technology, but Sun was unable to interest consumer electronics or cable companies.188

Just when the project looked doomed, Bill Joy saw the opportunity to adapt Gosling’s
software for the nascent, but promising, World Wide Web.189 Joy realized that Oak could be re-
purposed to program Web pages, as opposed to consumer devices. The team convinced Sun to
pump more resources into the project.190 “Java,” the renamed project, aimed to develop a simple,
lean, platform independent, real time, embeddable, multi-tasking programming language for
Web functionality. Java had a similar syntax to the widely used C language, but was far more
compact, efficient, and secure. Of perhaps greatest importance, Java enabled “write once, run
anywhere” (WORA) functionality–Java applets could run on Apple, Windows, or UNIX
machines. Java also enabled real-time interactivity, multimedia, and animation, which greatly
enhanced the dynamism of Web pages. Java added new dimensions to Web functionality. Java
applets enabled users to interact with websites in new and exciting ways.

Gosling built Java as an object-oriented programming (OOP) language and platform,
utilizing a powerful programming paradigm that was gaining salience in the programming
community in the early 1990s.191 In contrast to conventional procedural programming languages
such as C, Fortran, Pascal, and Basic, which break tasks down into a structured series of
computational steps,192 OOP models tasks using relational objects that expose behavior

186 See James Gosling (1956-), Inventor of Java, in THE INTERNET: BIOGRAPHIES 132-36 (Hilary
W. Poole (ed.) 2005).

187 See Object-oriented programming, WIKIPEDIA,
https://en.wikipedia.org/wiki/Object-oriented_programming.

188 See David Bank, The Java Saga, WIRED (Dec. 1, 1995),
http://www.wired.com/1995/12/java-saga/; James Gosling (1956-), Inventor of Java, in THE

INTERNET: BIOGRAPHIES 133-34 (Hilary W. Poole (ed.) 2005).

189 See William Joy (1954-), Programmer; Founder of Sun Microsystems, in THE INTERNET:
BIOGRAPHIES 138 (Hilary W. Poole (ed.) 2005).

190 See JOHN HUNT, JAVA FOR PRACTITIONERS: AN INTRODUCTION AND REFERENCE TO JAVA AND

OBJECT ORIENTATION 49 (2012).

191 See Object-oriented programming,
https://en.wikipedia.org/wiki/Object-oriented_programming.

192 See Procedural programming, https://en.wikipedia.org/wiki/Procedural_programming.

-45-

(methods) and data (members or attributes) using interfaces.193 The OOP paradigm offered
various programming efficiencies, such as reusability and ease of modification and
maintenance.194

With the experimental new software platform reaching fruition, Sun faced a difficult
business strategy choice. Although Sun had always been a proponent of open standards for
software interfaces,195 this project would require the free release of a software
implementation–i.e., the full program. Marc Andreessen,196 the University of Illinois wunderkind
who created the pioneering Mosaic web browser,197 had released Mosaic for free for
noncommercial use, but major companies were not yet in the business of giving away source
code. Many in the industry coveted source code as the crown jewel of high technology
businesses and were loath to share it.198

Eric Schmidt, Sun’s Chief Technology Officer who had assured the “Green” team that
they would be insulated from the business managers, was at the center of an impending corporate
storm. As he would later describe:

The conversation that never took place, but that I could feel all around me, was,
‘Eric, you are violating every principle in the company. You are taking our
technology and giving it away to Microsoft and every one of our competitors.
How are you going to make money?’ At the time, I didn’t have an answer. I

193 See Object-oriented programming,
https://en.wikipedia.org/wiki/Object-oriented_programming.

194 See Advantages and Disadvantages of Object-Oriented Programming (OOP),
http://www.saylor.org/site/wp-content/uploads/2013/02/CS101-2.1.2-AdvantagesDisadvantages
OfOOP-FINAL.pdf

195 Sun Microsystems has been the leading member of the American Committee for Interoperable
Systems (ACIS), an early lobbying organization advocating open platforms. See JONATHAN

BAND & MASANOBU KATOH, INTERFACES ON TRIAL: INTELLECTUAL PROPERTY AND

INTEROPERABILITY IN THE GLOBAL SOFTWARE INDUSTRY __ (1995) (noting that Peter Choy, who
headed ACIS, worked for Sun).

196 See Marc Andreessen, WIKIPEDIA, https://en.wikipedia.org/wiki/Marc_Andreessen.

197 See Mosaic (web browser), WIKIPEDIA, https://en.wikipedia.org/wiki/Mosaic_(web_browser).

198 See Eugene A. Feher & Dmitriy S, Andreyev, Source Code in Patent Litigation, LAW360
(Apr. 30, 2008) (noting that “most companies consider their source code to be highly
confidential and part of the ‘crown jewels’ of the company” and that “[s]ource code frequently
contains secret proprietary algorithms that provide a vital competitive advantage”),
http://www.law360.com/articles/54750/source-code-discovery-in-patent-litigation.

-46-

would make something up. I would lie. What I really believed was that Java could
create an architectural franchise. The quickest way was through volume and the
quickest way to volume was through the Internet.199

Sun secretly invited a select group of programmers to test Java in December 1994.200 The
test revealed that the WORA functionality was a game-changer and word of Java’s capabilities
spread like wildfire throughout the programmer community.201

Sun officially launched Java in January 1995. The business strategy epiphany came when
Marc Andreessen, the new CEO of Netscape and developer of Netscape’s breakthrough
Navigator browser,202 raved to the SAN JOSE MERCURY NEWS: “What these guys are doing is
undeniably, absolutely new. It’s great stuff. There’s so much stuff people want to do over the
network that they haven’t had the software to do. These guys are really pushing the envelope.”203

Having already released Java to a select programmer audience, Sun decided to focus on
establishing Java as the standard language for web development and figure out how to make
money later. It followed the “‘profitless’ approach to building market share” that Netscape had
employed in giving away its Navigator browser.204 As Joy would later remark, “There was a
point at which I said, ‘Just screw it, let’s give it away.’ Let’s create a franchise.”205

Due in part to the robust performance of its hardware divisions,206 Sun could afford to

199 See Bank, supra note __.

200 See Bank, supra note __; William Joy (1954-), Programmer; Founder of Sun Microsystems,
in THE INTERNET: BIOGRAPHIES 139 (Hilary W. Poole (ed.) 2005).

201 See Bank, supra note __ (reporting that release of early versions of Java in December 1994
“unleashed stratospheric expectations”); William Joy (1954-), Programmer; Founder of Sun
Microsystems, in THE INTERNET: BIOGRAPHIES 139 (Hilary W. Poole (ed.) 2005).

202 See Netscape Navigator, WIKIPEDIA, https://en.wikipedia.org/wiki/Netscape_Navigator.

203 See David Bank, Why Sun Thinks Hot Java Will Give You a Lift New Software Designed to
Make World Wide Web’s ‘Home Pages’ More Useful; And Spur Computer Sales, SAN JOSE

MERCURY NEWS 1A (Mar. 23, 1995); Bank, supra note __ (quoting Kim Polese, Java’s senior
product manager: “That quote was a blessing from the god of the Internet”).

204 See Bank, supra note __.

205 See Bank, supra note __.

206 See Bank, supra note __ (reporting that Sun’s annual revenues from its hardware products
were expected to exceed $6 billion in 1995).

-47-

take more risk with the revenue side of its software business. It’s larger concern, as manifest in
the years ahead, was in preventing Microsoft from dominating the emerging Internet marketplace
in the way that it had dominated desktop computing software.207 Scott McNealy, Sun’s fiercely
competitive CEO, imagined that “disposable word processors and spreadsheets delivered over
the Web via Java, priced per use” could “blow[] up Gates’s lock [on the desktop software
marketplace] and destroy[] his mode of shrink-wrapped software that runs only on his
platform.”208 The WORA approach could be a game-changer across the software competition
landscape.209

In May 1995, Netscape licensed Java as part of its market-leading Navigator browser.210

Although Sun authorized Netscape’s use for a pittance,211 it foresaw that this move would
produce rapid diffusion across the programming community and the Web. Sun also provided
Java for free to noncommercial users.212 Java’s ability to transform static web pages into
engaging, animated, interactive websites revolutionized web design within a matter of months.213

Sun was especially concerned that Microsoft would leverage its 80 percent share of the
desktop software marketplace to control Internet software development.214 In March 1995,
Microsoft announced “Blackbird,” a new Web development package slated for January 1996
release, that would contain an application programming language configured to work with

207 See Bank, supra note __ (noting Sun co-founder and CEO Scott McNealy’s rivalry with Bill
Gates).

208 See Bank, supra note __ (first quotation Bank’s paraphrase of McNeely; second quotation
from McNealy).

209 See Mark A. Lemley & David McGowan, Could Java Change Everything? The Competitive
Propriety of a Proprietary Standard, 43 ANTITRUST BULLETIN 715 (1998).

210 See William Joy (1954-), Programmer; Founder of Sun Microsystems, in THE INTERNET:
BIOGRAPHIES 139 (Hilary W. Poole (ed.) 2005).

211 See Bank, supra note __ (reporting that Netscape “paid a paltry US$750,000” to license
without any per-copy charges).

212 See Bank, supra note __.

213 See William Joy (1954-), Programmer; Founder of Sun Microsystems, in THE INTERNET:
BIOGRAPHIES 139 (Hilary W. Poole (ed.) 2005).

214 See Bank, supra note __ (quoting Michael Sheridan, an original member of the “Green
Project” team and Java business strategist, that “Sun’s window is six to twelve months. [We]
need to move quickly because Microsoft will respond in a way that freezes development.”).

-48-

Microsoft software.215 In response, Sun actively pursued below-cost licensing deals in an effort
to prevent Microsoft from burying the competition.216 At the same time, Microsoft was
pressuring other companies to withdraw support for Java.217

As Blackbird languished (and ultimately never launched),218 Microsoft shifted its Internet
strategy. By late 1995, Sun and Microsoft worked out the basis for a license agreement.219 In
March 1996, Sun agreed to a Technology License and Distribution Agreement (“TLDA”) that
allowed Microsoft to use, modify and adapt Java technology in developing MS Internet Explorer
4.0, and other software products.220 In keeping with its WORA interoperability principle, the
TLDA required that Microsoft adhere to Java’s standardized application environment and
compliance tests so as to ensure interoperability.221

To live up to Java’s initial high praise and build momentum, Sun expanded its Java
development efforts. It rolled out the first stable Java Development Kit in early 1996 and
continued to expand features over the following year.222 The Java language comprises words,
symbols, and pre-written programs to carry out various commands, such as printing something
on the screen or performing a specific mathematical calculation. Sun organized sets of
pre-written programs (methods, which are grouped in classes) into API packages (or class

215 See Blackbird (online platform), WIKIPEDIA,
https://en.wikipedia.org/wiki/Blackbird_(online_platform).

216 See Bank, supra note __ (quoting Eric Schmidt: “This loses money in the licensing business
for the foreseeable future. It's a strategic investment in market share.”).

217 See United States of America v. Microsoft Corporation. Findings of Fact, United States
District Court For The District Of Columbia, Civil Action No. 98-1232 (TPJ), 1999.

218 See Blackbird (online platform), WIKIPEDIA,
https://en.wikipedia.org/wiki/Blackbird_(online_platform).

219 See Sun Microsystems, Inc. v. Microsoft Corp., 21 F.Supp.2d 1109, 113 (N.D. Cal. 1998).

220 See Sun Microsystems, Inc. v. Microsoft Corp., 21 F.Supp.2d 1109, 113-14 (N.D. Cal. 1998).

221 See Sun Microsystems, Inc. v. Microsoft Corp., 21 F.Supp.2d 1109, 114 (N.D. Cal. 1998); see
also Technology Compatibility Kit, WIKIPEDIA, (describin ghte Java Compatibility Kit (JCK)
used to ensure that implementations are compatible with the Java platform),
https://en.wikipedia.org/wiki/Technology_Compatibility_Kit

222 See Java version history, https://en.wikipedia.org/wiki/Java_version_history.

-49-

libraries). Each API package reflects a set of declarations223 or functional specifications needed
to invoke the functions. It is executed through detailed implementing code. Although a Java
programmer can write new code (methods) from scratch, the pre-written methods within the Java
API packages provide convenient, efficient, reliable, standardized building blocks, thereby
saving Java programmers tremendous tedious effort.

Sun’s strategy succeeded in establishing Java as a de facto industry standard. By the end
of 1996, Apple Computer Inc., International Business Machines Corp., Netscape, Oracle Corp.
and more than 100 other companies pledged their commitment to the Java platform with their
support of the “100% Pure Java” initiative.224 By that time, Sun employed 300 people in its
JavaSoft division and approximately 35 percent of World Wide Web sites were using Java. The
applets could viewed on UNIX, Windows, Apple or DOS computers.

Thus, Sun’s respect for its programmer culture, and effort to harness network effects and
thereby outmaneuver Microsoft pushed Java onto a open development path. Sun’s robust
hardware division afforded its Java division flexibility to operate as a loss leader. As one
industry observer presciently noted in late 1995, “Java is unlikely ever to become a major profit
center at Sun, though any increase in Web traffic is bound to increase sales of Sun’s
workstations and servers.”225

As part of its effort to establish Java as the standard programming language for the
Internet, Sun approached the International Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC) in March 1997 to have the Java “platform”–consisting of the
Java language, the class file format, the byte codes recognized by the Java Virtual Machine, and
the Java APIs–formally established as a de jure international standard.226 The process bogged
down as a result of concerns among members of the Joint Technical Committee regarding the
appropriateness of a single firm seeking standard approval and whether such a firm should be
permitted to retain intellectual property rights in the proposed standard.227

Sun’s Java development strategy, however, was threatened by concerns that Microsoft

223 See Declaring Classes, The Java™ Tutorials,
https://docs.oracle.com/javase/tutorial/java/javaOO/classdecl.html.

224 See Paul Floren, Sun’s Java: Can It Burn Microsoft? N.Y. TIMES (Jan. 20, 1997),
http://www.nytimes.com/1997/01/20/business/worldbusiness/20iht-java.t.html.

225 See Bank, supra note __.

226 See Tineye M. Egyedi, Why Java™ Was–Not–Standardized Twice, IEEE, PROCEEDINGS OF

THE 34TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (2001).

227 See Mark A. Lemley & David McGowan, Could Java Change Everything? The Competitive
Propriety of a Proprietary Standard, 43 ANTITRUST BULLETIN 715, 755 (1998).

-50-

was creating its own version of Java that would only work with Microsoft software, i.e., that did
not adhere to the WORA principle. After Microsoft distributed its Internet Explorer 4.0 browser
program without components of the Java System Developer Kit 1.1 in October 1997, Sun sued
Microsoft for breach of contract, copyright infringement, trademark infringement, copyright
infringement, false advertising, and unfair competition.228 These allegations coincided with and
reinforced antitrust concerns about Microsoft’s business practices.229

Of principal importance for the API copyright issue, the Microsoft threat pushed Sun to
pursue an aggressively open Java development strategy that encouraged widespread adoption as
well as adherence to the WORA principle.230 Sun ultimately withdrew from efforts to seek
formal standardization of Java out of concern that it would have to cede too much control over
Java’s development path to other entities, including competitors who might not share Sun’s
vision.231 Nonetheless, the Microsoft threat committed Sun to an open development path for
Java.

In 1998, Sun released the Java 2 Standard Edition Platform. It contained eight API
packages, three of which–java.lang, java.io, and java.util–were necessary to use the Java
programming language.232 Sun gradually expanded the number of API packages, classes, and
methods over the ensuing years.

Sun also established the Java Community Process (JCP) in 1998 to enable users to
participate in the development of standard technical specifications for Java technology.233

Community members may propose Java Specification Requests (JSRs) for expanding and
updating the Java platform. The JCP reviews JSRs through a public process akin to
administrative rulemaking. The JCP Executive Committee,234 comprised of major stakeholders,
decides whether to approve JSR.

228 See John Markoff, Sun Sues Microsoft in Dispute Over Java, N.Y. TIMES (Oct. 8, 1997).

229 See United States v. Microsoft Corp., 87 F. Supp. 2d 30, 44 (D.D.C. 2000), aff’d in part, rev’d
in part per curiam, 253 F.3d 34 (D.C. Cir. 2001) (en banc); John E. Lopatka & William H. Page,
Antitrust on Internet Time: Microsoft and the Law and Economics of Exclusion, 7 SUP. CT.
ECON. REV. 157 (1999); William H. Page & John E. Lopatka, The Dubious Search for
“Integration” in the Microsoft Trial, 31 CONN. L. REV. 1251 (1999).

230 See Peter Wayner, What the Battle Over Java Is Really About, N.Y. TIMES (Oct. 8, 1997).

231 See Lemley & McGowan, supra note __, at ___.

232 See Oracle America, Inc. v. Google Inc., 750 F.3d 1339, 1349 (Fed. Cir. 2014).

233 See Java Community Process, https://en.wikipedia.org/wiki/Java_Community_Process.

234 See JCP Executive Committee, https://en.wikipedia.org/wiki/JCP_Executive_Committee.

-51-

One of the goals of the JCP was to bring order to the emerging, but fragmented, mobile
device ecosystem. The mobile marketplace was taking off in the mid 1990s with a variety of
personal digital assistants (PDAs),235 cell phones, and other consumer devices. In 1998 and 1999,
Sun coalesced the various interests through the JCP in developing the Java 2 Micro Edition
(J2ME).236 Many cell phone developers licensed the J2ME Platform for their products.

After four years of tumultuous litigation,237 Sun and Microsoft settled their litigation in
January 2001.238 Microsoft agreed to pay Sun $20 million and was permanently prohibited from
using “Java compatible” trademarks on its products.239 The copyright infringement allegations
relating to APIs were not pursued.

iii. The Setting Sun

 Sun’s sales collapsed when the dot-com bubble burst in early 2000. Many of the dot-com
companies that had ordered Sun hardware went bankrupt, causing new orders to plummet and
driving workstation and server prices downward as failed start-ups auctioned off their assets to
repay creditors. Sun’s stock went into free-fall.

As the Silicon Valley economy recovered in 2004, advanced microcomputers displaced

235 Palm successfully introduced the Palm Pilot in 1997, but gradually lost market share as new
devices, such as Research in Motion’s BlackBerry, became popular. See Palm, Inc.,
https://en.wikipedia.org/wiki/Palm,_Inc.; BlackBerry, https://en.wikipedia.org/wiki/BlackBerry.

236 See J2ME Programming/The J2ME Platform,
https://en.wikibooks.org/wiki/J2ME_Programming/The_J2ME_Platform.

237 See Sun Microsystems, Inc. v. Microsoft Corp., 21 F. Supp. 2d 1109 (N.D. Cal. 1998)
(granting preliminary injunction enjoining Microsoft from distributing any software
implementing Java), vacated, 188 F.3d 115 (9th Cir. 1999), reinstating injunction, 87 F.Supp.
992 (N.D. Cal. 2000).

238 See Stephen Shankland, Sun, Microsoft Settle Java Suit, C|NET (Mar. 15, 2002),
http://www.cnet.com/news/sun-microsoft-settle-java-suit/.

239 Sun would later prevail in a separate antitrust and patent infringement action against
Microsoft resulting an award of over $1 billion. See Scarlet Pruitt & Paul Roberts, Microsoft to
Pay $700 Million for Antitrust Issues, $900 Million to Resolve Patent Dispute, INFOWORLD

(Apr. 2, 2004),
http://www.infoworld.com/article/2667124/operating-systems/update--sun--microsoft-settle-suit-
in-billion-dollar-pact.html; Stephen Shankland, Sun brings antitrust suit against Microsoft:
The company files a private antitrust suit against Microsoft seeking damages that could top $1
billion, C|NET (Jul. 20, 2002),
https://www.cnet.com/news/sun-brings-antitrust-suit-against-microsoft-1/.

-52-

demand for far more costly Sun hardware products. Sun cancelled major processor projects,
closed one of its two major factories, and initiated a series of lay-offs. Sun’s hardware business
somewhat stabilized after 2005, but prospects for future growth were bleak.. In an effort to
expand Java’s reach, Sun licensed Java, including its Standard Edition, Enterprise Edition, and
Micro Edition, under the GNU GPLv2 in 2006.240

Symbolizing its shift in direction, Sun changed its Nasdaq Stock Market ticker in August
2007 from SUNW to JAVA.241 As the press release highlighted, “[t]he new ticker reflects Sun’s
12-year-old Java programming language, which is available free. . . There are 6 million Java
developers, and the language is used in 5.5 billion devices, including personal computers and
mobile phones.”242 In his accompanying blog post, Jonathan Schwartz proudly proclaimed that

 Java touches nearly everyone – everyone – who touches the internet.
Hundreds of millions of users see Java, and its ubiquitous logo, every day. On
PC’s, mobile phones, game consoles – you name it, wherever the network travels,
the odds are good Java’s powering a portion of the experience. . .
 I know that sounds audacious, but wherever I travel in the world, I’m reminded
of just how broad the opportunity has become, and how pervasively the
technology and brand have been deployed. Java truly is everywhere.
 Ask a teenager if they know Java, and they’ll point to their favorite mobile
applications, the video uploader for their social network, or their game console.
As for working professionals, I had dinner with a financial analyst a few months
ago who said he saw the Java launch experience “a few times a day” when
accessing intranet applications – as did tens of thousands of his fellow employees.
Daily. Global companies like Google and eBay (and Vodafone and Citigroup) are
built on Java, every major PC manufacturer bundles Java upon shipment, as does
every mobile phone manufacturer, and tens of millions of developers touch it
every day in the world’s IT shops. Students learn it to get college credits for
computer science, and there are more Java courses on university campuses than
we ever imagined. Wherever it goes, Java brings limitless opportunity – to Sun,
and to our partners that develop, use or deploy it.
 . . . SUNW represents the past, and its not without a nostalgic nod that we’ve

240 See Sun to Open-Source Java Under GPL, PRACTICAL TECHNOLOGY (Nov. 11, 2006),
http://practical-tech.com/development/sun-to-open-source-java-under-gpl/415/. The GNU GPL
requires that software built on the open source code base be available to others on an open
source basis–the so-called share-alike requirement. See supra note __. <citing Carver, Share and
Share Alike: Understanding and Enforcing Open Source and Free Software Licenses, 20
BERKELEY TECH. L.J. 443 (2005)>.

241 See Sun Microsystems’ New Ticker: JAVA, L.A. TIMES (Aug. 24, 2007),
http://articles.latimes.com/2007/aug/24/business/fi-wrap24.s4.

242 See id.

-53-

decided to look ahead.
 JAVA is a technology whose value is near infinite to the internet, and a brand
that’s inseparably a part of Sun (and our profitability). . . .243

Sun initially succeeded in gaining wide adoption of the Java Micro Edition platform for
feature phones–mobile phones with limited capability, principally voice and text messaging with
basic multimedia and rudimentary internet access.244 It failed, however, to develop a robust
revenue stream and suffered further deep losses during the 2008 financial crisis. Sun’s market
value fell 80% between November 2007 and November 2008, resulting in further substantial
layoffs.245 By this point, Sun’s leadership viewed its software businesses, revolving around Java,
as the company’s future. They came to see developing a robust licensing model as essential to
the company’s prosperity; and possibly its survival.

2. Google, the Mobile Computing Revolution, and Development of Android

Just as Sun was reaching its highest point during the dot-com bubble, Sergey Brin and
Larry Page were developing a search engine that would become the next shining star.246 Drawing
on the Navigator and Java strategy, Google focused on widespread adoption rather than revenue
generation. It offered free access to its simple, no-nonsense search engine. As the technology
press recognized its “uncanny knack for returning extremely relevant results,”247 Google amassed
loyal users and separated itself from the crowded group of search engines. But unlike Netscape
and Sun, Google developed a robust revenue model for its “free” to users software: keyword

243 See The Rise of JAVA – The Retirement of SUNW, Jonathan Schwartz Blog (Aug., 23, 2007),
(emphasis in original)
https://jonathanischwartz.wordpress.com/2007/08/23/the-rise-of-java-the-retirement-of-sunw/.

244 See Feature phone, WIKIPEDIA https://en.wikipedia.org/wiki/Feature_phone.

245 See Ashlee Vance, Sun Microsystems Reports $1.7 Billion Loss and Falling Sales, N.Y.
TIMES B3 (Oct. 30, 2008),
http://www.nytimes.com/2008/10/31/technology/companies/31sun.html; Lee Devlin, The Sun
Also Sets, K0LEE.com (Oct. 2, 2009), http://k0lee.com/2009/10/sun-also-sets/

246 Ironically, Andy Bechtolsheim, one of Sun’s co-founders, was among the first to recognize
Google’s promise. In August 1998, he wrote the founders a check for $100,000 before the
company was established. See Tony Long, Sept. 7, 1998: If the Check Says ‘Google Inc., ‘We’re
‘Google Inc.,’ WIRED (Sept. 7, 2007), http://www.wired.com/2007/09/dayintech-0907/. It would
prove to be one of the wisest investments in Silicon Valley history. See Andy Bechtolsheim,
WIKIPEDIA (estimating that Bechtolsheim’s $100,000 investment in 1998 was worth
approximately $1.7 billion by March 2010), https://en.wikipedia.org/wiki/Andy_Bechtolsheim.
Google’s stock has more than doubled again since 2010.

247 See Top 100 Web Sites: Search Engines, PC MAGAZINE 118 (Feb. 9, 1999).

-54-

advertising. By October 2000, just as Sun’s hardware business was setting, Google’s AdWords
program was launched.248 In August 2001, Google named Eric Schmidt, Sun’s former CTO as its
Chief Executive Officer. The press touted that Schmidt had “led the development of Java, Sun’s
platform-independent programming technology, and defined Sun’s Internet software strategy.”249

With revenue flowing from AdWords, Google developed a series of new search
projects–images, news, shopping, gmail, maps– which reinforced and expanded its advertising
business. Google went public in 2004250 and continued to expand its reach with Google Books,
YouTube, and other projects.251

Google’s leaders foresaw the next gathering wave–smartphones and mobile platforms.252

248 See Google Company, Our History in Depth,
https://www.google.com/about/company/history.

249 See Google Names Dr. Eric Schmidt Chief Executive Officer, News from Google (Aug. 6,
2001), http://googlepress.blogspot.com/2001/08/google-names-dr-eric-schmidt-chief.html.

250 See John Markoff, THE GOOGLE I.P.O.: THE OVERVIEW; Google’s Sale of Its Shares Will
Defy Wall St. Tradition, N.Y. TIMES (Apr. 30, 2004),
http://www.nytimes.com/2004/04/30/business/google-ipo-overview-google-s-sale-its-shares-will
-defy-wall-st-tradition.html

251 See Google Company, Our History in Depth,
https://www.google.com/about/company/history/.

252 In its 2005 10-K filing, Google identified the emerging mobile marketplace as a potential
threat to its profitability:

More individuals are using non-PC devices to access the Internet, and versions
of our web search technology developed for these devices may not be widely
adopted by users of these devices.

The number of people who access the Internet through devices other than
personal computers, including mobile telephones, hand-held calendaring and
email assistants, and television set-top devices, has increased dramatically in the
past few years. The lower resolution, functionality and memory associated with
alternative devices make the use of our products and services through such
devices difficult. If we are unable to attract and retain a substantial number of
alternative device users to our web search services or if we are slow to develop
products and technologies that are more compatible with non-PC communications
devices, we will fail to capture a significant share of an increasingly important
portion of the market for online services.

-55-

The mobile marketplace, however, was a morass of telecommunication companies, handset
makers, and software providers.253 The telecommunications companies (telcos) were notoriously
protective of their networks.254 The handset makers, commonly referred to as original equipment
manufacturers (OEMs), had divergent strategies and business models. The widespread feature
phones, had little capability to access the Internet. RIM’s BlackBerry phone, geared for business
customers, had proven robust demand for mobile email devices, but did not offer fully
functioning web browsing capability.255 Microsoft and Symbian were promoting proprietary
mobile operating systems but without notable success. Google executives worried, however, that
Microsoft could gain traction and ultimately steer consumers away from Google search and other
services.256

Just as the Internet’s open architecture had brought order and innovation, Google’s
leaders came to see that an open source platform for mobile communications could provide a
comparably important platform for the growing shift to portable, hand-held devices.257 They
began to recognize that leading this transformation could pay large dividends for Google’s
search and other information services. Such an initiative, however, posed serious challenges.

In 2003, Larry Page and Sergey Brin were smitten by the T-Mobile Sidekick, a nifty
mobile device designed by Andy Rubin, a former Apple engineer.258 Page and Brin were

See Google Inc., Form 10-K, U.S. Securities and Exchange Commission (for the fiscal year
ended Dec. 31, 2005) at 32.

253 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 48-50 (2013).

254 See John Markoff, I, Robot: The Man Behind the Google Phone, N.Y. TIMES 31 (Nov. 4,
2007), http://www.nytimes.com/2007/11/04/technology/04google.html

255 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 53 (2013).

256 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 51 (2013).

257 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 49-53 (2013).

258 See John Markoff, Where Does Google Plan to Spend $4 Billion?, N.Y. TIMES (Aug. 22,
2005) (observing that Page and Brin wore the Sidekick all-purpose voice and data
communicators on their belts several years ago and that Page had long envisioned a Google-
branded smart phone),
http://www.nytimes.com/2005/08/22/technology/where-does-google-plan-tospend-4-billion.html
.

-56-

especially impressed by the way in which Sidekick provided an authentic web browsing
experience.259 Other mobile devices, such as the BlackBerry, only showed text and did not
enable users to click on Google search ads.260 Page admired Sidekick’s engineering and was
pleased that Rubin had adopted Google as the default search engine.261

Rubin co-founded Android in October 2003 to develop “smarter mobile devices that are
more aware of its owner’s location and preferences.”262 When Rubin reached out to Page in
2005 to set up a meeting, Page was more than prepared to hear what Rubin had to say. Rubin
explained that phones with computer capabilities were the future and that Android was working
toward an open platform.263 This pitch coincided with Google’s thinking and philosophy. In July
2005, Google acquired Android for $50 million, brought Rubin’s team on board, and put Rubin
in charge of its new mobile division.264

Building an open mobile communications platform posed distinct challenges.265 A new
operating system would need to be optimized for the small chips on which handsets were based.
The devices would have to would have to work in real time. The platform had to be compact and
optimized to the particular functionalities that consumers would demand.

In addition, the licensing model had to balance openness with downstream competition

259 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 52-53 (2013).

260 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 53 (2013).

261 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 53 (2013).

262 See Ben Elgin, Google Buys Android for Its Mobile Arsenal, BUSINESS WEEK (Aug. 17,
2005), http://tech-insider.org/mobile/research/2005/0817.html.

263 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 49 (2013) (explaining that “the software industry for mobile phones was one of the
most dysfunctional in all technology. There wasn’t enough bandwidth for users to surf the
Internet on a phone without frustration. Phones weren’t powerful enough to run anything by
rudimentary software. But the biggest problem . . . was that the industry was ruled by an
oligopoly [of carriers and phone makers].”).

264 See John Markoff, Where Does Google Plan to Spend $4 Billion?, N.Y. TIMES (Aug. 22,
2005).

265 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 53 (2013).

-57-

and innovation. Google did not believe that the GNU GPL would provide sufficient flexibility
for the range of players it believed would be needed to establish a robust new mobile platform.
Google worried that the viral share and share alike provision would discourage handset makers
and telcos from making the investments in innovative features. A more permissive licensing
model, in which downstream suppliers could make proprietary extensions on top of the base
platform, would better promote robust competition and innovation.266

Google and its newly hired Android team also believed that it would need to create an
application programming environment that was familiar and easy-to-use.267 At the first high-level
Android planning meeting convened on July 26, 2005, the newly-established Android team and
Google leaders focused on three questions:

 • Which type of Open Source are we?;
 • How do we interact with the OSS [open source software community]?
 • How do we Open Source our JVM [Java Virtual Machine]?268

The group envisioned Android “as the world’s first Open Source handset solution with built-in
Google applications.”269 Google would work closely with telcos and OEMs. Telcos would

266 See email from Rubin to Lee (Aug. 11, 07) (noting that “[t]he problem with GPL in embedded
systems is that it’s viral, and there is no way (for example) OEMs or Carriers to differentiate by
adding proprietary works. We are builing a platform where the entire purpose is to let people
differentiate on top of it.”) (Trial Exhibit 230, Oracle America, Inc. v. Google Inc. 3:10-cv-
03561-WHA)).

In a complex and controversial twist, Google’s use of Linux kernel in Android, which is
licensed under the GNU GPL, arguably does not trigger the share and share alike licensing
requirement. See HEATHER J. MEEKER, OPEN (SOURCE) FOR BUSINESS: A PRACTICAL GUIDE TO

OPEN SOURCE SOFTWARE LICENSING ch. 8 (2015) (discussing the GPL 2 Border Dispute).

267 Even beyond these challenging issues, smartphone technology was a patent minefield. See
Smartphone patent wars, WIKIPEDIA, https://en.wikipedia.org/wiki/Smartphone_patent_wars
Telcos, OEMs, and software companies had been patenting a wide range of mobile
communication-related technologies for decades. Google would spend billions of dollars
acquiring mobile technology patents and defending patent lawsuits. Those issues, however, were
not prominent on Google’s radar screen as it embarked on its mobile technology odyssey, but
they would loom large in the years ahead. See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND

GOOGLE WENT TO WAR AND STARTED A REVOLUTION 53 (2013).

268 See Android GPS [Google Product Strategy]: Key strategic decisions around Open Source, p.
2, July 26, 2005 (Trial Exhibit 1, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA)).

269 See id. at 4.

-58-

benefit from “the ability to quickly deploy differentiating features and applications.”270 OEMs
would benefit from a “robust, free consumer [open source] platform.”271 And Google “benefits
by having control of the user experience and built-in Google apps.”272 Open source was seen as a
critical for three reasons: (1) disrupting the closed and proprietary nature of the Microsoft and
Symbian platforms, leading candidates for a smartphone platform at the time; (2) providing
carriers and OEMs “a non-threatening solution for cross-vendor compatibility”; and (3) building
a “community force around Google handset APIs and applications.”273

The Android team saw a permissive open source license, such that used by Mozilla, that
merely requires licensees to maintain compatibility with Goggle APIs to be appropriate.274 The
team also saw Java as critical to their plan for numerous reasons: (1) “Carriers require it”; (2)
“[Microsoft] will never do it”; (3) “Elegant tools story”; (4) “Safe sandbox for 3rd party
developers”; (4) “Existing pool of developers and applications”; and (5) “Who pays? OEM pays
[S]un a license, typically < .30 in volume”.275

At the time, the Android team was planning to develop a clean room implementation of a
Java virtual machine (JVM).276 They sought to obtain a Java™ logo certification for carrier
certification, which would require a license from Sun. Their main concern was ensuring an open
source JVM, not cost. The team proposed negotiating the first open source Java 2 Platform,
Micro Edition JVM license with Sun.”277

The Android team proceeded under the assumption that they would be able to work out

270 See id. at 5.

271 See id.

272 See id.

273 See id. at 6-7.

274 See id.

275 See id. at p.8.

276 See id. at p.9.

277 See id. The memo noted that Tim Lindholm, a former Sun Microsystems engineer who was
involved with Java, see John Letzing, Who Is Tim Lindholm? Google’s CEO is Wondering That
Too, WALL ST. J. (Apr. 18, 2012),
http://blogs.wsj.com/digits/2012/04/18/who-is-tim-lindholm-googles-ceo-is-wondering-that-too/,
who then worked for Google would lead the negotiation. See Android GPS [Google Product
Strategy], supra n.___, at 9. It was hoped that the negotiation would reinforce Google’s JVM
development or persuade Sun to open source its multiple virtual machine implementation. See id.

-59-

an open source license with Sun.278 By early October 2005, Rubin was anticipating that Sun
would decline to collaborate on a joint project, but that Google could negotiate a license that
granted rights to “open source” Android with Java APIs: “We’ll pay Sun for the license and the
TCK [Technology Compatibility Kit]. Before we release our product to the open source
community we’ll make sure our JVM passes all TCK certification tests so that we don’t create
fragmentation. Before a product gets brought to market a manufacturer will have to be a Sun
licensee, pay appropriate royalties, and pass the TCK again.”279 Rubin outlined two options if
Sun declined: (1) “Abandon our work and adopt [Microsoft Common Language Runtime virtual
machine] and C# language”; or (2) “Do Java anyway and defend our decision, perhaps making
enemies along the way.”280

As 2006 began, the Android team remained firmly committed to pursuing the Java API
route and Sun appeared to be warming to a licensing agreement. Brian Swetland, an Android
Senior Software Engineer, communicated that the team was “pretty set” on using Java and set
forth a detailed set of reasons.281 “[T]he negotiations with Sun are going far better than
expected.”282 On January 13th, Rubin communicated to Sergey Brin the importance of Java for
Android and explained that he and Sun representatives had “conceptually agreed to open java
and additionally to broaden the relationship” to create Red Hat-type distribution model283 with

278 See email from Andy Rubin (Sept. 6, 2005) (meeting notes from Aug. 30, 2005 Android GPS
meeting; listing Java partnership as the first item on “Building Partnerships” slide (p.14); listing
4th quarter 2005 as milestone for Java partnership with Sun (p.21); estimating 4th quarter 2007
shipping date (p.20)) (Trial Exhibit 6, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA)).

279 See email from Andy Rubin (Oct. 11, 2005) (Trial Exhibit 7, Oracle America, Inc. v. Google
Inc. 3:10-cv-03561-WHA)). Rubin had licensed Java for the Sidekick operating system, but that
operating system did not substantially modify the platform. See FRED VOGELSTEIN, DOGFIGHT:
HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A REVOLUTION 57 (2013). The Android
project, however, sought substantial modifications. Hence, the negotiations would be more
difficult. See id.

280 See email from Andy Rubin (Oct. 11, 2005) (Trial Exhibit 7, Oracle America, Inc. v. Google
Inc. 3:10-cv-03561-WHA)).

281 See email from Brian Swetland (Jan. 2, 2006) (Trial Exhibit 13, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA)).

282 See id.

283 See Red Hat, WIKIPEDIA, https://en.wikipedia.org/wiki/Red_Hat.

-60-

Sun for Android.284 Rubin characterized the arrangement as an “industry changing partnership”
which would lead Sun to “walk away from a $100M annual J2ME licensing business into an
open source business model that we together crafted. This is a huge step for Sun, and very
important for Android and Google.”285 By February, Scott McNealy (Sun’s CEO) expressed
enthusiasm to Eric Schmidt over jointly developing “an Open Source Java Linux Mobile
Handset Platform implementation on the momentum of over 1 Billion Java Micro Edition based
handsets deployed in the market curently.”286

In early March, however, McNealy expressed some reticence to Jonathan Schwartz: “The
Google thing is really a pain. They are immune to copyright laws, good citizenship and dont [sic]
share. They dont [sic] even call back.”287 Nonetheless, Rubin and Vineet Gupta, Sun’s Chief
Strategy/Technology Officer for OEM Software Systems Engineering, were deep into the
process of marking up a draft COLLABORATION DEVELOPMENT AND LICENSE
AGREEMENT.288

In the midst of these negotiations, Jonathan Schwartz took over the CEO position from
Sun co-founder McNealy.289 The press reported that “McNealy and the company’s employees
and customers are all counting on Mr. Schwartz, a longtime admirer of Apple’s co-founder,
Steven P. Jobs, to find a way to recapture Sun’s magic.”290 In taking the reins, Schwartz
emphasized that Java is the No. 1 driver of growth at Sun. “More teenagers recognize Java than

284 See email from Andy Rubin to Sergey Brin (Jan. 13, 2006) (Document 398-10, Oracle
America, Inc. v. Google Inc. 3:10-cv-03561-WHA),
http://www.fosspatents.com/2011/09/sun-proposed-red-hat-style-android.html.

285 See id.

286 See email from Scott McNealy, contained in email from Vineet Gupta (Feb. 9, 2006) (Trial
Exhibit 16, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA)).

287 See email from Scott McNealy, (Mar. 8, 2006) (Trial Exhibit 563, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA)).

288 See email from Andy Rubin, (Mar. 26, 2006) (appending draft agreement) (Trial Exhibit 618,
Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA)); see also email from Andy Rubin,
(Mar. 29, 2006) (appending draft agreement with further mark-ups) (Trial Exhibit 618, Oracle
America, Inc. v. Google Inc. 3:10-cv-03561-WHA)).

289 See John Markoff, For Sun Microsystems, a Leader With Little Taste for Convention, N.Y.
TIMES (Apr. 26, 2006),
http://www.nytimes.com/2006/04/26/technology/for-sun-microsystems-a-leader-with-little-taste-
for-convention.html

290 See id.

-61-

they do Microsoft, because that is what they have in their pocket on their cellphone. Shame on
me if I can’t find a way to monetize that.”291

During the intervening month, the push to create a Sun-Google collaboration lost
momentum.292 On April 28th, Rubin confidently emailed Alan Eustace, Senior Vice President of
Engineering and Research, and Schmidt: “I smell fear and think we’re in a great negotiating
position.”293 On the structure of the deal, Rubin summarized:

1) I am convinced they will open source java with no tricks
2) Final price: $28M
3) We did such a good of convincing them our platform was a good idea, they
want to have a hand in it’s[sic] design and “own” parts where they have no value
add.294

Rubin indicated that he was not onboard with the third point. Schmidt replied the next day to say
that he had not heard back from Schwartz and to remind Rubin to make sure that Larry Page was
comfortable with the deal, noting that Page “is loathe to accept any restrictions on us.”295

On May 4th, Rubin emailed Schwartz proposing a meeting “to hash this out and get the
deal back on track. . . [F]rom the email exchange between you and Eric [Schmidt], it’s obvious
to me that both parties want to make this work. One final push may be all it takes.”296 The

291 See id.

292 See email thread from Gupta, (May. 8, 2006) (Trial Exhibit 2372, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA).

293 See Rubin email thread, (Apr. 28, 2006) (Trial Exhibit 3443, Oracle America, Inc. v. Google
Inc. 3:10-cv-03561-WHA).

294 See Rubin email thread, (Apr. 28, 2006) (Trial Exhibit 3443, Oracle America, Inc. v. Google
Inc. 3:10-cv-03561-WHA); see also Google’s Trial Brief, Oracle America, Inc. v. Google Inc., at
3-4 (Document 1706, 3:10-cv-03561-WHA) (“By the end of April 2006, though other terms of
their partnership remained unsettled, Sun had agreed to accept a payment from Google of $28
million over three years to compensate Sun for the risk of lost licensing revenue that might result
from an open source Android platform.”).

295 See Rubin email thread, (Apr. 28, 2006) (Trial Exhibit 3443, Oracle America, Inc. v. Google
Inc. 3:10-cv-03561-WHA).

296 See email thread from Gupta, (May. 8, 2006) (Trial Exhibit 2372, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA)).

-62-

negotiations, however, soon hit an impasse over the code forking issue.297

Google opted for Plan B–“Do Java anyway and defend our decision.” The Android team
pushed ahead with its own Java implementation.298 Using the Java language would not be a
problem as Sun had released it to the public. But the Android team also wanted to use selected
Java API packages from the Java Standard Edition and develop its own virtual machine.

If the Java programming language is analogized to the letters, words, and syntax of the
English language, the API implementations can roughly be characterized paragraphs or chapters
within a book written in the Java language.299 Copying the full API implementations–involving
large chunks of code–would run afoul of copyright law. Android could achieve its goals by
emulating the API functionality with independently written implementing code. And by avoiding
restrictive licensing terms with Sun, Google could blaze its own trail free of Sun’s
interference.300 Of particular importance, Google sought to avoid the GNU GPL so as to provide
Android adopters–carriers, OEMs, chip-makers, and other component manufacturers–greater
opportunity to customize and profit from their own innovations and market strategies. More
permissive open licenses, such as the BSD, Mozilla, and Apache licenses, better fit Google’s
vision.

Google recognized that this path involved risk of copyright and patent infringement. The

297 See email from Schmidt to Rubin, (May 14, 2006) (Trial Exhibit 215, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA); email from Desalvo to Rubin, (Jun. 1, 2006) (Trial Exhibit
2372, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA); FRED VOGELSTEIN,
DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A REVOLUTION 57 (2013)
(reporting that Sun would not agree to forking of its platform); from Rubin to Lee (Aug. 11, 07)
(explaining Sun’s profit motivation for choosing GPL for Java ME: “Sun chose GPL . . . so that
companies would need to come back to them and take a direct license and pay royalties.”; noting
that Google “negotiated 9 months with Sun and decided to walk away after they threatened to
sue us over patent violations.”) (Trial Exhibit 230, Oracle America, Inc. v. Google Inc. 3:10-cv-
03561-WHA).

298 See email from Desalvo to Rubin, (Jun. 1, 2006) (“With talks with Sun broken off where does
that leave us regarding Java class libraries? Ours are half-ass at best. We need another half of an
ass.) (Trial Exhibit 2372, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA)).

299 There are, however, critical limitations to this analogy for purposes of copyright analysis. API
packages, unlike words, function as the gears and levers of a virtual machine. See, infra TAN __.

300 See email from Linholm to Rubin (Mar. 24, 2006) (expressing consternation at Sun’s
licensing model: “Ha, wish them luck. Java.lang api’s are copyrighted. And Sun gets to say who
they license the tck [Technology Compatibility Kit used to ensure Java compatibility] to, and
forces you to take the ‘shared part’ which taints any clean room implementation.”) (Trial Exhibit
18, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

-63-

copyright issue turned on whether and to what extent the function labels and structure, sequence,
and organization (SSO) of Java APIs were protected by copyright law. As a result of the
Supreme Court’s deadlock, the Lotus v. Borland decision, which cleared the way for copying of
function labels, strictly governed only in the First Circuit. The Second Circuit’s Altai decision
and the Ninth Circuit’s Apple decision exposed the weakness of the Third Circuit’s superficial
analysis of SSO in Whelan. Furthermore, the Altai decision and the Ninth Circuit’s Sega decision
clearly viewed achieving interoperability with another computer interface through a different
implementation to be fair game, but Android was aiming for something other that end user
interoperability. It wanted to pick and choose among interface elements in building a new
platform–an optimized interface for a different consumer marketplace.

The Sun-Microsoft controversy further complicated the analysis. Microsoft had licensed
Java and agreed not to fork the code.301 When it did, Sun sued for breach of contract, copyright
infringement, trademark infringement, and unfair competition. Although Sun ultimately enjoined
Microsoft’s incompatible Java implementations and recovered $20 million, the copyright issue
was never squarely resolved in a judicial decision. The later antitrust settlement only further
complicated the matter. Would Sun see Google’s forking of the Java Standard Edition API to be
similarly anti-competitive?

The Google strategists faced serious legal and reputational risk proceeding without some
sort of collaboration with Sun or a Java license.302 But by not proceeding quickly and
independently, Google faced other risks to its core business as mobile computing emerged. The
Microsoft and Symbian mobile platforms were gaining market share and Apple was poised (and
rumored) to be entering the mobile computing marketplace.303

Over the next two years, the Android team independently developed its own
implementing code for 37 of the 166 Java API packages in the Java Standard Edition304 and an

301 See supra note __. <defining forking>

302 See email from Linholm to Rubin (Oct. 26, 2005) (“If we don’t show strong efforts toward
avoiding fragmentation we are also going to have much more trouble with Sun.”) (Trial Exhibit
125, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA); email from Rubin to Schnitt
(Nov. 14, 2007) (commenting that the Java licensing issue “is a touchy subject”) (Trial Exhibit
180, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

303 See Timeline of Apple “iPhone” Rumors (1999-present), Fierce Wireless,
http://www.fiercewireless.com/story/timeline-apple-iphone-rumors-1999-present.

304 See Oracle America, Inc. v. Google Inc., 872 F.Supp.2d 974, 977 (N.D. Cal. 2010), rev’d,750
F.3d 1339 (Fed. Cir. 2014). Appendix A lists and summarizes the 37 APIs.

As a lead Android programmer would later explain, “there’s certain of these APIs which
you . . . fundamentally think of as . . . part of the system that you can just use without really
having to think too much about it. . . . [M]y job was . . . to . . . sift through all of that and come

-64-

independent virtual machine (“Dalvik”). In this way, the Android operating system emulated the
functionality of known and tested APIs that fit the Android team’s constrained design
parameters. In this respect, the Android design effort can be analogized to the Green Team’s
adaptation of the C programming language to design a secure, reliable, object-oriented,
platform-independent language that could interpret other languages and could function on small
computer chips embedded in consumer devices.305 It can also be analogized to their further effort
to adapt Oak for the Web, i.e., Java.306 Android’s use of the same function labels as Java would
enable millions of Java programmers to quickly master Android app development. Although
Android apps would not be fully interoperable with Java, they were similar and better optimized
to the constraints of mobile devices.307 This clean room effort added substantially more time and
cost to Android development, but avoided literal copying of the Java API implementation
code.308

Within the larger Google enterprise, the company hedged its mobile strategy by pursuing
two paths: (1) working with Apple, which was developing a phone platform, to integrate Google
applications; and (2) developing the independent Android platform. Rival groups within Google
competed for primacy.309 Even within the Android path, there was some tension about whether to

up with a nice and consistent set of APIs that we have would then implement and provide to
developers.” See Testimony of Dan Bornstein, Trial Transcript pp. 1782-83, Oracle America,
Inc. v. Google Inc. 3:10-cv-03561-WHA (Apr. 25, 2012). The goal was not to implement all of
the API packages present in any particular Java Platform, but rather “to provide something that
was familiar to developers” in a “good mobile platform” that met “certain constraints” of that
medium, such as battery limitations, less memory than a desktop computer or server, and slower
CPU speed. See id. at 1783-84.

305 See, supra TAN __.

306 See, supra TAN __.

307 See Stephen Shankland, Google Carves an Android Path Through Open-source World:
Google is committed to many open-source tenets with its Android mobile phone software--but it's
willing to step on a few open-source toes, too. C|NET (May 22, 2008),
http://www.cnet.com/news/google-carves-an-android-path-through-open-source-world/.

308 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 57 (2013) (reporting that “[w]ithout the Java code, Rubin had to spend months of
extra time creating a work-around”).

309 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 62, 84-95 (2013).

-65-

focus on software (Schmidt’s instinct) or develop a Google handset (Page’s vision).310 Google
was a software company, with no experience in designing and manufacturing devices.

By the end of 2006, the Android team had been working intensively for the better part of
two years developing code, negotiating license and partnership agreements, and designing
prototypes. They were on track to release the Android platform by the end of 2007.311 Those
plans encountered a seismic jolt on January 9, 2007, the day Steve Jobs unveiled the iPhone to a
rapturous response.312 Rubin immediately realized that “we’re not going to ship that [the current
version of the Android] phone.”313 It looked conventional and lacked the magical touchscreen
and seamless design of the iPhone. While the Android platform and phone was more advanced
than the iPhone in many of its features and integration with Google web applications, it had
nowhere near the visual and tactile appeal of the iPhone.314

After the initial shock of the iPhone announcement, the Android team realized that
Apple’s remarkable device and business plan played into Android’s “open platform” strategy.
Apple hadentered into an exclusive distribution deal with AT&T, one of the major telcos.315 The
other telcos, some of whom had been hesitant to partner with Google, were now anxious to join
forces to compete with AT&T.316 Moreover, Apple’s proprietary platform left little room for
telcos to develop distinctive features. Android’s open platform and more generous partnership
terms provided greater opportunity for telcos to differentiate their products, innovate, and

310 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 56-57 (2013).

311 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 45 (2013).

312 See John Markoff, Apple Introduces Innovative Cellphone, N.Y. TIMES A1 (Jan. 10, 2007),
http://www.nytimes.com/2007/01/10/technology/10apple.html.

313 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 46 (2013); see also id. at 45 (quoting Chris DeSalvo: “As a consumer I was blown
away. I wanted on immediately. But as a Google engineer, I thought, ‘we’re going to have to
start over.’”).

314 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 47 (2013).

315 See John Markoff, Apple Introduces Innovative Cellphone, N.Y. TIMES A1 (Jan. 10, 2007)
(reporting that the iPhone would be available solely through Cingular Wireless, AT&T’s
wireless division, by mid-year), http://www.nytimes.com/2007/01/10/technology/10apple.html.

316 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 119-21 (2013).

-66-

profit.317 Furthermore, Google’s partnering with Apple on the iPhone through integration of
Google applications and assurances from Google leaders that Android was not a significant
initiative lulled Steve Jobs into a false sense of security that Google was not seriously pursuing a
robust competing platform or line of products.318

The fanfare surrounding the iPhone announcement rallied support within Google for the
Android project. Google’s leadership came to see Apple’s rapid rise in the mobile computing
field as a threat to its core businesses in much the way that Microsoft had dominated desktop
computing.319 Google allocated more resources to the Android project.320 The Android team
found it far easier to negotiate partnerships with telcos and OEMs.321 By working around Sun on
the Java API copyright issue, Android programmers had greater flexibility to optimize the
platform without interference from Sun.322 Google leadership pressured the Android team to
accelerate Android’s release.323

317 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 120-21 (2013). Google sweetened the partnership for telcos by offering them a cut
of app revenues. This motivated the carriers to push Android phones, which in the end
contributed to Google’s bottom line through enhanced use of Google applications. The combined
push catapulted Droid to record sales. See id. at 123.

318 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 84-103, 113-15, 129 (2013).

319 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 129-30 (2013).

320 See Android GPS Meeting Notes (Jul. 17, 2007) (Trial Exhibit 433, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA)); FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE

WENT TO WAR AND STARTED A REVOLUTION 83-84 (2013).

321 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 119-21 (2013).

322 See email from Rubin to Schmidt (May 11, 2007) (referring to Sun’s renewed interest to
discuss mobile technology and favoring independence: “I don’t see any way we can work
together and not have it revert to arguments of control. I’m done with Sun (tail between my legs,
you were right). They won’t be happy when we release our stuff, but we now have a huge
alignment with industry, and they are just beginning. While I’m not underestimating their
abilities, when folks like DoCoMo [leading mobile phone operator in Japan] tell us they want to
dump Sun for us, I’m assuming we have something valuable and good.”) (Trial Exhibit 207,
Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA))

323 See email from Schmidt to Rubin, Page, Brin, et al. (Jan. 15, 2007) (“I’d like to have an
Android GPS as soon as practical”) (Trial Exhibit 216, Oracle America, Inc. v. Google Inc.

-67-

Google began the rollout of the Android platform in early November 2007.324 On
November 5th, Google unveiled the Open Handset Alliance, a consortium of handset makers,
application developers, telcos, and components manufacturers (such as chip makers), in
conjunction with the outlines of the Android platform.325 Andy Rubin explained that Android’s
software was based on the Linux operating system and Sun’s Java language, which would enable
programmers to easily develop applications that connect to independent Web services.326

Jonathan Schwartz, Sun’s CEO, publicly applauded Google’s use of Java, proclaiming
that Google had “strapped another set of rockets to the [Java] community’s momentum-and to
the vision defining opportunity across our (and other) planets.”327 Privately, Sun feared that
Android’s use of Java would undermine its WORA paradigm and its mission to establish Java
ME as the leading mobile platform and a significant revenue generator.328 Following Google’s
November 5th Android announcement, Jonathan Schwartz communicated to colleagues that “[a]
separate implementation isn’t a fork–so long as Google agrees to certify their platform as
compliant with the Java specification. If they don’t, they won’t be able to call it Java.”329 In an

3:10-cv-03561-WHA)); FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO

WAR AND STARTED A REVOLUTION 83 (2013).

324 See Open Source Alliance, Industry Leaders Announce Open Platform for Mobile Devices:
Group Pledges to Unleash Innovation for Mobile Users Worldwide (Nov. 5, 2007),
http://www.openhandsetalliance.com/press_110507.html; Miguel Helft & John Markoff, Google
Enters the Wireless World N.Y. TIMES (Nov. 5, 2007),
http://www.nytimes.com/2007/11/05/technology/05cnd-gphone.html; Saul Hanseel, The
Gphone: So Open It Could Be Closed, N.Y. TIMES (Nov. 5, 2007),
http://bits.blogs.nytimes.com/2007/11/05/the-gphone-so-open-it-could-be-closed/.

325 See Open Handset Alliance, WIKIPEDIA,
https://en.wikipedia.org/wiki/Open_Handset_Alliance.

326 See Miguel Helft & John Markoff, Google Enters the Wireless World N.Y. TIMES (Nov. 5,
2007), http://www.nytimes.com/2007/11/05/technology/05cnd-gphone.html.

327 See Jonathan’s Blog, Congratulations Google, Red Hat and the Java Community! (Nov. 5,
2007),
http://web.archive.org/web/20101023072550/http://blogs.sun.com/jonathan/entry/congratulation
s_google.

328 See email thread involving Gupta (Sun) (Sep. 24, 2007) (Trial Exhibit 565, Oracle America,
Inc. v. Google Inc. 3:10-cv-03561-WHA)).

329 See email from Schwartz (Nov. 12, 2007) (Trial Exhibit 1055, Oracle America, Inc. v. Google
Inc. 3:10-cv-03561-WHA)). At the time that Schwartz wrote that email, Google had not yet
released the Android SDK. Release of the Android SDK

-68-

“Off the record” communication with a New York Times reporter one day after the Android
announcement, Schwartz sniped about Google’s opposition to Sun’s plan to open source Java.330

The Android announcement produced significant fallout beyond Sun. Steve Jobs saw the
Android announcement as betrayal by Brin, Page, and Schmidt.331 Schmidt had been serving on
Apple’s Board of Directors since 2006.332 The ensuing jockeying for mobile phone patent
portfolios, lawsuits, and interpersonal repercussions restructured major industries. The growing
rift between Apple and Google generated rivalry with the iPhone and rallied support, even
among those who had worked to support integration of Google applications with the iPhone, for
a robust, independent, and competitive Android platform.333

Based on the Android SDK, Sun and other industry observers could see that Google was

330 See email from Schwartz to John Markoff (Nov. 6, 2007),
http://www.fosspatents.com/2012/04/former-sun-chief-about-google-immune-to.html.

331 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION __-__ (2013); WALTER ISAACSON, STEVE JOBS 511-14, 524, 563 (2011). After
initially disbelieving that Google had betrayed him, see id. at 95, Steve Jobs declared war over
the Android betrayal. Jobs characterized its 2011 patent infringement suit against HTC (and, by
extension, Android) as saying:

Google, you fucking ripped off the iPhone, wholesale ripped us off. Grand theft. I
will spend my last dying breath if I need to, and I will spend every penny of
Apple’s $40 billion in the bank, to right this wrong. I’m going to destroy Android,
because it’s a stolen product. I’m willing to go thermonuclear war on this. They
are scared to death, because they know they are guilty. Outside of Search,
Google’s products—Android, Google Docs—are shit.

Id. at 512.

332 See Dr. Eric Schmidt Resigns from Apple’s Board of Directors, Apple Press Info (Aug. 3,
2009) (quoting Steve Jobs: “Eric has been an excellent Board member for Apple, investing his
valuable time, talent, passion and wisdom to help make Apple successful. Unfortunately, as
Google enters more of Apple’s core businesses, with Android and now Chrome OS, Eric’s
effectiveness as an Apple Board member will be significantly diminished, since he will have to
recuse himself from even larger portions of our meetings due to potential conflicts of interest.
Therefore, we have mutually decided that now is the right time for Eric to resign his position on
Apple’s Board.”),
https://www.apple.com/pr/library/2009/08/03Dr-Eric-Schmidt-Resigns-from-Apples-Board-of-D
irectors.html.

333 See FRED VOGELSTEIN, DOGFIGHT: HOW APPLE AND GOOGLE WENT TO WAR AND STARTED A

REVOLUTION 115-19 (2013).

-69-

diverging from the Java standard platform and the Java Community Process.334 Google deflected
suggestions that Android fragmented Java by focusing attention on how the Open Handset
Alliance provides a more responsive, less restrictive, open platform for mobile devices.335 Sun
and Google continued to monitor each other’s activities warily as Android products moved into
the marketplace in 2008 and 2009,336 a period in which Apple’s iPhone was ascendant. Leaders
at both companies occasionally broached licensing and collaboration,337 but a gulf remained.338

334 See Stephen Shankland, Sun’s worried that Google Android could fracture: Java Company’s
software chief wants to work with Google to make sure that the Android phone software won’t
split Java into incompatible versions, C|NET (Nov. 14, 2007) (reporting that “[p]ainful flashbacks
are beginning to torment those of us who lived through the Java wars between Sun Microsystems
and Microsoft that began 10 years ago. Earlier this week, Google released programming tools for
its Android mobile-phone software project that shun the existing Java standard-setting process in
favor of a Google-specific variety. Sun responded on Wednesday by expressing concern that
Google’s Android project could fragment Java into incompatible versions.”),
http://www.cnet.com/news/suns-worried-that-google-android-could-fracture-java/; see also
Stephen Shankland, Google’s Android Parts Ways with Java Industry Group Heads Up,
Programmers: Google Opted to Create its Own Java Standards and Technology for its Android
Mobile Phone, Not Piggyback on the Existing Java Community Process, C|NET (Nov. 13, 2007),
http://www.cnet.com/news/googles-android-parts-ways-with-java-industry-group/.

335 See Stephen Shankland, Sun’s worried that Google Android could fracture: Java Company’s
software chief wants to work with Google to make sure that the Android phone software won’t
split Java into incompatible versions, C|NET (Nov. 14, 2007) (quoting a Google press statement:
“Google and the other members of the Open Handset Alliance are working to help solve
fragmentation and supporting the developer community by creating Android, a mobile platform
that responds to the needs of the developers, has the backing of industry leaders, and will be
available as open source under a nonrestrictive license.”), http://www.cnet.com/news/suns-
worried-that-google-android-could-fracture-java/.

336 See email from Gupta to Schwartz (Oct. 23, 2008) (indicating that Google’s Android
“proposal more than likely is going to be about buying out Java”) (Trial Exhibit 2070, Oracle
America, Inc. v. Google Inc. 3:10-cv-03561-WHA); email from Rubin to Dick Wall (Mar. 24,
2008) (warning Google representatives not to demonstrate Android features to Sun employees or
lawyers at JavaOne convention) (Trial Exhibit 29), Oracle America, Inc. v. Google Inc. 3:10-cv-
03561-WHA); email from Sobata to Linholm (Feb. 19, 2009) (raising the question of who will
own Java if Sun collapses and suggesting Google could buy the patent and copyright rights as a
way of making “[o]ur Java lawsuits go away”) ((Trial Exhibit 326), Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA); email from Linholm to Bornstein (Apr. 29, 2009)
(recommending avoiding interaction with Sun so as to avoid “inadvertently stir[ring] anything up
for Android”) ((Trial Exhibit 1029), Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

337 See Lindholm-Rubin email thread (Nov. 24, 2008) (discussing recent efforts by Sun to
“certify Android through the Java process and become licensees of Java”), (Trial Exhibit 1002,

-70-

Sun refrained from blocking Android through legal action.

The marketplace resolved the fate of the two companies. With Java ME failing to take
off, Sun became an acquisition target.339 By contrast, Rubin’s vision proved prescient: “When
you have multiple O.E.M.’s building multiple products in multiple product categories, it’s just a
matter of time” before sales of Android phones exceed the sales of proprietary systems like
Apple’s and R.I.M.’s.”340 Figure 2 tells the story. After a gradual start, Android took the global
smartphone operating systems market by storm, surpassing 50% of global smartphone operating
systems by the third quarter of 2011 and rising to 80% of the market by the middle of 2013. It
exceeds 84% of the market in 2016, with Apple iOS coming in second place with about 15% of
the market.341

Figure 2
Global Market Share: Smartphone Operating Systems

Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA); email from Schmidt to Schwartz
(Mar. 31, 2008) (Re: update on android licensing; “We are happy to have our team meet with
anyone at Sun who would like more information or who has ideas for us”; calling attention to an
explanation of why Google chose to distribute Android to the public using the Apache v2
license) (Trial Exhibit 3466, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA); see also
Ryan Paul, Why Google chose the Apache Software License over GPLv2 for Android
ARSTECHNICA (Nov. 6, 2007) (linked in Schmidt’s March 31, 2008 email to Schwartz),
http://arstechnica.com/uncategorized/2007/11/why-google-chose-the-apache-software-license-
over-gplv2/.

338 Sun had proposed to license Java to Google for $60 million over three years plus an additional
amount of up to $25 million per year in revenue sharing. See Letter from Scott Weingaertner
(Counsel to Google) to Judge Alsup (Jun. 6, 2011) at p.5, (Document 182, Oracle America, Inc.
v. Google Inc. 3:10-cv-03561-WHA), https://www.scribd.com/document/58133136/Oracle-
Google-Damages-June-6-Precis-Unredacted. It is unclear whether that offer would have afforded
Google the flexibility and independence in developing Android that it sought.

339 See Patrick Thibodeau and Elizabeth Montalbano, Update: Oracle buying Sun in $7.4B deal,
COMPUTERWORLD (Apr. 20, 2009),
http://www.computerworld.com/article/2523479/data-center/update--oracle-buying-sun-in--7-4b
-deal.html.

340 See Brad Stone, Google’s Andy Rubin on Everything Android, N.Y. TIMES (Apr. 27, 2010),
http://bits.blogs.nytimes.com/2010/04/27/googles-andy-rubin-on-everything-android/.

341 See Statista, Global market share held by the leading smartphone operating systems in sales
to end users from 1st quarter 2009 to 1st quarter 2016, The Statistics Portal (2016),
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-sy
stems/.

-71-

3. Oracle’s Acquisition of Sun Microsystems

Despite consternation over Android’s “unofficial,” non-standard, and incomplete Java
implementation,342 Sun declined to pursue legal action.343 Such a course of action would have
gone against Sun’s long-standing cultural norms about open technology and evangelism within
the industry.344 Moreover, Sun could ill-afford a prolonged litigation battle and the risk to Sun’s

342 See Dan Farber, Java Creator James Gosling: ‘Google Totally Slimed Sun,’ C|NET (Apr. 30,
2012) (quoting Gosling stating that Sun was “wronged” by Google and citing Sun’s objections to
Android’s “very weak notions of interoperability” with Java),
http://www.cnet.com/news/java-creator-james-gosling-google-totally-slimed-sun/; Java
(programming language), WIKIPEDIA,
https://en.wikipedia.org/wiki/Java_(programming_language) (referring to Android as an
“unofficial” Java software platform); Joe Mullin, Sun’s Jonathan Schwartz at Trial: Java Was
Free, Android Had No Licensing Problem, ARSTECHNICA (May 11, 2016) (quoting former Sun
CEO expressing annoyance at Google’s refusal to work out a license with Sun),
http://arstechnica.com/tech-policy/2016/05/suns-jonathan-schwartz-at-trial-java-was-free-androi
d-had-no-licensing-problem/

343 See Dan Farber, Java Creator James Gosling: ‘Google Totally Slimed Sun,’ C|NET (Apr. 30,
2012) (quoting Gosling stating that “[w]e were all really disturbed, even Jonathan [Schwartz]: he
just decided to put on a happy face and tried to turn lemons into lemonade.”),
http://www.cnet.com/news/java-creator-james-gosling-google-totally-slimed-sun/

344 See James Gosling: The shit finally hits the fan. . . . (Aug. 12, 2010) (observing that “[f]iling
patent suits was never in Sun’s genetic code), http://news.java-virtual-machine.net/6018.html;

-72-

reputation with other technology companies. Google was well-positioned financially and legally
to put up a stiff defense. Sun’s business was struggling and Wall Street and potential suitors
would likely have seen such a lawsuit as a sign of desperation and a distraction from Sun’s
business goals.

With its hardware business in decline, software acquisitions sputtering,345 and inability to
monetize Java, Sun Microsystems’s ability to move forward as an independent company came
into question.346 After acquisition negotiations with IBM failed in late 2008, Oracle successfully
bid $7.4 billion in April 2009.347 Oracle had built many of its software products with Java and
hence had strong motivation to ensure that the Java platform would be in safe hands. Moreover,
Oracle believed that it could significantly reduce Sun’s operating costs as part of a combined
company. It believed that the Sun products could bring in $1.5 billion in operating profits in the
first year following the acquisition.348

Oracle’s acquisition of Sun Microsystem dramatically altered the Java enforcement
equation. Larry Ellison, Oracle’s co-founder and CEO, had a reputation for brash business
tactics. Whereas Sun's leadership had embraced open technology with religious fervor, Oracle's
approach had been strategic. Unlike Sun, Oracle possessed the financial strength and diversified

quoted in Oracle’s Java API Suit Against Google – Five Years Later, FELDTHOUGHTS (Jun. 29,
2015) (Brad Feld blog),
http://www.feld.com/archives/2015/06/oracles-java-api-suit-google-five-years-later.html;
Mullin, supra note __ <Sun’s Jonathan Schwartz at Trial> (quoting Sun’s CEO explaining that
Android “was completely consistent with [Sun’s] practices. When you say APIs are open, there
are competitive implementations. . . It wasn’t going to call itself Java, so there was nothing we
could do”); but see Farber, supra note __ (quoting Scott McNealy, Sun’s co-founder and former
CEO, disputing Schwartz’s assertion that Sun allowed any forking of Java code so long as the
implementer did not use the Java name or logo).

345 Sun had purchased StorageTek, a storage vendor, in 2005 for $4.1 billion and MySQL, a
relational database company, in 2008, for $1 billion. See Jon Brodkin, The Downfall of Sun
Microsystems, NETWORKWORLD (Apr. 24, 2009),
http://www.networkworld.com/article/2268096/servers/the-downfall-of-sun-microsystems.html.

346 See Jon Brodkin, The Downfall of Sun Microsystems, NETWORKWORLD (Apr. 24, 2009),
http://www.networkworld.com/article/2268096/servers/the-downfall-of-sun-microsystems.html.

347 See Oracle Buys Sun Microsystems For $7.4B, CBS News (Apr. 20, 2009) (reporting that
analysts had long said that Sun could not stand on its own and were surprised when merger talks
with IBM in late 2008 broke down),
http://www.cbsnews.com/news/oracle-buys-sun-microsystems-for-74b/.

348 See Jon Brodkin, The Downfall of Sun Microsystems, NETWORKWORLD (Apr. 24, 2009),
http://www.networkworld.com/article/2268096/servers/the-downfall-of-sun-microsystems.html.

-73-

business strategy to pursue high stakes litigation. It had done well in recent years pursuing
copyright litigation against SAP and corporate takeovers.349

In announcing the Sun acquisition, Ellison characterized Java as “the single most
important software asset we have ever acquired” and touted Oracle’s Java-based middleware
business, bolstered first by its BEA Systems acquisition350 and purchase of Sun, as being “on
track to become as large as Oracle’s flagship database business.”351 Oracle would need to
re-position Java’s licensing business to achieve that goal. Oracle’s leadership team sought to
pursue a far more aggressive Java licensing strategy. It believed that the Sun products could
bring in $1.5 billion in operating profits in the first year following the acquisition.352

The Sun acquisition was completed in early 2010.353 Oracle immediately approached
Google about its use of Java in the Android platform. Google seriously considered alternatives to
using Java,354 but ultimately stood its ground despite the lack of good work-arounds. For Oracle,
the prospect of spending millions on attorneys’ fees and costs for even a modest possibility of

349 See Verne F. Kopytoff, SAP Ordered to Pay Oracle $1.3 Billion, N.Y. TIMES (Nov. 23, 2010);
Jim Henschen, Oracle Lawsuit Against SAP Settled at Law, INFORMATIONWEEK (Nov. 14,
2016),
http://www.informationweek.com/cloud/software-as-a-service/oracle-lawsuit-against-sap-settled
-at-last/d/d-id/1317483; Oracle Corp. v. SAP AG,
https://en.wikipedia.org/wiki/Oracle_Corp._v._SAP_AG; PeopleSoft,
https://en.wikipedia.org/wiki/PeopleSoft (discussing Oracle's acquisition).

350 See Larry Dugan, Surprise! Oracle buys BEA Systems, ZDNET (Jan. 16, 2008),
http://www.zdnet.com/article/surprise-oracle-buys-bea-systems/. BEA Systems specializes in
enterprise infrastructure software products.

351 See Patrick Thibodeau and Elizabeth Montalbano, Update: Oracle Buying Sun in $7.4B Deal,
COMPUTERWORLD (Apr. 20, 2009), http://www.computerworld.com/article/2523479/data-
center/update--oracle-buying-sun-in--7-4b-deal.html.

352 See Jon Brodkin, The Downfall of Sun Microsystems, NETWORKWORLD (Apr. 24, 2009),
http://www.networkworld.com/article/2268096/servers/the-downfall-of-sun-microsystems.html.

353 Antitrust authorities in the U.S. and Europe delayed the acquisition out of concern that
Oracle, the leading relational database vendor, was acquiring a promising competing business
(MySQL). <citation>

354 See email from Tim Lindholm to Andy Rubin (Aug. 6, 2010) (noting that Page and Brin had
asked engineers to “investigate what technical alternatives exist to Java for Android and Chrome.
We’ve been over a bunch of these, and think they all suck. We conclude that we need to
negotiate a license for Java under the terms we need.”),
http://www.fosspatents.com/2011/11/googles-five-failed-attempts-to-give.html.

-74-

sharing in the large and growing Android marketplace was a plausible, if not attractive, business
proposition for Oracle’s leadership team. Moreover, it could quickly establish Oracle as a key
player in the lucrative, strategically important, and rapidly growing mobile operating system
marketplace. Delay would only enhance Google’s laches and equitable estoppel defenses.

Yet Google would be a formidable adversary. Google was enormously profitable and had
established a strong reputation for protecting its business initiatives at substantial cost and almost
religious fervor. By mid 2010, Android had already surpassed Apple’s market share of the global
smartphone marketplace. Google had fought long and hard to secure its core business assets and
there was little reason to believe that its approach to defending Android would be any different.
Google was actively defending patent lawsuits as well as copyright threats to YouTube and
Google Books. The conditions were set for an IP API battle royale.

 B. The Oracle v. Google Litigation

After six months of negotiations with Google, Oracle filed a broadside salvo in the
Northern District of California in August 2010 alleging that Android infringed Java-related
patents and copyrights. With billions of dollars and control of two of the most important
software platforms at stake, the parties would spare no expense in litigating the case over the
next six years, with more battles yet to unfold.

As background for understanding the complex issues surrounding legal protection for
APIs, this section chronicles the Oracle v. Google litigation. The key phases are: (1) the
complaint; (2) the first trial followed by Judge Alsup’s ruling that the Java APIs are not
copyrightable; (3) the Federal Circuit’s reversal of Judge Alsup’s copyrightability ruling and
remand for a fair use trial; (4) the interlocutory certiorari petition; (5) the fair use trial; and (6)
the road ahead. Part II(C) examines the uncertain copyright status of APIs. Part III examines the
district court and Federal Circuit decisions and assesses the larger policy ramifications.

1. Oracle’s Complaint and Pretrial Case Management

Oracle’s initial complaint alleged, in the barest of bones, that Android infringed seven
utility patents and copyrights in the “code, documentation, specifications, libraries, and other
materials that comprise the Java platform.”355 Oracle sought a permanent injunction and
damages. The case was assigned to Judge William Alsup, an experienced and well-respected

355 See COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT, Oracle America,
Inc. v. Google, Inc., (filed August 12, 2010) (assigned CV10-03561),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/1.

-75-

jurist who was not afraid of technologically complex subject matter.356

After Google challenged the adequacy of Oracle’s copyright infringement allegations,
Oracle asserted that

[a]pproximately one third of Android’s Application Programmer Interface (API)
packages . . . are derivative of Oracle America’s copyrighted Java API packages .
. . and corresponding documents. The infringed elements of Oracle America’s
copyrighted work include Java method and class names, definitions, organization,
and parameters; the structure, organization and content of Java class libraries; and
the content and organization of Java’s documentation.357

Much of the pretrial case management revolved around the patent allegations, damages
experts, admissibility of the August 2010 Linholm email,358 and court-ordered mediation.359

Google sought reexamination of the asserted patents in February 2011.360 The PTO’s rejection of

356 See Dan Farber, Judge William Alsup: Master of the Court and Java, C|NET (May 31, 2012),
http://www.cnet.com/news/judge-william-alsup-master-of-the-court-and-java/.

357 See AMENDED COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT, at ¶
40, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA (filed Oct. 27, 2010),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/36.

358 See email from Linholm to Rubin (Aug. 10, 2010), supra note __ (stating that “What we’ve
actually been asked to do (by Larry and Sergei [sic]) is to investigate what technical alternatives
exist to Java for Android and Chrome. We’ve been over a bunch of these, and think they all
suck. We conclude that we need to negotiate a license for Java under the terms we need.”);
Failed attempt #7: Federal Circuit denies Google petition to exclude Lindholm email, FOSS
Patents (Feb. 6, 2012),
http://www.fosspatents.com/2012/02/failed-attempt-7-federal-circuit-denies.html; Google’s five
failed attempts to give confidential status to ‘damning’ email in Oracle case, FOSS Patents (Nov.
9, 2011), http://www.fosspatents.com/2011/11/googles-five-failed-attempts-to-give.html.

359 See ORDER RE: FURTHER SETTLEMENT CONFERENCES, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA (filed Oct. 27, 2010) (Mag. Judge Paul Grewal) (“We are
referred to as trial courts because, in the end, some cases just need to be tried. [¶] This case is a
good example of why that is so. Despite their diligent efforts and those of their able counsel, the
parties have reached an irreconcilable impasse in their settlement discussions with the
undersigned.” (emphasis in original)),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/84
8.

360 See Darryl K. Taft, Google Asks Patent Office for Second Opinion on Oracle’s Android
Claims, eWeek (Feb. 17, 2011),

-76-

all claims in several of the Oracle patents,361 although still subject to further review and appeal,
provided Google with leverage to narrow the scope of the patent case or to stay part of the
litigation. Under pressure from Judge Alsup, who sought to avoid multiple proceedings, Oracle
dismissed many of its patent claims in order to get an earlier trial date.362

Google sought summary judgment on the copyright cause of action.363 On September 15,
2011, Judge Alsup largely rejected Google’s copyright summary judgment motion.364 While
agreeing with Google that “the names of the Java language API files, packages, classes, and
methods are not protectable as a matter of law”365 are not protectable under the copyright
doctrine denying protection for names and short phrases,366 the court nonetheless rejected
Google’s broader argument that API declarations (beyond short phrases) and documentation are
unprotectable under the scènes à faire, merger, or methods of operation (§ 102(b)) doctrines.

http://www.eweek.com/c/a/Application-Development/Google-Asks-Patent-Office-for-Second-O
pinion-on-Oracles-Android-Claims-100246.

361 See Scott Daniels, An Update on Oracle’s Infringement Case Against Google, US PTO
Litigation Alert™ (Feb. 14, 2012),
http://blog.whda.com/2012/02/an-update-on-oracles-infringement-case-against-google/

362 See Oracle-Google trial to start on April 16, 2012, FOSS Patents (Mar. 13, 2012), Oracle
offers withdrawal of three more patents in exchange for spring trial against Google, FOSS
Patents (Mar. 9, 2012),
http://www.fosspatents.com/2012/03/oracle-google-trial-to-start-on-april.html;
http://www.fosspatents.com/2012/03/oracle-offers-withdrawal-of-three-more.html; Pressure
mounting on Oracle to drop patent claims against Google and focus on copyright, FOSS Patents
(Mar. 5, 2012), http://www.fosspatents.com/2012/03/pressure-mounting-on-oracle-to-drop.html.

363 See MOTION for Summary Judgment on Count VIII of Plaintiff Oracle America's Amended
Complaint filed by Google Inc.,Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA (filed
Aug. 1, 2011).

364 See Oracle America, Inc. v. Google Inc., 810 F.Supp.2d 1002 (N.D. Cal. 2011) (ORDER
PARTIALLY GRANTING AND PARTIALLY DENYING DEFENDANT'S MOTION FOR
SUMMARY JUDGMENT ON COPYRIGHT CLAIM).

365 Id. at 1009-10.

366 See U.S. Copyright Office, Material Not Subject to Copyright, 37 C.F.R. 202.1(a) (Copyright
Office regulation denying copyright registration for “Words and short phrases such as names,
titles, and slogans”); Planesi v. Peters , No. 04-16936, slip op. at *1 (9th Cir.Aug. 15, 2005);
Sega Enters. Ltd. v. Accolade, Inc., , 977 F.2d 1510, 1524 n.7 (9th Cir. 1992) (“Sega’s security
code is of such de minimis length that it is probably unprotected under the words and short
phrases doctrine.”).

-77-

Judge Alsup concluded that Google’s categorical approach “ignores the possibility that some
method declarations (for example) may be subject to the merger doctrine or may be scènes à
faire, whereas other method declarations may be creative contributions subject to copyright
protection.”367 As regards the methods of operation, Judge Alsup explained that “[e]ven if
Google can show that APIs are methods of operation not subject to copyright protection, that
would not defeat Oracle’s infringement claim concerning the accused specifications.”368

After some wrangling, Judge Alsup established an April 2012 trial date.369 He structured
the trial in three phases: (I) copyright infringement claims; (II) patent infringement claims; and
(III) all remaining issues, including damages and willfulness, if necessary.370

As the case wended its way toward trial, the core copyright allegations were boiled down
to the following: (a) “12 Android files of source code (copied from 11 Java files), including
rangeCheck”; (b) “Plain English descriptions in the user manual, sometimes called the API
‘specifications’”; (c) “37 APIs but only as to their specific selection, structure, and organization,
it being conceded that the implementing code is different”; and (d) “Android’s entire source code
and object code as derivative works of the 37 Java APIs.”371 The following elements or works
were not at issue: (a) “Android’s use of the Java programming language (other than any direct
copying of source code)”; (b) “The titles and names of APIs, including all package and class
names and definitions, fields, methods and method signatures (names in the left column of
specifications)”; (c) “The idea of APIs”; and (d) “The Dalvik virtual machine.”372

The parties agreed that Judge Alsup would decide the copyrightability of the Java APIs
and that the jury would decide copyright infringement, fair use, and whether any copying was de

367 See Oracle America, Inc. v. Google Inc., 810 F.Supp.2d at 1010-11.

368 See id. at 1011 (emphasis in original). The term “specifications” appears to be synonymous
with “implementing code.”

369 See ORDER SETTING TRIAL DATE OF APRIL 16, 2012, Oracle America, Inc. v. Google
Inc. 3:10-cv-03561-WHA (filed Mar. 13, 2012).

370 See FINAL PRETRIAL ORDER, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA
(filed Jan. 4, 2012).

371 See REQUEST FOR STATEMENT OF ISSUES RE COPYRIGHT, at 1-2, Oracle America,
Inc. v. Google Inc. 3:10-cv-03561-WHA (filed Apr. 4, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/85
4.

372 See id. at 2.

-78-

minimis.373 Thus, the most salient copyright issue–the copyrightability of APIs–was not going to
be tried to the jury.

2. 2012 Trial

The Oracle-Google trial opened to great fanfare in the technology and business
communities. The case represented one of the major battlefronts in the rapidly developing
“smartphone war.” Just as the Oracle case was heading to trial, Google was engaged in other
high stakes patent battles with smartphone patent owners.374

Oracle emphasized three themes during the copyright phase of the trial: (1) that the
Google engineers believed that they needed a Java license to develop the Android platform;375

(2) the importance of the Java “Write Once, Run Anywhere” philosophy;376 and (3) that
designing APIs and writing its code is a highly creative activity.377 Google countered with the
following arguments: (1) Sun freely licensed the Java language, encouraged the use of the Java
APIs (thereby leading software developers to believe that they were also freely available), and

373 872 F.Supp.2d at 975.

374 In August 2011, Google announced its acquisition of Motorola Mobility. Motorola Mobility
owned more than 17,000 patents (as well as another 7,500 patent applications) which Google
believed would bolster Android’s ability to survive the smartphone patent arms race. See David
Goldman, Google Seals $13 Billion Motorola Buy, CNN MONEY (May 22, 2012),
http://money.cnn.com/2012/05/22/technology/google-motorola/.

375 Oracle’s lead counsel began the opening argument by quoting Tim Lindholm’s August 6,
2010 email to Andy Rubin: “What we have actually been asked to do by Larry and Sergey is to
investigate what technical alternatives exist to Java for Android. We have been over a bunch of
these and think they all suck. We conclude that we need to negotiate a license for Java under the
terms we need.” See Trial Transcript (Apr. 16, 2012), Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 942, filed Apr. 18, 2012), at pp. 182-83; see also id. at pp. 190-
93 (quoting Google engineer emails discussing Java licensing).

376 See Trial Transcript (Apr. 16, 2012), Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 942, filed Apr. 18, 2012), at pp. 193-97, 209-10, 219-20.

377 See Trial Transcript (Apr. 16, 2012), Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 942, filed Apr. 18, 2012), at pp. 197-99, 213; Testimony of
Joshua Bloch, Trial Transcript (Apr. 19, 2012), Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 942, filed Apr. 18, 2012), at p. 831 (Google engineer who
formerly worked at Sun acknowledging that there can be “creativity and artistry” in even a single
method decladation”).

-79-

publicly welcomed and supported Android’s use of Java;378 (2) After Sun failed to build a
successful Java phone or mobile platform, Oracle acquired Sun with the intention of shaking
Google down for a share of Android’s profits;379 (3) Google independently implemented the
functions of the Java 37 APIs at issue and, in any case, the Java API declarations are but a small
portion of Android’s 15 million lines of code;380 and (4) Google made fair use of Java APIs.381

As a result of Judge Alsup’s case management decision to reserve the copyrightability of
APIs, the jury’s infringement verdict was largely a foregone conclusion. Judge Alsup instructed
the jury that Oracle’s Java-related copyrights “cover the structure, sequence and organization
[SSO] of the compilable code”382 and that Google “agrees that the structure, sequence and
organization of the 37 accused API packages in Android is substantially the same as the
structure, sequence and organization of the corresponding 37 API packages in Java.”383 Judge
Alsup further instructed the jury that “[w]hile individual names are not protectable on a
standalone basis, names must necessarily be used as part of the structure, sequence, and
organization and are to that extent protectable by copyright”384

Oracle’s principal copyright infringement argument boiled down to showing the jury a
side-by-side comparison of Java and Android source code. As Figure 3 from Oracle’s closing
argument slide deck shows, Google conceded that it copied the API declarations.

Figure 3
Oracle’s Closing Argument Slide Deck, Slide 5

378 See Trial Transcript (Apr. 17, 2012), Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 943, filed Apr. 18, 2012), at pp. 243-45, 247-53, 266-69.

379 See Trial Transcript (Apr. 17, 2012), Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 943, filed Apr. 18, 2012), at pp. 245-46, 269-70.

380 See Trial Transcript (Apr. 17, 2012), Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 943, filed Apr. 18, 2012), at pp. 258-59.

381 See Trial Transcript (Apr. 17, 2012), Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 943, filed Apr. 18, 2012), at pp. 247, 270-74.

382 See FINAL CHARGE TO THE JURY (PHASE ONE) AND SPECIAL VERDICT FORM,
p.8, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA (Document 1018, filed Apr. 30,
2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
18.

383 See id. at 10.

384 See id.

-80-

Google’s Admission of Copying of Declarations

-81-

Oracle illustrated the copying of declarations with a side-by-side code comparison of one
method (ClassLoader) from one class (Protection Domain) from the java.security API package.

Figure 4
Oracle’s Closing Argument Slide Deck, Slide 7
java.security ProtectionDomain ClassLoader

-82-

Oracle illustrated the extent of copying by showing the number of classes, methods, and
declarations copied into Android.

Figure 5
Oracle’s Closing Argument Slide Deck, Slide 8

Extent of Copying

-83-

Beyond its motion seeking a determination that the Java APIs are not copyrightable,385

Google’s principal path to a trial victory was that the jury would find that Android’s use of Java
was permissible under the fair use doctrine. The jury would also provide factual input for Judge
Alsup’s assessment of equitable estoppel.

As the copyright phase of the trial was winding down, the parties filed motions for
judgment as a matter of law on all of the issues being litigated.386 In an effort to focus the key
question, Judge Alsup requested that the parties respond to 16 specific questions relating to
whether the structure, sequence, and organization APIs were copyrightable.387

Jury deliberations following the copyright phase of the trial ended with a partial Oracle
victory.388 Not surprisingly in view of Judge Alsup’s API SSO instruction, the jury concluded

385 See GOOGLE’S MOTION FOR JUDGEMENT AS A MATTER OF LAW ON SECTIONS
COURT VIII OF ORACLE’S AMENDED COMPLAINT, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 984, filed Apr. 25, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/98
4

386 See GOOGLE’S MOTION FOR JUDGEMENT AS A MATTER OF LAW ON SECTIONS
COURT VIII OF ORACLE’S AMENDED COMPLAINT, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 984, filed Apr. 25, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/98
4; ORACLE AMERICA, INC.’S CORRECTED RULE 50(A) MOTION AT THE CLOSE OF
ALL EVIDENCE, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA (Document 1045,
filed May 2, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
45.

387 See REQUEST FOR FURTHER PHASE ONE BRIEFING RE COPYRIGHTABILITY OF
SSO, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA (Document 1057, filed May 3,
2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
57; see also FURTHER ITEMS TO BRIEF IN TWENTY-PAGE BRIEFS DUE MAY 10,
Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA (Document 1062, filed May 4, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
62; FURTHER ITEM FOR TWENTY-PAGE BRIEFS DUE MAY 10, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA (Document 1088, filed May 7, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
88.

388 See SPECIAL VERDICT FORM, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA
(Document 1089, filed May 7, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10

-84-

that Android infringed the 37 Java API packages in question taken as a group.389 The jury
nonetheless held that Google did not infringe the documentation of the 37 Java API packages
taken as a group under a virtual identity standard390 and that copying of eight of the nine specific
source code files at issue was de minimis.391 The jury hung on whether Google’s infringement of
the Java API SSO constituted fair use.392 The jury split on the special interrogatories relating to
Google’s equitable estoppel defense, holding that Sun/Oracle engaged in conduct that they knew
or should have known would reasonably lead Google to believe that it would not need a license
to use the Java API SSO, but that Google had not proven that it reasonably relied on such
conduct.393

The patent phase of the trial commenced shortly after the jury rendered its copyright
verdict. The same jury ruled that Google did not infringe the seven asserted claims of the two

89; Joe Mullin, Google Guilty of Infringement in Oracle Trial; Future Legal Headaches Loom,
ARSTECHINICA (May 7, 2012),
http://arstechnica.com/tech-policy/2012/05/jury-rules-google-violated-copyright-law-google-mo
ves-for-mistrial/

389 See SPECIAL VERDICT FORM, p.1, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 1089, filed May 7, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
89.

390 See FINAL CHARGE TO THE JURY (PHASE ONE) AND SPECIAL VERDICT FORM,
p.12, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA (Document 1018, filed Apr. 30,
2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
18.

391 See SPECIAL VERDICT FORM, pp. 2, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 1089, filed May 7, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
89.

392 See SPECIAL VERDICT FORM, p.1, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 1089, filed May 7, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
89.

393 See SPECIAL VERDICT FORM, p.3, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA (Document 1089, filed May 7, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/10
89.

-85-

patents at issue.394 Therefore, the need for third phase of the trial hinged on Judge Alsup’s
resolution of the post-trial copyright motions.

One week later, Judge Alsup filed a released opinion holding that the Java APIs were not
copyrightable.395 This determination resulted in dismissal of the case. Although Judge Alsup
cautioned that the ruling did not hold “Java API packages are free for all to use without license”
or that “the structure, sequence and organization of all computer programs may be stolen,” the
court rules that “on the specific facts of this case the particular elements replicated by Google
were free for all to use under the Copyright Act.”396

Judge Alsup grounded his decision in the uncopyrightability of collections of functional
attributes contained in 37 Java APIs at issue and the fact that Google wrote its own
implementing code.397 The principal copying concerned the lines of declaring code, which are
necessary to operate the particular methods of the APIs at issue. As Judge Alsup explained,

Significantly, the rules of Java dictate the precise form of certain necessary lines
of code called declarations, whose precise and necessary form explains why
Android and Java must be identical when it comes to those particular lines of
code. That is, since there is only one way to declare a given method functionality,
everyone using that function must write that specific line of code in the same
way.398

394 See SPECIAL VERDICT FORM, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA
(Document 1190, filed May 23, 2012),
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/11
90; Josh Lowensohn, Jury Verdict: Android Doesn’t Infringe Oracle’s Patents, C|NET (May 23,
2012), http://www.cnet.com/news/jury-verdict-android-doesnt-infringe-oracles-patents/

395 See Oracle America, Inc. v. Google Inc., 872 F.Supp.2d 974 (N.D. Cal. 2012). In a pyrrhic
victory for Oracle, Judge Alsup granted judgment as a matter of law holding that Google’s
copying of the eight test files that the jury deemed de minimis were infringing. See Oracle Am.,
Inc. v. Google Inc., No. C 10–3561, 2012 U.S. Dist. LEXIS 66417 (N.D.Cal. May 11, 2012).

396 872 F.Supp.2d at 1002.

397 Google did include a small (9 lines of a 3,179 line function), “innocent,” and
“inconsequential” segment of code (rangeCheck) in Android and eight test files that were never
introduced into Android. See 872 F.Supp.2d at 982-83. The parties stipulated, however, that
there were no damages associated with these relatively modest code portions so as to clear the
way for appeal. See Final Judgment, Oracle Am., Inc. v. Google Inc., No. 3:10–cv3561
(N.D.Cal. June 20, 2012), ECF No. 1211.

398 872 F.Supp.2d at 979 (emphasis in original). See 872 F.Supp.2d at 981 (finding that “[i]n
order to declare a particular functionality, the [Java] language demands that the method

-86-

While acknowledging that the overall structure of the Java API packages is creative,
original, and “resembles a taxonomy,” Judge Alsup nonetheless concluded that it functions as “a
command structure, a system or method of operation–a long hierarchy of over six thousand
commands to carry out pre-assigned functions.”399 Judge Alsup placed particular emphasis on
Sega for its rejection of the Third Circuit’s broad protection for the SSO of computer software400

and its recognition of that “the functional requirements for compatibility with [a software
platform developed by another company] are not protected by copyright. 17 U.S.C. § 102(b).”401

Applying copyright’s limiting doctrines as interpreted by Ninth Circuit cases402 and
following CONTU’s guidance that when specific computer instructions, “even though previously
copyrighted, are the only and essential means of accomplishing a given task, their later use by
another will not amount to an infringement,”403 Judge Alsup determined that Google was free to
write code that accomplished the same functionality as the Java APIs at issue even if it did not
achieve complete compatibility with the full Java platform:

While fragmentation is a legitimate business consideration, it begs the question

declaration take a particular form (emphasis in original)); id. at. 982 (finding that “the names of
the methods and the way in which the methods are grouped” have to be the same in order to “be
interoperable. Specifically, code written for one API would not run on an API organized
differently, for the name structure itself dictates the precise form of command to call up any
given method.”).

399 872 F.Supp.2d at 999-1000.

400 See Sega, 977 F.2d at 1524-25 (noting that “[t]he Whelan rule . . . has been widely—and
soundly—criticized as simplistic and overbroad” (citing the Second Circuit’s decision in
Computer Associates, Inc. v. Altai)).

401 See id. at 1522.

402 The Ninth Circuit expressly endorsed the Second Circuit’s Altai approach:

Under a test that breaks down a computer program into its component subroutines
and sub-subroutines and then identifies the idea or core functional element of
each, such as the test recently adopted by the Second Circuit in CAI, 23
U.S.P.Q.2d at 1252–53, many aspects of the program are not protected by
copyright. In our view, in light of the essentially utilitarian nature of computer
programs, the Second Circuit’s approach is an appropriate one.

Sega, 977 F.2d at 1525 (emphasis added).

403 872 F.Supp.2d at 986 (quoting CONTU Report at 20 (emphasis added by Judge Alsup).

-87-

whether or not a license was required in the first place to replicate some or all of
the command structure. (This is especially so inasmuch as Android has not carried
the Java trademark, and Google has not held out Android as fully compatible.)
The immediate point is this: fragmentation, imperfect interoperability, and
Oracle’s angst over it illustrate the character of the command structure as a
functional system or method of operation.404

In essence, later developers can achieve the particular functionality or method of operation of an
API subsystem (and even groups of subsystems) so long as they write their own code and that
method is not protected by a patent.

Judge Alsup’s framework provided a general and concrete solution to the API copyright
puzzle. Although he cautioned that his opinion was limited to the facts of the case and did not
declare APIs uncopyrightable, Judge Alsup’s analysis illuminated a clear pathway for software
developers seeking to use APIs defined and first implemented by other software companies
without running afoul of copyright law.405 Later developers are free to use declaring code so long
as they use a clean room to implement the declarations. To many in the software industry, the
ruling validated what was considered a best practice.406 To others, it jeopardized the substantial
effort and investment in developing software platforms and pioneering products, and threatened
to undermine interoperability.407

3. Federal Circuit Appeal

404 872 F.Supp.2d at 1000.

405 Patent protection, trade secret law, and contractual limitations could nonetheless stand in the
way, but copyright protection could not bar re-implementation of functional features of computer
programs.

406 See Nick Wingfield & Quentin Hardy, Google Prevails as Jury Rebuffs Oracle in Code
Copyright Case, N.Y. TIMES (May 26, 2016) (quoting representatives of the Electronic Frontier
Foundation, Public Knowledge, and a venture capital firm praising the jury’s verdict),
http://www.nytimes.com/2016/05/27/technology/google-oracle-copyright-code.html; supra TAN
__.

407 See Annette Hurst, Op-ed: Oracle attorney says Google’s court victory might kill the GPL,
ARS TECHNICA (May 27, 2016),
http://arstechnica.com/tech-policy/2016/05/op-ed-oracle-attorney-says-googles-court-victory-mi
ght-kill-the-gpl/; Florian Mueller, Google's ‘fair use’ defense against Oracle is an insult to
human intelligence: Android's use of Java APIs violates copyright, FOSS PATENTS BLOG (May
22, 2016), http://www.fosspatents.com/2016/05/googles-fair-use-defense-against-oracle.html.

-88-

Oracle filed its appeal with the U.S. Court of Appeals for the Federal Circuit.408 The
Federal Circuit is bound by regional circuit law when reviewing questions that involve law and
precedent not exclusively assigned the Federal Circuit.409 Thus, the Federal Circuit was required
to review the copyright issues according to Ninth Circuit precedents.410

The appeal attracted broad interest in the technology sector, with established software
companies favoring Oracle411 and start-ups and application developers favoring Google on the
the API copyrightability issue.412 Among the more notable briefs was filed by former Sun
executives Scott McNealy and Brian Sutphin.413 They emphasized the creativity involved in API
design.414

408 The Federal Circuit has exclusive jurisdiction over appeals from district court cases involving
patent infringement allegations even though, as was the circumstance in Oracle v. Google,
neither party challenged the district court’s patent rulings.

409 See Atari Games Corp. v. Nintendo of Am., Inc., 897 F.2d 1572, 1575 (Fed. Cir. 1990).

410 Copyright issues are not exclusively assigned to the Federal Circuit. See 28 U.S.C. § 1295.

411 The Business Software Alliance, one of the largest and oldest software trade associations, as
well as Microsoft Corp. and other established companies favored Oracle. See Corrected Brief for
BSA | the Software Alliance as Amicus Curiae in Support of Plaintiff-Appellant Oracle America,
Inc., Oracle America, Inc. v. Google Inc., U.S. Court of Appeals for the Federal Circuit (No.
2013-1021, 1022) (Feb. 22, 2013); Brief for Amici Curiae Microsoft Corporation, EMC
Corporation, and Netapp, Inc. in Support of Appellant, Oracle America, Inc. v. Google Inc., U.S.
Court of Appeals for the Federal Circuit (No. 2013-1021, 1022) (Feb. 19, 2013).

412 See Brief of Amici Curiae Rackspace US, Inc., Application Developers Alliance, TMSOFT,
LLC, and Stack Exchange Inc., Oracle America, Inc. v. Google Inc., U.S. Court of Appeals for
the Federal Circuit (No. 2013-1021, 1022) (May 30, 2013); Corrected Brief of Amici Curiae of
Software Innovators, Start-ups, and Investors in Support of Affirmance, Oracle America, Inc. v.
Google Inc., U.S. Court of Appeals for the Federal Circuit (No. 2013-1021, 1022) (May 30,
2013).

413 See Corrected Brief of Scott McNealy and Brian Sutphin as Amici Curiae in Support of
Reversal, Oracle America, Inc. v. Google Inc., U.S. Court of Appeals for the Federal Circuit
(No. 2013-1021, 1022) (Feb. 22, 2013).

414 See id. at 8 (“Java’s success rested in large part upon its elegant and creative set of
packages that Sun designed and developed. . . . [T]hese packages provide a lengthy and creative
set of pre-existing programs that made it much easier for Java programmers to quickly write
programs and intuitively grasp and learn the Java platform.”); id. at 13 (“The Selection Naming
And Organization Of Java’s Packages (APIs) Are Unique And Creative.”).

-89-

Picking up on that theme, Oracle began its brief with a creative literary analogy:

Ann Droid wants to publish a bestseller. So she sits down with an advance
copy of HARRY POTTER AND THE ORDER OF THE PHOENIX–the fifth book–and
proceeds to transcribe. She verbatim copies all the chapter titles–from Chapter 1
(‘Dudley Demented’) to Chapter 38 (‘The Second War Begins’). She copies
verbatim the topic sentences of each paragraph, starting from the first (highly
descriptive) one and continuing, in order, to the last, simple one (‘Harry
nodded.’). She then paraphrases the rest of each paragraph. She rushes the
competing version to press before the original under the title: Ann Droid’s HARRY

POTTER 5.0. The knockoff flies off the shelves.

J.K. Rowling sues for copyright infringement. Ann’s defenses: ‘But I
wrote most of the words from scratch. Besides, this was fair use, because I copied
only the portions necessary to tap into the Harry Potter fan base.’

Obviously, the defenses would fail.415

Oracle’s approach was reminiscent of an ultimately unsuccessful strategy from the first wave of
API copyright litigation. Apple, IBM, and Lotus lawyers sought to compare creativity in the
design and coding of computer software with conventional literary and dramatic works.416

The“software as creative expression” theme resonated with the Federal Circuit. The
court’s opinion repeatedly references the creativity of Java APIs.417 The court pointed to the

415 See Opening Brief and Addendum of Plaintiff-Appellant, Oracle America, Inc. v. Google,
Inc., U.S. Court of Appeals for the Federal Circuit, No. 2013-1021, -1022, 12-13, _ (Feb. 11,
2013).

416 See supra note __; Clapes, Lynch & Steinberg, supra note __, at ___-__.

417 See 750 F.3d at 1352 (“Although [the district court] acknowledged that the overall structure of
Oracle’s API packages is creative . . .”); id. at 1356 (“The testimony at trial revealed that
designing the Java API packages was a creative process and that the Sun/Oracle developers had
a vast range of options for the structure and organization.”); id. (“In its copyrightability decision,
the district court specifically found that the API packages are both creative and original, and
Google concedes on appeal that the originality requirements are met. See Copyrightability
Decision, 872 F.Supp.2d at 976 (“The overall name tree, of course, has creative elements. . . .”);
Id. at 999 (“Yes, it is creative. Yes, it is original.”)); id. at 1361, n.6 (noting that the Amicus
Brief filed by Scott McNealy and Brian Sutphin “provide[d] a detailed example of the creative
choices involved in designing a Java package”); id. at 1368 (observing that “Amici McNealy and
Sutphin explain that ‘a quick examination of other programming environments shows that
creators of other development platforms provide the same functions with wholly different
creative choices.’”).

-90-

testimony of Joshua Bloch, the former Sun software engineer whom Google referred to as its
“Java guru,” who “conceded” that there can be “creativity and artistry even in a single method
declaration.”418 The Federal Circuit offered its own literary metaphor, noting that “the opening of
Charles Dickens’ A TALE OF TWO CITIES is nothing but a string of short phrases. Yet no one
could contend that this portion of Dickens’ work is unworthy of copyright protection because it
can be broken into those shorter constituent components.”419

The Federal Circuit reversed the district court’s determination that the structure,
sequence, and organization of the 37 Java APIs was not copyrightable and remanded the fair use
issue for re-trial with revised jury instructions.

 i. Copyrightability

In reviewing the district court’s determination that the Java API packages at issue were
not copyrightable, the Federal Circuit distinguished between copyrightability of the declaring
code and copyrightability of the structure, sequence, and organization of the API packages.

 a. Declaring Code

The Federal Circuit ruled that the district court should not have considered the merger
and scènes à faire doctrines in evaluating copyright subsistence because the Ninth Circuit treats
these doctrines as affirmative defenses to infringement, not as limitations on copyrightability.420

Hence, these doctrines were relevant only in determining what elements of the APIs should be
filtered out in the infringement analysis.421 Furthermore, the Federal Circuit held that the merger
doctrine–which bars protection where an idea can only be expressed in one or a limited number
of ways–properly focuses on the creative choices available to Sun when it created Java, not on
the options available to Google when it copied Java APIs.422 The Federal Circuit also held that
the short phrases doctrine did not bar copyright protection for compilations of words and short

418 750 F.3d at 1339.

419 750 F.3d at 1339.

420 See 750 F.3d at 1358 (citing Ets-Hokin v. Skyy Spirits, Inc., 225 F.3d 1068, 1082 (9th Cir.
2000); Satava v. Lowry, 323 F.3d 805, 810 n. 3 (9th Cir. 2003) (“The Ninth Circuit treats scènes
à faire as a defense to infringement rather than as a barrier to copyrightability.”)).

421 See 750 F.3d at 1359-62 (addressing the merger doctrine); id. at 1363-64 (addressing the
scènes à faire doctrine, which Judge Alsup had rejected as a basis for holding the Java APIs to be
unprotectable but that Google challenged on appeal).

422 See 750 F.3d at 1360-61.

-91-

phrases as reflected in declaring code.423 On these bases, the appellate court ruled that the 7,000
lines of declaring code were protected by copyright law. It did not directly confront the argument
that the precise API declarations functioned as uncopyrightable “methods of operation,” which
more accurately characterizes Judge Alsup’s essential holding. The Federal Circuit did, however,
address the “method of operation” argument in its API SSO ruling.

 b. SSO of the API Packages

The Federal Circuit focused its review of Judge Alsup’s holding that the SSO of the Java
APIs was uncopyrightable on the district court’s reliance upon Lotus v. Borland,424 the First
Circuit case holding that the Lotus 1-2-3 menu command hierarchy was an unprotectable
“method of operation.” The appellate court distinguished Lotus on factual grounds, noting that
the command labels at issue there, unlike the Java API declaring code, were “not creative” and
were “essential” to operating the computer system.425 Moreover, the Federal Circuit interpreted
the Ninth Circuit’s Johnson Controls to hold that the SSO of a computer program to be eligible
for copyright protection and hence was inconsistent with Lotus.426 In so doing, the Federal
Circuit resurrected the Third Circuit’s flawed analytical framework: analyzing copyrightability
of computer software based on whether the high level function(s) of the software could be
implemented in multiple ways rather than viewing a particularized set of software functions as
an unprotectable “method of operation.”427

The Federal Circuit rejected the district court’s invocation of interoperability as a basis
for holding the SSO of the Java APIs to be uncopyrightable. Notwithstanding the language in
Sega and Sony v. Connectix that the precise coding to achieve interoperability is not protectable

423 See 750 F.3d at 1362-63. It should be noted that the district court’s determination that the
declaring code was uncopyrightable did not turn on the short phrases doctrine. Judge Alsup
recognized that the selection and arrangement of short phrases could be protectable. See 872
F.Supp.2d at 992 (quoting Feist Publications, Inc. v. Rural Telephone Service Co., Inc., 499 U.S.
340, 349 (1991) for the proposition that even thinly protected, factual compilations are
protectable with respect to original “selection and arrangement”). His ultimate determination
hinged on § 102(b) of the Copyright Act and interoperability. See id. at 997-1002.

424 Lotus Development Corp. v. Borland International, Inc., 49 F.3d 807 (1st Cir.1995), aff’d
without opinion by equally divided court, 516 U.S. 233 (1996).

425 See 750 F.3d at 1365.

426 See 750 F.3d at 1365-66. The Federal Circuit’s interpretation of Johnson Controls stretches
its holding and overlooks important insights from later Ninth Circuit cases. See, infra, Part
III(A). In addition, the copyrightability of software SSO in some circumstances does not
necessarily conflict with the exclusion of methods of operation.

427 See 750 F.3d at 1366-67.

-92-

under copyright law,428 the appellate court distinguished these cases as “focused on fair use, not
copyrighability.”429 The Federal Circuit repeated its earlier observation that “copyrightability is
focused on the choices available to the plaintiff at the time the computer program was created,”
not the goal of the defendant to achieve interoperability.430 Therefore, Google’s interoperability
argument comes into play only as part of a fair use defense.

 ii. Fair Use

The Federal Circuit was tempted to rule in Oracle’s favor on the fair use issue.431 The
court observed that “[o]n many of [Oracle’s] points,432 Google does not debate Oracle’s
characterization of its conduct, nor could it on the record evidence.”433 Nonetheless, the Federal
Circuit determined that remand was necessary because materials facts were in dispute, notably
the transformativeness of the Android platform, Google’s interoperability objectives, and the
commercial impact of Android on Sun’s/Oracle’s mobile licensing activities and the potential
market for a Java smartphone.434 The Federal Circuit emphasized, however, that the district court
should “revisit and revise its jury instructions on fair use consistent with [the Federal Circuit’s]
opinion.”435 The Federal Circuit’s opinion did not, however, offer specific criticism of the district

428 See Sega, 977 F.2d at 1525; Sony v. Connectix, 203 F.3d at 603 (“There is no question that the
Sony BIOS contains unprotected functional elements.”).

429 See 750 F.3d at 1369 (observing that Sega and Sony never addressed whether the functional
code had separable expressive elements). This assertion overlooks, however, that both courts
clearly recognized that the code that was necessary for interoperability was unprotectable and
hence copying of the entirety of the software for purposes of reverse engineering the code to
determine those interoperable features constituted fair use.

430 See 750 F.3d at 1370. The Federal Circuit follows the Third Circuit’s dicta–“a defendant’s
desire ‘to achieve total compatibility . . . is a commercial and competitive objective which does
not enter into the . . . issue of whether particular ideas and expressions have merged,’” id.
(quoting Apple Computer, 714 F.2d at 1253)–and not the apparent rejection of that position in
Sega and Sony. See Sega, 977 F.2d at 1525; Sony v. Connectix, 203 F.3d at 603.

431 See 750 F.3d at 1376.

432 See id. (noting that Oracle asserts that “Google knowingly and illicitly copied a creative work
to further its own commercial purposes, and did so verbatim, and did so to the detriment of
Oracle's market position”).

433 See id.

434 See id. at 1377.

435 See id.

-93-

court’s jury instructions.

4. Interlocutory Certiorari Petition

Google sought to challenge the Federal Circuit’s reversal by filing a petition for a writ of
certiorari with the U.S. Supreme Court.436 Google’s petition pressed the argument that the Java
API declarations fall within the § 102(b) exclusion from copyright protection of methods of
operation. Oracle responded that the case was not appropriate for interlocutory review on
substantive and prudential grounds.437 The Supreme Court nonetheless requested the views of the
Solicitor General,438 which produced one of the more surprising filings in the case.439 The
Solicitor General not only recommended against granting review on prudential grounds, but also
sided with Oracle on substantive grounds.440 The Supreme Court denied review.441

5. 2016 Fair Use Trial

The API copyright battle returned to Judge Alsup’s court for a jury trial focused on
applying “‘the most troublesome [doctrine] in the whole law of copyright.’”442 Google also

436 See Petition for a Writ of Certiorari, On Petition for a Writ of Certiorari to the United States
Court of Appeals for the Federal Circuit, Google, Inc. v. Oracle America, Inc., U.S. Supreme
Court No. 14-410 (Oct. 6, 2014).

437 See Brief in Opposition, On Petition for a Writ of Certiorari to the United States Court of
Appeals for the Federal Circuit, Google, Inc. v. Oracle America, Inc., U.S. Supreme Court No.
14-410 (Dec. 8, 2014).

438 See Google, Inc. v. Oracle America, Inc., 135 S.Ct. 1021 (2015).

439 See Brief for the United States as Amicus Curiae, On Petition for a Writ of Certiorari to the
United States Court of Appeals for the Federal Circuit, Google, Inc. v. Oracle America, Inc.,
U.S. Supreme Court No. 14-410 (May 2015).

440 See id. at 11-17; cf. Dan Levine & Lawrence Hurley, Google versus Oracle Case Exposes
Differences within Obama Administration, REUTERS (May 15, 2015),
http://www.reuters.com/article/us-google-oracle-lawsuit-insight-idUSKBN0O017Z20150515.

441 Google, Inc. v. Oracle America, Inc., 135 S.Ct. 2887 (2015).

442 See Oracle America, Inc. v. Google Inc., 750 F.3d at 1372 (quoting Monge v. Maya
Magazines, Inc., 688 F.3d 1164, 1170 (9th Cir. 2012) (quoting Dellar v. Samuel Goldwyn, Inc.,
104 F.2d 661, 662 (2d Cir.1939) (per curiam)).

-94-

planned to assert equitable estoppel and laches defenses.443 Oracle expanded the scope of its
complaint to account for new Android versions, its expansion into new product areas (clothing,
television, automobile, appliances, and media (Google Play)), and Android’s dramatic market
growth.444

Leading up to the trial, the parties squabbled over the fair use jury instructions.445 After
adjusting the draft instructions following input from the parties, one of the few, and most
momentous, fair use jury trials in modern U.S. history commenced. Judge Alsup instructed the
jury at the outset of the trial about the contours of the fair use doctrine, noting that the doctrine is
an “equitable rule of reason” for which no generally accepted definition is possible.446 He then
read the statutory provision447 and explained the four factors, boiling down the subtleties of the
vast fair use jurisprudence into about a dozen treatise-like paragraphs.

The trial played out over eight grueling days of testimony ranging from the dramatic
(embarrassing emails) to the mind-numbing (experts and fact witnesses explaining API design,
open source, GNU, GPL, virtual machines, and distinctions between declaring and implementing
code).448 The jurors were treated to creative and strained analogies (filing cabinets, breakfast

443 See Google’s Trial Brief, Oracle America, Inc. v. Google Inc., at 11-12 (Document 1706,
3:10-cv-03561-WHA) (asserting that Sun’s public statements and acts approving of Android’s
use of Java bar enforcement of its copyrights); ORDER RE WILLFULNESS AND
BIFURCATION, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA (Document 1321,
filed Sep. 18, 2015). The equitable defenses were bifurcated and hence did not arise during the
fair use trial.

444 See PLAINTIFF ORACLE’S [PROPOSED] SUPPLEMENTAL COMPLAINT, Oracle
America, Inc. v. Google Inc. 3:10-cv-03561-WHA (Document 1288-1, filed Aug. 6, 2015).

445 See, e.g., Oracle America, Inc., v. Google Inc., 118 U.S.P.Q.2d 1561 (N.D. Cal. 2016)
(rejecting Google’s request to include “as part of a broader work” within the jury instruction
defining “transformative”); ORACLE’S RESPONSE TO THE COURT’S REQUEST FOR
CRITIQUE RE INSTRUCTIONS ON FAIR USE (ECF NO.1615), Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA (Document 1663, filed Apr. 14, 2016).

446 See PENULTIMATE JURY INSTRUCTION ON FAIR USE, Oracle America, Inc. v. Google
Inc. 3:10-cv-03561-WHA (Document 1790, filed May 3, 2016).

447 See 17 U.S.C. § 107.

448 The trial was extensively covered by the media and bloggers. I have canvassed various
sources, including: Joe Mullin’s reporting for ARS TECHNICA; Sarah Jeong Storify (Twitter feed
of Sarag Jeong, a contributing editor @Motherboard)), https://storify.com/sarahjeong; FOSS
Patents (blog published by Florian Mueller, a self-described “intellectual property activist”),
http://www.fosspatents.com/. I also reviewed many the exhibits that became publicly available,

-95-

menus featuring hamburgers, and Harry Potter novels), all manner of demonstrative exhibits, and
a witness list featuring some of Silicon Valley’s most celebrated tech billionaires. Economic
experts opined about transformativeness (from an economic, as opposed to a legal, perspective)
and network effects. Both sides made witnesses squirm. The connection of some lines of
questioning to copyright law’s fair use factors was often tenuous. For example, Oracle devoted
much of its trial time to exposing emails sent among Google engineers suggesting that they
thought that the Java APIs were copyright-protected.

In view of the large stakes–Oracle sought upwards of $10 billion in damages and
injunctive relief449–both sides employed top-notch trial teams and spared little expense. The fair
use trial felt like a roller coaster, with prognosticators divided on how the jury would come
out.450 Google bore the burden of proof on the fair use defense and hence presented its case first.
Judge Alsup limited each side to 15 hours (900 minutes) of testimony presentation time,
including cross-examination. Each side was also afforded an hour for opening argument and 90
minutes for closing argument. Judge Alsup bifurcated the damages phase, which would only be
needed if Google’s use of Java APIs was not fair use.

 i. Opening Arguments

such as pleadings, jury instructions, and slide decks.

449 See Joe Mullin, Oracle will seek a staggering $9.3 billion in 2nd trial against Google, ARS

TECHNICA (Mar. 29, 2016) (noting that Oracle is seeking the “biggest IP verdict ever”)
http://arstechnica.com/tech-policy/2016/03/oracle-will-seek-a-staggering-9-3-billion-in-2nd-trial
-against-google/

450 See Oracle vs. Google–The Merry-go-round, RADIO FREE MOBILE (May 11, 2016),
(predicting a settlement of less than $1 billion),
http://www.radiofreemobile.com/oracle-vs-google-the-merry-go-round/; Jeff Taylor, Oracle v.
Google: How to Create Beautiful Closing Argument Slides, THE DROID LAWYER (May 26, 2016)
(observing that Oracle’s trial team’s closing slides show that they “gathered the evidence they
needed to prove their case”; but in post-script, noting the irony that Oracle lost)
http://thedroidlawyer.com/2016/05/oracle-v-google-how-to-create-beautiful-closing-argument-sl
ides/; Florian Mueller, Oracle v. Google copyright retrial won't bring clarification on
application programming interfaces (APIs), (May 8, 2016) (“While I’m as convinced as ever
that there is hardly a clearer case of UNfair use than this one . . . the trial is a tossup”; predicting
a “55% or 60% chance for Google” with jury, but that the appeals court “would be fairly likely
side with Oracle”),
http://www.fosspatents.com/2016/05/oracle-v-google-copyright-retrial-wont.html; cf. Joel
Rosenblatt, Stakes Are High at Google vs. Oracle Copyright Trial #2, INSURANCE J. (May 10,
2016) (quoting Professor Tyler Ochoa stating that it’s a “fool’s errand” to predict the outcome of
the case with a new jury),
http://www.insurancejournal.com/news/national/2016/05/10/407960.htm;

-96-

Building upon the infringement ruling revived by the Federal Circuit, Oracle opened the
second trial in rhythmic, Cochranesque451 fashion: Google copied the heart of the Java platform
so as to enter the mobile marketplace quickly and now seeks to use the “fair use excuse” to avoid
the consequences.452 Peter Bicks, Oracle’s lead counsel, framed the battle in moralistic terms and
epic proportions:453

 • internal e-mails show that Google took illegal “shortcuts” to create
Android

 • “It took 10,000 lines to power this Apollo computer module, when lives
were at stake. OVER ONE THOUSAND FEWER THAN WHAT
GOOGLE COPIED.”

 • “Oracle was seeing money go out the door,” while Google was earning
billions on the Sun/Oracle investments in Java.

 • “If [Java] code was wasn’t in their three billion phones, not one would work.”

Drawing on its successful Federal Circuit strategy, Oracle characterized the crafting of the Java
API code as highly creative, whereas Google’s copying of Java APIs was slavish and not
transformative. Bicks quoted liberally from internal Google emails singing the praises of Java’s
APIs and expressing the need to obtain a license. He characterized Android team’s decision to
forgo a license as underhanded–breaking the Write Once, Run Anywhere interoperability
promise–and hence ineligible under the fair use doctrine’s equitable standards.

Robert Van Nest, Google’s lead counsel, emphasized Google’s hard work and large
investment in building a transformative smartphone platform.454 He justified use of Java in part
on Sun’s encouragement of the developer community to use Java and its APIs. He downplayed
the expressive creativity of Java APIs by analogizing the API packages to the labels on a filing

451 See O. J. Simpson murder case, WIKIPEDIA (noting defense attorney Johnny Cochran’s quip
“If [the glove] doesn’t fit, you must acquit”),
https://en.wikipedia.org/wiki/O._J._Simpson_murder_case

452 See Joe Mullin, Google took our property—and our opportunity, Oracle tells jury: “If that
code wasn’t in their three billion phones, not one would work.” ARS TECHNICA (May 10, 2016),
http://arstechnica.com/tech-policy/2016/05/oracle-tells-jury-dont-buy-googles-fair-use-excuse/.

453 See id.

454 See Joe Mullin, Google to jury: Android was built with our engineers’ hard work: “Android is
precisely the kind of thing that fair use was intended to encourage.”, ARS TECHNICA (May 10,
2016),
http://arstechnica.com/tech-policy/2016/05/google-to-jury-android-was-built-with-our-engineers
-hard-work/.

-97-

cabinet, carting a real filing cabinet into the courtroom to illustrate the point.455 He emphasized
that Sun’s then-CEO Jonathan Schwartz publicly applauded Google’s use of Java technologies in
Android: Google had “strapped another set of rockets to the [Java] community’s momentum–and
to the vision defining opportunity across our (and other) planets.”456 And that Oracle’s CEO
Larry Ellison welcomed Google’s use of Java for its mobile platform.

Van Nest countered the allegation that Android caused Java’s mobile platform to fail
with an internal Oracle document pointing to its own internal problems, arguing that Oracle
brought this litigation only after the Java mobile strategy had failed as a way to reap where
Google has sown. He distinguished between the Java SE and ME platforms to highlight the
transformativeness of Android’s path-breaking approach. Java ME was a “feature phone”
platform,457 whereas Android brought the functionality of robust web browsing, apps, and a host
of other functionalities such as cameras and games (e.g., Angry Birds) to mobile devices. Van
Nest displayed a graphic showing that Java code represented a very small percentage, less than
one-tenth of a percent, of the Android code base. Furthermore, Google developed its own virtual
machine for Android devices.

Van Nest also sought to sow the seed of a new fair use factor or sub-factor: compliance
with industry norms surrounding APIs. Although not one of the four express statutory fair use
factors, in Google’s view API declaring code was fair game so long it was implemented
independently (i.e., clean room), especially where the platform developer had welcomed
platform adopters. He concluded his opening by arguing that

Android is precisely the kind of thing that fair use was intended to encourage. It’s
a leap forward to a new platform in a new market. It has allowed innovation by
lots and lots of other people—developers and wireless carriers. It’s become a
whole community, because Google made it open and free. Now Mr. Ellison wants
to shut it down and put it in his pocket. That is not fair, not right, and not what

455 See Sarah Jeong, In a $9 Billion Trial, Google’s Secret Weapon Is a Filing Cabinet,
MOTHERBOARD (May 11, 2016),
http://motherboard.vice.com/read/googles-lawyers-tried-to-explain-apis-to-a-jury-using-a-physic
al-filing-cabinet. This analogy was reminiscent of earlier API copyright cases, notable Apple v.
Microsoft (desktop icons of the graphical user interface) and Lotus v. Borland (spreadsheet
command labels).

456 See Jonathan’s Blog, Congratulations Google, Red Hat and the Java Community! (Nov. 5,
2007),
http://web.archive.org/web/20101023072550/http://blogs.sun.com/jonathan/entry/congratulation
s_google; but see infra, TAN __-__ (reporting that Schwartz congratulatory note masked
disappointment about Google’s unwillingness to enter into a licensing arrangement).

457 See, supra note __. <defining feature phone>

-98-

copyright was intended to allow.458

 ii. Google’s Case in Chief

Google began its testimony with Eric Schmidt, Google’s Chairman and Sun’s former
Chief Technology Officer at the time that Java was developed.459 Schmidt discussed Sun’s
encouragement of Java adoption as well as his understanding that Google was free to use the
Java APIs without a license. On cross-examination, Oracle sought to undermine the Schmidt’s
rosy characterization of the Sun/Google relationship and highlighted Google’s reputation for
pushing to “the creepy line” in business tactics.460

Google then called Jonathan Schwartz, who enthusiastically explained that the Java
language was free and open to use since its inception.461 Schwartz testified that Sun promoted
Java’s use so as to build a community of developers throughout the world and counter
Microsoft’s power in the desktop operating system marketplace. Schwartz further explained that
the Java APIs were also free for others to use and independently implement.

458 Id.

459 See Joe Mullin, On the stand, Google’s Eric Schmidt says Sun had no problems with Android,
ARS TECHNICA (May 10, 2016),
http://arstechnica.com/tech-policy/2016/05/oracles-lawyer-grills-googles-eric-schmidt-on-the-na
ture-of-apis/; Sarah Jeong, Oracle v. Google - Day 1 (May 10, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-1; Sarah Jeong, Oracle v. Google - Day 2,
Eric Schmidt finishes testifying. Jonathan Schwartz gets cross-examined on his Google Alerts. A
bee-stung juror assures Alsup she's doing fine. Andy Rubin takes the stand. (May 10, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-2-5748d3691f6a1e6260160f34.

460 See Derek Thompson, Google’s CEO: ‘The Laws Are Written by Lobbyists,’ THE ATLANTIC

(Oct. 1, 2010),
http://www.theatlantic.com/technology/archive/2010/10/googles-ceo-the-laws-are-written-by-lo
bbyists/63908/

461 See Joe Mullin, Sun’s Jonathan Schwartz at trial: Java was free, Android had no licensing
problem, ARS TECHNICA (May 11, 2016),
http://arstechnica.com/tech-policy/2016/05/suns-jonathan-schwartz-at-trial-java-was-free-androi
d-had-no-licensing-problem/; Sarah Jeong, Oracle v. Google - Day 1 (May 10, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-1; Sarah Jeong, Oracle v. Google - Day 2,
Eric Schmidt finishes testifying. Jonathan Schwartz gets cross-examined on his Google Alerts. A
bee-stung juror assures Alsup she's doing fine. Andy Rubin takes the stand. (May 10, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-2-5748d3691f6a1e6260160f34.

-99-

Schwartz analogized APIs to hamburgers on a breakfast menu462: different restaurants
offer the same item, but they have their own implementation–i.e., their own way of preparing the
quintessential American sandwich. According to Schwartz, Sun’s strategy was to offer open
APIs and compete on implementations. He noted that this sometimes undermined Sun’s control,
as when the free software community developed the GNU Classpath project, a free software
implementation of the standard class library for the Java programming language, without a
license.463 Schwartz testified that he was “annoyed, but it was completely consistent with our
practices. When you say APIs are open, there are competitive implementations.” Schwartz also
discussed the Apache Harmony platform, supported by a coalition including IBM, Oracle, and
Google, which modestly forked the Java platform without a license.464 Schwartz acknowledged
that Sun’s only control was through trademark protection: “It wasn’t going to call itself Java, so
there was nothing we could do.” He noted, however, that all of the projects promoted use of the
Java language, which enhanced Sun’s reputation and leadership.

Schwartz also testified about Sun’s failure to introduce its own mobile phone product and
his disappointment that Sun and Google did not reach a licensing arrangement that could have
enhanced Sun’s reputation in the marketplace. He denied, however, that Android contributed to
Sun’s failure to develop a Java-based smartphone.

On cross-examination, Oracle challenged Schwartz’s objectivity and business acumen.
Schwartz acknowledged that Oracle had not offered him a senior management position following
its acquisition of Sun and that he was not aware that Sun had entered into a specification license
with Apache regarding the Harmony platform. Bicks brought out internal Sun emails showing
great frustration with Google’s unwillingness to partner on a mobile platform and concern that
Android would undermine the interoperability of the Java platform. Schwartz explained that he
was trying to put a positive public face (“make lemonade” with lemons) on a difficult business
circumstance. He acknowledged his consternation with Google: “They take Java without
attribution or contribution. That is why I love Scroogle.”

Google then called Andy Rubin, leader of the Android project, to the witness stand.465 He

462 Cf. Sarah Jeong, In Oracle v. Google, a Nerd Subculture Is on Trial (May 12, 2016) (noting
Judge Alsup’s statement that “[t]he thing about the breakfast menu makes no sense,” and
commenting that “[n]o one bothered to challenge Schwartz’s apparent belief that hamburgers are
commonly featured on breakfast menus”)
http://motherboard.vice.com/read/in-google-v-oracle-the-nerds-are-getting-owned.

463 See Apache Harmony, https://en.wikipedia.org/wiki/Apache_Harmony.

464 See Apache Harmony, https://en.wikipedia.org/wiki/Apache_Harmony.

465 See Joe Mullin, Copyright and consequences: Google’s Andy Rubin defends Android to jury,
ARS TECHNICA (May 12, 2016),
http://arstechnica.com/tech-policy/2016/05/copyright-and-consequences-googles-andy-rubin-def

-100-

explained Google’s vision of creating an open smartphone platform where Google would profit
not from the sale of devices or software but from promoting its web services and advertising
platform. He denied that Java was necessary for Android’s success, but that it accelerated its
entry into the marketplace. Rubin explained his understanding that Android could not use the
Java trademarks without a license, but that his team could independently implement the Java
APIs.

Annette Hurst, Oracle’s co-lead counsel, put Rubin through a relentless, aggressive cross-
examination lasting more than four hours aimed at establishing that Google took short-cuts and
knowingly copied Java APIs in developing the Android platform. Rubin acknowledged that he
stood to earn $60 million by getting the Android smartphone to market by specified milestones.
Much of the cross-examination explored Rubin’s emails first seeking to work out a Java platform
license that would enable the Android team to pursue its open source model, and then, after
negotiations reached an impasse, strategizing about independently implementing the Java APIs.

By the end of a full day of cross-examination, Oracle had burned through much of its
allotted time and had not yet begun its case in chief. Judge Alsup warned Oracle that he did not
plan to grant additional time.

Google presented video deposition excerpts in which Larry Ellison denied saying that he
was flattered by the Android phone using Java and did not recall saying that he was excited
about more Java-based products coming his friends at Google.466 Google then played a video
from the Java One Conference in which Ellison made both of those statements. The deposition
excerpts further showed that Oracle did not pursue a mobile smartphone device and that Java has
continued to grow since Android’s release. Google then introduced deposition testimony of an
IBM executive explaining that IBM uses the unlicensed Apache Harmony implementation of
Java SE.

Google called Joshua Bloch, the former Sun employee who became Google’s “Java

ends-android-to-jury/; Sarah Jeong, Oracle v. Google - Day 2, Eric Schmidt finishes testifying.
Jonathan Schwartz gets cross-examined on his Google Alerts. A bee-stung juror assures Alsup
she's doing fine. Andy Rubin takes the stand. (May 12, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-2-5748d3691f6a1e6260160f34; Sarah Jeong,
Oracle v. Google - Day 3, Andy Rubin’s No Good, Very Bad Depo (May 12, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-3.

466 See Joe Mullin, Top programmer describes Android’s nuts and bolts in Oracle v. Google, ARS

TECHNICA (May 14, 2016),
http://arstechnica.com/tech-policy/2016/05/top-programmer-describes-androids-nuts-and-bolts-i
n-oracle-v-google/; Sarah Jeong, Oracle v. Google - Day 4 Dan Bornstein undergoes the most
important technical interview of his life. (May 13, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-4.

-101-

guru.” Bloch played a significant role in developing Java APIs and authored EFFECTIVE JAVA,467

a book about writing Java code. Bloch explained the goals of API design (to make them concise
and difficult to misuse) and Sun’s desire to make them widely available. He discussed
differences in writing APIs for mobile, as opposed to desktop, environments. Drawing on
Bloch’s writings, Oracle focused its cross-examination on the creativity involved in designing
APIs. He acknowledged that writing good APIs is difficult.

Google played video deposition excerpts of Donald Smith, a designated Oracle
representative,468 in which Smith statesdthe Java programming language and the Java APIs were
defined together under the same specification and hence were inseparable. He further testified
that there were more than 10 million Java developers and Oracle’s Java division was growing
and profitable. In a later segment of the deposition, Smith walked back his earlier testimony that
the Java language and APIs were inseparable.

Google next called Simon Phipps, who was previously Sun’s Chief Open Source Officer
and was also President of the Open Source Initiative until 2015.469 Phipps testified that Sun had
not taken actions to stop other projects that used Java APIs such as GNU Classpath and Apache
Harmony.

Google then called Daniel Bornstein, a key member of the Android development team, to
discuss APIs and the Android team’s approach to using Java declarations and APIs. Bornstein
considered Java declarations “A-OK to use.” He explained that Google used a lot of open source
software, including Apache Harmony “core libraries,” to built Android. He noted that no other
products offered the functionality, such as running multiple applications simultaneously on a
smartphone, that Google sought to develop. On cross-examination, Hurst questioned Bornstein
about Google’s efforts to purge java-related terms from the Android code. Bornstein made light
of the suggestion that this indicated that Sun owned the APIs. On re-direct, Bornstein explained
that he was not a lawyer and had called for scrubbing the “J-word” (Java) from Android code so
as to avoid trademark concerns.470

Google completed its direct fair use case with Professor Owen Astrachan, Professor of

467 See JOSHUA BLOCH, EFFECTIVE JAVA (2001); JOSHUA BLOCH, EFFECTIVE JAVA (2nd ed. 2008)

468 See Fed. R. Civ. Pro. 30(b)(6).

469 See Open Source Initiative, https://en.wikipedia.org/wiki/Open_Source_Initiative.

470 See Joe Mullin, At trial, top Android coder explains Oracle’s questions on “scrubbed” source
code, ARS TECHNICA (May 16, 2016),
http://arstechnica.com/tech-policy/2016/05/at-trial-top-android-coder-explains-oracles-questions
-on-scrubbed-source-code/; Sarah Jeong, Oracle v. Google - Day 5, Bornstein wraps up. Owen
"#astrochan" Astrachan comes to the rescue. (May 16, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-2.

-102-

the Practice of Computer Science at Duke University.471 Professor Astrachan provided clear and
measured testimony about API design, the distinction between declaring and implementing code,
and the importance of consistent functional labels in programming.472 He explained that Android
is not fully compatible with Java SE because the SE platform is designed for desktop or laptop
computers whereas Android is designed for mobile devices. Google designed Android to make
use of 37 well-known Java APIs. Since Java is the most widely used computer program in the
world, “[d]evelopers would expect that if you’re going to be using the Java programming
language, you’d have access to a rich suite of APIs, to write whatever program you’re going to
write.” Professor Astrachan illustrated that the Java API labels (declarations) are functional and
descriptive– discussing java.net (network classes); java.io (input/out), java.sql (accessing and
processing data stored in a data source (usually a relational database)), java.security (classes and
interfaces for the security framework), and java.util (various collections of functions, including
date and time and internationalization).473 He explained the GNU Classpath implementation of
Java APIs and the cleanroom process. He further noted that Sun has reimplemented the Linux
APIs in its Solaris platform.

On cross-examination, Annette Hurst pressed Professor Astrachan on the creativity
involved in designing APIs. While agreeing that designing a good API is difficult, Astrachan
observed that the difficulty was “not exactly” the same as that encountered by painters or
musicians.474 He acknowledged that the Java language did not require the selection of the
particular 37 Java APIs that Google incorporated in Android, but that it was necessary to meet
developer expectations.

 iii. Oracle’s Case in Chief

By the time that Google completed its case, Oracle had used much of its allotted time
cross-examining Google’s witnesses. Oracle opened its case in chief with Oracle co-CEO Safra

471 See Owen Astrachan, https://users.cs.duke.edu/~ola/; Owen Astrachan,
https://en.wikipedia.org/wiki/Owen_Astrachan.

472 See Joe Mullin, Google puts its expert on the stand to combat Oracle, wraps up its case, ARS

TECHNICA (May 16, 2016),
http://arstechnica.com/tech-policy/2016/05/google-puts-its-expert-on-the-stand-to-combat-oracle
-wraps-up-its-case/; Sarah Jeong, Oracle v. Google - Day 5, Bornstein wraps up. Owen
"#astrochan" Astrachan comes to the rescue. (May 16, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-2.

473 See Appendix A.

474 See Joe Mullin, Google puts its expert on the stand to combat Oracle, wraps up its case, ARS

TECHNICA (May 16, 2016),
http://arstechnica.com/tech-policy/2016/05/google-puts-its-expert-on-the-stand-to-combat-oracle
-wraps-up-its-case/

-103-

Catz.475 She explained that Oracle acquired Sun to ensure the stability and reliability of Java, on
which many of Oracle’s software products were built. She testified that “Java was the single
most important asset Oracle ever acquired.” She denied that Oracle sought to pursue a copyright
infringement lawsuit against Google. Catz explained the importance of intellectual property
protection to support Oracle’s $5.5 billion annual investment in research and development. She
discussed how Android’s forking of Java code had undermined Oracle’s licensing strategy. On
cross-examination, Catz acknowledged that Sun had licensed “significant elements” of Java
technology as open source, which could reduce the ability to appropriate revenue from users.

Oracle next called two other company executives.476 Edward Screven, Oracle’s chief
corporate architect, reinforced Catz’s testimony regarding Oracle’s motivation for acquiring Sun.
He also explained that the Apache Harmony license required that the Apache license meet the
Java Technology Compatibility Kit (TCK) test suite and hence was not equivalent to Android’s
use.477 He testified that Android was the only unlicensed use of Apache Harmony.

Oracle next called Mark Reinhold, Oracle’s chief architect for Java SE, in what may have
been the most significant testimony in the case. Reinhold noted that the APIs for the Java ME
(Micro Edition, for feature phones) contain the same structure, sequence, and organization as
Java SE (for desktop computers). Drawing on Oracle’s Federal Circuit strategy, Reinhold
testified that “the Java API Package is like a book series” as the Harry Potter series flashed on
the courtroom presentation screen. He developed the following syllogism:

Package = Book
Class = Chapter

475 See Joe Mullin, Oracle CEO Safra Catz: “We did not buy Sun to file this lawsuit,” ARS

TECHNICA (May 16, 2016),
http://arstechnica.com/tech-policy/2016/05/oracle-ceo-safra-catz-we-did-not-buy-sun-to-file-this
-lawsuit/; Joe Mullin, Oracle CEO: Google’s Android broke Java in two, ARS TECHNICA (May
17, 2016),
http://arstechnica.com/tech-policy/2016/05/oracle-ceo-googles-android-broke-java-in-two/;
Sarah Jeong, Oracle v. Google - Day 6, Safra Catz talks about a Fateful Bat Mitzvah. Oracle's
expert witnesses begin to testify. (May 17, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-7

476 See Joe Mullin, Oracle Java architect conscripts Harry Potter in making the case against
Google, ARS TECHNICA (May 17, 2016),
http://arstechnica.com/tech-policy/2016/05/oracle-java-architect-conscripts-harry-potter-in-maki
ng-the-case-against-google/; Sarah Jeong, Oracle v. Google - Day 6, Safra Catz talks about a
Fateful Bat Mitzvah. Oracle's expert witnesses begin to testify. (May 17, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-7

477 See Technology Compatibility Kit,
https://en.wikipedia.org/wiki/Technology_Compatibility_Kit.

-104-

Method = Paragraph

Reinhold explained that Google’s copying of the Java API declaring code is:

like using the titles of the books, the headings of each chapter, and the title
sentences of each paragraph as well as the between the characters. Three books
later, there are all these deep connections. It’s intensely creative. Like writing a
book, you have to keep a lot of stuff in your head, and the end result is rich and
complex. A lot of it is about figuring out what structures you want.478

Reinhold dismissed Van Nest’s analogy of Java APIs to labels on a filing cabinet as “laughably
simplistic.”

On cross-examination, Google pressed Reinhold on the incompatibility across Java
various platforms, getting him to acknowledge that Java ME would not pass the Java SE
compatibility test. Reinhold also acknowledged that Java SE did not scale down for smaller
devices, implicitly acknowledging that Android provided an innovative new platform.

Oracle then called Douglas Schmidt, Professor of Computer Science at Vanderbilt
University, as an expert witness.479 Professor Schmidt presented a visual software map
illustrating the interconnectedness of the APIs at issue. He testified that Google used the 37 Java
APIs in the same way that Sun designed them for the Java platform. He corroborated Reinhold’s
testimony that the APIs at issue were “creative” and “substantial.” He presented test results
showing that Android failed if any of the Java APIs or the declaring code were removed.
Schmidt put into context Google’s claim that the Java declaratory code represented less than
one-tenth of one percent of Android’s 15 million lines of code by illustrating that more than 60
percent of the Android code was copied from third-parties. Furthermore, of the 23 percent of the
Android code that Google wrote, 9 percent were blank or comment lines. On cross-examination,
Professor Schmidt acknowledged that he was not familiar with the meaning of “free and open”
source software when he began preparing his testimony.

Oracle completed its fair use case with testimony about the economic impacts of
Android’s release.480 Neil Civjan, Sun’s head of global sales, testified that there were 2.6 billion

478 Joe Mullin, Oracle Java architect conscripts Harry Potter in making the case against Google,
ARS TECHNICA (May 17, 2016),
http://arstechnica.com/tech-policy/2016/05/oracle-java-architect-conscripts-harry-potter-in-maki
ng-the-case-against-google/

479 Professor Schmidt was not related to Google’s executive chairman.

480 See Joe Mullin, Sun’s head of Java sales: Android was “devastating,” ARS TECHNICA (May 18,
2016),
http://arstechnica.com/tech-policy/2016/05/suns-head-of-java-sales-android-was-devastating/

-105-

Java-enabled mobile phones at the peak (85% of the global marketplace). That number fell
precipitously after the introduction of Android phones and its freely licensed operating system.
Civjan noted that Java licensees did not see why they should license the Java ME platform when
they could get Android, which was essentially Java and Linux, for free. He characterized the
effect on Sun’s licensing business as “devastating.” Alan Brenner, Sun’s Senior Vice President
of client systems from 1997 until 2007, corroborated Civjan’s testimony and testified that Sun
had persuaded a Korean research institute to take a Java license rather than use the GNU
Classpath project. Brenner rebutted Jonathan Schwartz’s testimony that Sun accepted other
implementations of the Java platform. On cross-examination, Brenner acknowledged that Java
licensing revenue was in decline before Android launched.

Oracle called Stefano Mazzocchi, a Google engineer who was one of the original Apache
Harmony developers, in an effort to rebut Google’s argument that Sun acceded to others’ use of
the Java APIs.481 Apache Harmony obtained a license, subject to restrictions, on its use of the
Java platform. Following the announcement of Oracle’s acquisition of Sun in 2009, Mazzocchi
emailed members of the Apache listserve expressing concern about Java’s future: “What is
Oracle going to do about Android's ripping off some of (now) their IP and getting away with
it?”482 In an earlier email, Mazzocchi expressed the view that copyright protected the Java APIs:

 But what I was missing is the fact that the copyright on the API is real and hard
to ignore.
 Simply by implementing a class with the same signature of another, in another
namespace and simply by looking at available javadocs could be considered
copyright infringement, even if the implementation is clean room.
 So, we are, in fact, infringing on the spec lead copyright if we distribute
something that has not passed the TCK and *we know that*.483

On cross-examination, Mazzocchi acknowledged that he was not a lawyer nor an expert on
copyright law.

481 See Joe Mullin, Apache e-mails, shown in court, say Android "ripped off" Oracle IP" ars
technica (May 18, 2016),
http://arstechnica.com/tech-policy/2016/05/apache-e-mails-shown-in-court-say-android-ripped-o
ff-oracle-ip/

482 See email from Stefano Mazzocchi to members@apache.org (Apr. 20, 2009) (Trial Exhibit
9201, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA)),
http://arstechnica.com/wp-content/uploads/2016/05/9201.pdf

483 See email from Sam Ruby to members@apache.org (Apr. 17, 2008) (including email from
Mazzocchi in email thread) (Trial Exhibit 5046, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA),
http://arstechnica.com/wp-content/uploads/2016/05/5046_REDACTED.pdf

-106-

Oracle concluded its case by calling Professor Adam Jaffe, an economics expert, to
explain network effects and his conclusion that Android was not transformative from an
economic perspective.484 Professor Jaffe testified that Android “very likely would not have been
successful” had Google not copied the 37 Java APIs. He further opined that Java was “poised to
enjoy continued success” in the mobile marketplace. But because of network effects, the market
quickly tipped toward the Android platform and Sun was unable to recover. Professor Jaffe
contended that Java ME supported smartphones, but was unable to gain traction in Android’s
wake. On cross-examination, Robert Van Nest used the Java ME-based SavaJe phone (see
Figure 6), which lacked a QWERTY keyboard or touch screen, to illustrate the stark differences
between the Java ME platform and the Android platform. Professor Jaffe acknowledged that
SavaJe was a failure.

484 See Joe Mullin,Oracle economist: Android stole Java’s “window of opportunity,” ARS

TECHNICA (May 18, 2016),
http://arstechnica.com/tech-policy/2016/05/oracle-economist-android-stole-javas-window-of-opp
ortunity/; Sarah Jeong, Oracle v. Google - Day 7, A witness gets impeached with his LinkedIn
page. Alsup gives a cough drop to a lawyer in the gallery. An economist testifies as to fair use.
Van Nest pulls out a SavaJe phone and waves it around in court. (May 18, 2016),
https://storify.com/sarahjeong/oracle-v-google-day-7-573d5aff5cb000d21eb9311d

-107-

-108-

 iv. Google’s Rebuttal

Google first called Larry Page, Google’s co-founder and CEO of Alphabet, Google’s
parent corporation, who testified that Google never believed that it needed a license for the Java
APIs because they were “free and open.”485 On cross-examination, Page acknowledged that
unauthorized use of Google’s intellectual property could harm the company. He did not believe,
however, that API declarations constituted computer code. He reiterated that he considered the
Java APIs to be free and open. He acknowledged, however, that he was not a lawyer and did not
“know the vagaries of licensing.”

Google then called Dr. Greg Leonard, an economic expert, to respond to Professor Jaffe’s
testimony.486 Dr. Leonard concluded that Android did not have any impact on licensing of Java
ME because feature phones were not substitutes for smartphones. He further opined that use of
the 37 Java APIs was not “central to Android’s success”; in his view, C++ could have done
comparably as well.

Google completed the testimony phase of the trial by recalling Professor Owen
Astrachan, its programming expert. Professor Astrachan was not at all surprised that Android
failed to operate with the Java declaring code removed. He then summarized Google’s approach
to designing Android:

1. Google selected 37 (not all) packages from Java SE, and used those method
declarations;
2. wrote implementing code for those declarations;
3. added other libraries specific to smartphones, like GPS, camera, etc.;
4. brought in third-party libraries for stuff like web browsers and graphics;
5. made the Dalvik Virtual Machine; and
6. built whole thing on top of Linux.

In his expert opinion, this effort produced an innovative, open source mobile platform.

 v. Closing Arguments

485 See Joe Mullin, CEO Larry Page defends Google on the stand: “Declaring code is not code,”
ARS TECHNICA (May 19 2016),
http://arstechnica.com/tech-policy/2016/05/ceo-larry-page-defends-google-on-the-stand-declarin
g-code-is-not-code/;

486 See Joe Mullin, Oracle v. Google draws to a close, jury sent home until next week, ARS

TECHNICA (May 19, 2016),
http://arstechnica.com/tech-policy/2016/05/oracle-v-google-draws-to-a-close-jury-sent-home-unt
il-next-week/

-109-

The final day of trial began with Judge Alsup reading the jury 21 pages of instructions:
general instructions regarding evidence, witnesses, credibility, and burden of proof (7 pages);
established facts regarding the copyrighted works at issue (3 pages); the meaning of fair use
under copyright law (8 pages); and jury deliberation procedures (3 pages).487 The fair use
instructions mirrored the instructions set forth at the outset of the trial. Judge Alsup allotted each
side 90 minutes for closing argument.

Robert Van Nest began by emphasizing that this case was very important not only for
Google, but for innovation and technology in general.488 He then emphasized that the clear,
consistent, and largely uncontested testimony of Eric Schmidt, Jonathan Schwartz, Andy Rubin,
and Joshua Bloch established that Sun made Java free and open to use and encouraged
widespread use. Google took up that invitation and developed a path-breaking mobile platform.
Google independently implemented the selected Java APIs, resulting in a software platform that
used less than one half of one percent of Java code. Van Nest laid blame for this litigation
squarely on Oracle Chairman Larry Ellison, who Van Nest asserted brought this case after he
had tried to use Java to build his own smartphone and failed.

Van Nest then launched into his core copyright defense: “Android is exactly the kind of
thing the fair use doctrine was supposed to protect.” Van Nest emphasized Android’s
transformative purpose: it is not a substitute for Java SE or Java ME, but rather is an innovative
smartphone platform. Furthermore, Sun invited others to use Java. Van Nest characterized the
Java APIs as functional, reminding the jury of the filing cabinet labels. He recalled Schwartz’s
hamburger implementation metaphor. Van Nest noted that Android had not interfered with the
market for Java SE and the Java language remains the most popular coding language in the
world. Van Nest concluded with an industry custom argument–every witness acknowledged that
reimplementing APIs was common in the software industry.

In response, Peter Bicks went back to simple, moralistic themes: “You don’t take
people’s property without permission and use it for your own benefit”; you don’t take
“shortcuts” at other people’s expense; the “fair use excuse.”489 Bicks methodically built Oracle’s

487 See Notice of Final Charge to the Jury (Phase One) and Special Verdict Form (Document
1928, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

488 See Joe Mullin, Google’s closing argument: Android was built from scratch, the fair way
“Oracle took none of the risk, but wants all the credit, and a lot of the money.” ARS TECHNICA

(May 23, 2016),
http://arstechnica.com/tech-policy/2016/05/googles-closing-argument-android-was-built-from-sc
ratch-the-fair-way/; Sarah Jeong, Oracle v. Google - Closing Arguments. (May 23, 2016),
https://storify.com/sarahjeong/oracle-v-google-closing-arguments.

489 See Joe Mullin, Oracle slams Google to jury: “You don’t take people’s property”
“It takes strength and courage to stand up to Google. That’s what Oracle has done.” ARS

TECHNICA (May 23, 2016),

-110-

closing around the “mountain of evidence,” principally emails that Google engineers never
thought would see the light of day. He deployed a professionally-crafted storyboard to illustrate
Oracle’s fair use analysis.490

In constructing the argument against fair use, Bicks emphasized the clear commerciality
of Google’s use of the Java APIs and the extensive copying–11,500 lines–of Java code. He
emphasized the Harry Potter metaphor to illustrate the rich, “creative,” integrated design of the
Java APIs, as reflected in Figure 7.

http://arstechnica.com/tech-policy/2016/05/oracle-slams-google-to-jury-you-don’t-take-peoples-
property/; Sarah Jeong, Oracle v. Google - Closing Arguments. (May 23, 2016),
https://storify.com/sarahjeong/oracle-v-google-closing-arguments.

490 See Joe Mullin, How Oracle made its case against Google, in pictures: Armed with Google’s
own e-mails, Oracle said “fair use” was nowhere to be found. ARS TECHNICA (May 25, 2016),
http://arstechnica.com/tech-policy/2016/05/how-oracle-made-its-case-against-google-in-pictures/
; Jeff Taylor, Oracle v. Google: How to Create Beautiful Closing Argument Slides, The Droid
Lawyer (May 26, 2016),
http://thedroidlawyer.com/2016/05/oracle-v-google-how-to-create-beautiful-closing-argument-sl
ides/

-111-

Figure 7
Oracle Closing Argument: HARRY POTTER Metaphor

 Bicks mocked Google’s opportunistic use of Schwartz’s congratulatory blog post after
Android was announced by showing a two-faced silhouette that juxtaposed Sun’s smiling public
face with his cynical, internal face (referring to Google as “Scroogle”), as illustrated in Figures 8
and 9. He characterized Google as a bully and Oracle as a courageous fighter standing up to
Google’s arrogance.

-112-

Figure 8
Oracle Closing Argument: Two Faces of Jonathan Schwartz

Public versus Private

-113-

Figure 9
Oracle Closing Argument: Two Faces of Jonathan Schwartz

Scroogle

-114-

Bicks rebutted Google’s suggestion that Java APIs were free and open, pointing out that
Judge Alsup had instructed the jury that only the Java language was open and free. The court
specifically instructed the jury that only 170 of the 11,500 lines of API declaring code that
Google copied were required for the Java language.

Bicks countered the suggestion that Android makes transformative use of the Java APIs
by emphasizing that Android used the Java API packages to effectuate the identical purposes as
the Java platform, e.g., java.security for security). Bicks further noted that Java ME provided a
full stack solution for smartphones, as reflected in its use in SavaJe and other functioning,
although not particularly successful, smartphones. In Oracle’s view, Java ME’s decline was due
to its being made available for free in a marketplace heavily influenced by network economics
(i.e., tipping point).

Bicks concluded with the property theft theme: “Imagine, somebody takes your property
and is then competing against you—for free.” Even if Sun and Oracle stumbled in building a
smartphone platform, that did not justify Google taking their property: “Maybe you have some
land and build a barn on it, and it doesn’t stand up that well. Somebody doesn’t get to come onto
your property, and say, “You weren’t good at building a barn, so I’m going to build a barn here.’
The evidence isn’t that Oracle failed. Android took over the market.”

Bicks sought to leave the jury with a bitter taste by emphasizing that fair use presupposes
good faith and fair dealing. In Oracle’s view, Google played by its own self-serving rules.

In Google’s rebuttal. Van Nest countered that Sun gave away the Java APIs with the
Java language so as to promote the language. He ridiculed Oracle’s reliance upon emails among
engineers about the law and conflation of trademark (scrubbing the J-word) and copyright issues.
Van Nest acknowledged that all companies have internal debates, but that Google properly came
to the conclusion that the API declarations were not copyrightable and were available to be re-
implemented in a transformative platform. Van Nest deflected the stealing and theft arguments
as besides the point of a fair use trial. He mocked the “shortcut” argument by pointing out that it
took Google five years to bring Android to market. Van Nest countered Oracle’s moralistic
stealing theme with the argument that widespread and long-standing industry norms support
independent implementation of APIs.

Google closed the trial by suggesting that transformativeness provides the sensible
middle ground between stealing and free. “You don’t have to choose between commercial and
transformative. . . . [b]ecause the whole purpose of fair use is to promote innovation.”

 vi. Jury Verdict

Following three days of deliberation, the jury found that Google had “shown by a
preponderance of the evidence that its use in Android of the declaring lines of code and their
structure, sequence, and organization from Java 2 Standard Edition Version 1.4 and Java 2

-115-

Standard Edition Version 5.0 constitutes a ‘fair use’ under the Copyright Act.”491 The verdict
form did not ask the jury to make subsidiary factual findings.492 With fair use decided in
Google’s favor, there was no need for a further damages phase. Judge Alsup thanked the jury for
their hard work and discharged the ten jurors.493 The jurors departed without comment, leaving
the public and the appellate court without a clear understanding of how the fair use balance was
struck.

6. The Road Ahead

As the Oracle v. Google litigation has already illustrated, a jury verdict does not
necessarily resolve a dispute, especially in a case in which the cost of appeal is relatively low in
comparison with the stakes involved and the parties don’t perceive advantages to settlement.494

As Google was completing its case in chief, Oracle filed a motion requesting that Judge Alsup
render judgment as a matter law (“JMOL”) in its favor.

Judge Alsup rejected Oracle’s JMOL motion.495 Judge Alsup explained that he erred on
Oracle’s side in allowing an instruction on the propriety of the defendant’s conduct496

notwithstanding that the Federal Circuit did not call attention to this consideration in its remand
decision and the Supreme Court’s decision in Campbell v. Acuff-Rose Music,

491 See Special Verdict Form (Document 1928-1, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA); Joe Mullin, Google beats Oracle—Android makes “fair use” of Java
APIs. ARS TECHNICA (May 26, 2016),
http://arstechnica.com/tech-policy/2016/05/google-wins-trial-against-oracle-as-jury-finds-androi
d-is-fair-use/

492 See Special Verdict Form (Document 1928-1, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA).

493 See Joe Mullin, Google beats Oracle—Android makes “fair use” of Java APIs. ARS TECHNICA

(May 26, 2016),
http://arstechnica.com/tech-policy/2016/05/google-wins-trial-against-oracle-as-jury-finds-androi
d-is-fair-use/

494 See supra TAN __-__ <section on Oracle’s acquisition of Sun and ramifications for
litigation>; <Judge Grewal settlement conference order>

495 See Order Denying Rule 50 Motions (Jun. 8, 2016) (Document 1988, Oracle America, Inc. v.
Google Inc. 3:10-cv-03561-WHA).

496 See Notice of Final Charge to the Jury (Phase One) and Special Verdict Form, at § 27
(Document 1928, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

-116-

Inc. downplays or jettisons this consideration.497 He further explained that based on the evidence
presented, the jury could well have determined that it was fair use to maintain the same structure
of 37 Java API packages in the Android re-implemented packages so as to avoid the confusion
that would ensue from scrambling the various functions: “avoiding cross-system babel
promoted the progress of science and useful arts — or so our jury could reasonably have
found.”498

Judge Alsup rejected Oracle’s arguments that Android’s use of the Java APIs should
have been deemed “entirely commercial” and non-transformative, and that the Java APIs should
have been considered “highly creative” because of the myriad ways in which the functions could
have implemented. With respect to the fourth fair use factor–the impact on the potential market
for the Java platform–Judge Alsup ruled that the jury “could reasonably have found that use of
the declaring lines of code (including their SSO) in Android caused no harm to the market for
the copyrighted works, which were for desktop and laptop computers” and that the copying had
little effect on licensing of Java ME beyond “the tailspin already predicted within Sun.”499 The
court concluded its ruling by highlighting the contradiction between Oracle’s pretrial instruction
arguments–focusing on characterizing the fair use test as an equitable rule of reason affording
juries broad discretion based on the contextual facts of the case–and its JMOL motion urging
that the court override the jury’s balancing of the fact-specific factors:

 In applying an ‘equitable rule of reason,’ our jury could reasonably have given
weight to the fact that cross-system confusion would have resulted had Google
scrambled the SSO and specifications. Java programmers and science and the
useful arts were better served by a common set of command-type statements, just
as all typists are better served by a common QWERTY keyboard.500

497 See 510 U.S. 569, 585 n.18 (1994) (“Even if good faith were central to fair use, 2 Live Crew’s
actions do not necessarily suggest that they believed their version was not fair use; the offer [to
license the plaintiff’s work] may simply have been made in a good-faith effort to avoid this
litigation. If the use is otherwise fair, then no permission need be sought or granted.”); 2 PAUL

GOLDSTEIN, GOLDSTEIN ON COPYRIGHT § 12.2.2,
at 12:44.5–12:45 (3d ed. 2016).

498 Order Denying Rule 50 Motions at 8-10 (Jun. 8, 2016) (Document 1988, Oracle America, Inc.
v. Google Inc. 3:10-cv-03561-WHA). Judge Alsup further explained that inter-system
consistency “differs from the interoperability point criticized by the Federal Circuit. 750 F.3d at
1371. The immediate point of cross-system consistency focuses on avoiding confusion in usage
between the two systems, both of which are Java-based, not on one program written for one
system being operable on the other, the point addressed by the Federal Circuit.”

499 See id. at 17.

500 See id. at 18.

-117-

That decision did not, however, end even the trial court phase of the litigation. Oracle
filed a new JMOL motion in early July that largely critiques Judge Alsup’s rejection of its first
JMOL motion.501 More significantly, Oracle filed a motion requesting a new trial based on
Google’s alleged failure to disclose its plan to install Android Marshmallow on desktop and
laptop computers.502 In its reply to Google’s opposition,503 Oracle contended that the withheld
evidence “directly refutes Google’s argument to the jury that ‘Android is not a substitute
[because] Java SE is on personal computers; Android is on smartphones.’”504

Judge Alsup rejected these motions but left open the option for Oracle to file a new
copyright infringement complaint based upon Google’s implementations of Android in devices
other than smartphones and tablets in a separate proceeding and trial.505 Oracle has now filed an
appeal.

Oracle has reason for optimism about a Federal Circuit appeal.506 Under the Federal

501 See ORACLE’S RULE 50(b) MOTION FOR JUDGMENT AS A MATTER OF LAW (filed
Jul. 6, 2016) (Document 1993, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

502 See ORACLE’S RULE 59 MOTION FOR ANEW TRIAL (filed Jul. 6, 2016) (Document
1995-5, Oracle America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

503 See GOOGLE INC.’S OPPOSITION TO ORACLE’S RULE 59 MOTION FOR A NEW
TRIAL (filed Jul. 20, 2016) (Document 2012, Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA).

504 See ORACLE’S REPLY IN SUPPORT OF ITS RULE 59 MOTION FOR A NEW TRIAL, at
1 (Jul. 27, 2016) (citing Tr. 2124:6-7 (Google Closing Argument)) (Document 2018-2, Oracle
America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

505 See ORDER DENYING RENEWED MOTION FOR JUDGMENT AS A MATTER OF
LAW AND MOTION FOR A NEW TRIAL(filed Sep. 27, 2016) (Document 2070, Oracle
America, Inc. v. Google Inc. 3:10-cv-03561-WHA).

506 See Oracle v. Google: jury finds in favor of “fair use,” as no reasonable, properly-instructed
jury could have (May 26, 2016) (contending that Judge Alsup’s instructions set the fair use bar
far too low)
http://www.fosspatents.com/2016/05/oracle-v-google-jury-finds-in-favor-of.html; but see
Jonathan Band, Sanity Prevails Again, Part II: The District Court Leaves the Oracle v. Google
Fair Use Verdict in Place, Disruptive Competition Project (Jun. 10, 2016) (contending that
“given how the district court meticulously found evidence in the record supporting the
reasonableness of the jury’s fair use finding, it is hard to imagine that the Federal Circuit will
reverse it”),
http://www.project-disco.org/intellectual-property/061016-sanity-prevails-again-part-ii-the-distri
ct-court-leaves-the-oracle-v-google-fair-use-verdict-in-place/#.V7sha_krJph

-118-

Circuit’s Internal Operating Procedures, the same panel that reversed Judge Alsup’s
copyrightability ruling and set forth guiding principles for the fair use trial will likely hear the
appeal of the fair use trial.507 Oracle has preserved various objections to Judge Alsup’s jury
instructions. And if Judge Alsup denies Oracle’s new trial motion, Oracle has further grounds for
appealing the fair use verdict. Moreover, the appellate panel has already indicated that there was
much force to Oracle’s position and that many of the facts relevant to the fair use balance were
not in dispute.508

Google also has reason for optimism. First, it won the jury trial after Judge Alsup
modified the jury instructions in light of the parties’ concerns. Second, even if Google were to
lose at the Federal Circuit level a second time, it might be able to get the Federal Circuit’s API
copyrightability ruling reviewed by the Supreme Court.509

Assuming that the parties don’t reach a settlement, which has proven especially difficult,
the Federal Circuit will review the fair use trial and post-trial rulings. Should Google prevail,
Oracle would likely take a shot at Supreme Court review. Alternatively, the Federal Circuit
could remand for another fair use trial or resolve the ultimate fair use question in Oracle’s favor,
thereby setting up a Google writ of certiorari petition raising both API copyrightability and fair
use questions. Under the most optimistic scenario, the case will continue for several years.
Furthermore, all new uses of Android could attract new claims of copyright infringement.510

 C. The Current Murky State of API Copyright Protection

507 See U.S. Court of Appeal for the Federal Circuit Internal Operating Procedures, Rule #3
(Merits Panels–Distribution of Briefs, Records, and Files (Nov. 14, 2008) (“When an appeal is
docketed in a case that was previously remanded by this court . . . the clerk’s office attempts to
assign the appeal to the previous panel, to a panel including at least two members of the previous
panel (if one of those members was the authoring judge), or to a panel that contains the authoring
judge, if such a panel is otherwise constituted and available on a subsequent argument
calendar.”), http://www.cafc.uscourts.gov/sites/default/files/IOPs122006.pdf.

508 See 750 F.3d at 1376.

509 See Google’s Trial Brief, Oracle America, Inc. v. Google Inc., at 8, n.12 (Document 1706,
3:10-cv-03561-WHA) (“Google does not waive and hereby expressly preserves its position that
the SSO/declarations are not protected by copyright law. See, e.g., Bikram’s Yoga Coll. of India,
L.P. v. Evolation Yoga, LLC, 803 F.3d 1032 (9th Cir. 2015).”).

510 See, e.g., Florian Mueller, Three angles to look at Google’s Pixel phone: design patents,
antitrust, copyright FOSS PATENTS (Oct. 28, 2016) (noting that Oracle could assert a new
copyright complaint against Google’s new Pixel smartphone, which implements Java APIs on
Android Nougat),
http://www.fosspatents.com/2016/10/three-angles-to-look-at-googles-pixel.html

-119-

The Oracle v. Google fair use jury trial ranks among the most significant computer
software intellectual property trials and copyright fair use trials in U.S. history. Yet, it provided
little clarity to what is an especially murky area of intellectual property law. Even though Google
has prevailed thus far, the jury’s fair use decision has little precedential significance. Even if
Judge Alsup chooses not to order a second fair use trial and the higher courts leave this verdict
intact, other technology companies will be left to roll the dice if they incorporate re-implemented
APIs in their platform specification. Furthermore, Google faced exposure for new versions of
Android that implement Java APIs in new products. The jury’s verdict in Oracle v. Google does
not insulate them from risk of being sued for copyright infringement. The only secure safe
harbors are to develop an independent platform or license the pre-existing APIs.

The Federal Circuit’s decision rejecting Judge Alsup’s API copyrightability ruling is the
most significant recent federal appellate decision to confront the copyrightability of APIs.
Furthermore, given the proliferation of software patents, there is a high likelihood that a
company with a widely used set of APIs would be able to pursue both patent and copyright
causes of action in the same litigation,511 thereby bringing the Federal Circuit’s exclusive
jurisdiction over patent cases into play, even the patent issues are not appealed.

Thus, notwithstanding six years of litigation and two jury trials, the Oracle v. Google
litigation has contributed to, rather than quelled, confusion surrounding API copyright
protection. As courts have noted, fair use is “‘the most troublesome [doctrine] in the whole law
of copyright.’”512 Legal advisors will need to inform their clients that there is no clear safe harbor
for re-implementing APIs short of a license. Other trial teams will face the same troublesome
doctrines in the context of another set of complex facts.

Furthermore, by resolving the fair use question by a simple jury verdict form, the Oracle
v. Google litigation sheds little light on the reasoning behind the jury’s decision. There were no
formal factual findings. Therefore, the decision contributes little to our understanding of the fair
use factors–transformativeness, commerciality, nature of the copyrighted work–or how they are
balanced in the context of new platforms building on and augmenting prior API packages. All
we know is that Google’s particular re-implementation for particular products was fair use. But
as Judge Alsup’s resolution of the new trial reveals, further development of the Android platform

511 See Scott Graham, Cisco v. Arista IP Battle Starts to Look a Lot Like Oracle v. Google, THE

RECORDER (Aug. 26, 2016), http://www.therecorder.com/id=1202766017854/Cisco-v-Arista-IP-
Battle-Starts-to-Look-a-Lot-Like-Oracle-v-Google?slreturn=20160905152607

512 See Oracle America, Inc. v. Google Inc., 750 F.3d at 1372 (quoting Monge v. Maya
Magazines, Inc., 688 F.3d 1164, 1170 (9th Cir. 2012) (quoting Dellar v. Samuel Goldwyn, Inc.,
104 F.2d 661, 662 (2d Cir.1939) (per curiam)); see also 2 PAUL GOLDSTEIN, GOLDSTEIN ON

COPYRIGHT § 12.1 (3d ed. 2005) (“No copyright doctrine is less determinate than fair use.”);
David Nimmer, ‘Fairest of Them All’ and Other Fairy Tales of Fair Use, 66 LAW & CONTEMP.
PROBS. 263, 263 (2003).

-120-

could well provide the basis for a new copyright infringement action.

Such uncertainty can be especially problematic for technology companies. The viability
and value of a platform depends critically upon its ability to leverage consumers’ and
programmers’ familiarity with APIs. Hence, the design of a new platform requires planning and
coordination. Yet the current status of API copyright jurisprudence hinges liability for copyright
infringement on “‘the most troublesome [doctrine] in the whole law of copyright.’”513

The unusual jurisdictional posture of the Oracle v. Google case and other API disputes
that arguably implicate patent protection further complicates the API copyright puzzle. When
Congress established the Court of Appeals for the Federal Circuit in 1982,514 it did not provide a
procedure for reviewing Federal Circuit interpretations of regional circuit law short of Supreme
Court review. The only en banc process available for litigants is at the Federal Circuit. It would
be more appropriate, however, to present such issues to the regional circuit, especially in cases
such as Oracle v. Google in which patents play no role in the appellate proceeding.515 Such a
review would be analogous to certification of a state law question to the highest state court. Yet
Congress has not authorized such review. As a result, the Federal Circuit’s exclusive jurisdiction
over federal patent law cases produces a dual body of regional circuit. The extent to which the
regional circuit is bound by such decisions is unclear since there are no structural means for
harmonizing divergent appellate interpretations short of Supreme Court review.

The Oracle v. Google case illustrates the “forking”516 of Ninth Circuit copyright
jurisprudence. Whereas Judge Alsup placed principal reliance on the Ninth Circuit’s Sega
decision, which expressly rejected the Whelan framework, the Federal Circuit emphasized its
Nintendo v. Atari Games decision, which predates Sega and builds on inchoate foundation of the
Ninth Circuit’s Johnson Controls decision. Technology companies are left without a clear line of
authority or a procedure for resolving such differences unless the Supreme Court intervenes.

The following section critically analyzes the Oracle v. Google litigation and constructs a
coherent framework for applying copyright law to APIs.

513 See supra, note __.

514 See Federal Courts Improvement Act of 1981, Pub. L. No. 97-164, 96 Stat. 25.

515 See Peter S. Menell, API Copyrightability Bleak House: Unraveling and Repairing the Oracle
v. Google Jurisdictional Mess, BERKELEY TECH. L.J. (forthcoming 2016).

516 See supra, note __. <defining “fork” as a software engineering term>

-121-

III. The Law and Economics of API Copyright Protection

Congress’s decision to bring computer software within the scope of copyright protection
was never intended to limit technological innovation. The legislative history of the 1976
Copyright Act as well as the CONTU Report made clear that copyright law’s limiting principles
were an essential part of Congress’s calculus in affording computer software copyright
protection. In keeping with the long-standing common law traditions of copyright law, courts
would play a critical role in applying and adapting copyright law’s limiting doctrines to take
account of technological change.

The early history of copyright protection for computer well illustrates the courts’ role in
fitting copyright protection for computer software within the contours of the larger intellectual
property system. It is not surprising that courts struggled with the early cases. Few judges were
familiar with computer technology and the software marketplace was developing rapidly. By the
early 1990s, scholarship, experts, and advocates provided judges with a richer understanding of
software technology and markets needed to fit copyright protection for computer software within
the larger intellectual property system.

The Altai case provided a robust framework for limiting copyright protection to the non-
functional elements. The Sega case, reinforced by the interoperability provisions of the DMCA,
established that interoperable features of computer technology were fair game for subsequent
software developers so long as they implemented the functional specifications in independently
written code. By the mid 1990s, a coherent body of software copyright law had emerged.

The network and other functional features of computer software were not eligible for
copyright protection even as the thousands of lines of implementing code garnered copyright
protection against piracy. This balance operationalized the wisdom of the Baker v. Selden case
and the useful article separability doctrine in the software copyright domain. Litigation subsided
and the software industry moved forward.517

The Oracle v. Google litigation revived flawed and widely rejected arguments from the
first wave of API copyright litigation. The Federal Circuit’s decision finding that compilations of
functions in API packages as well as the structure, sequence, and organization of APIs are

517 Just as copyright protection for computer software became coherent, patent protection for
computer software and business methods emerged as a major problem for the software industry.
See Peter S. Menell, Forty Years of Wondering in the Wilderness and No Closer to the Promised
Land: Bilski’s Superficial Textualism and the Missed Opportunity to Return Patent Law to its
Technology Mooring, 63 STAN. L. REV. 1289 (2011); JAMES BESSEN & MICHAEL J. MEURER,
PATENT FAILURE: HOW JUDGES, BUREAUCRATS, AND LAWYERS PUT INNOVATORS AT RISK

(2009); ADAM B. JAFFE & JOSH LERNER, INNOVATION AND ITS DISCONTENTS: HOW OUR

BROKEN PATENT SYSTEM IS ENDANGERING INNOVATION AND PROGRESS, AND WHAT TO DO

ABOUT IT (2004).

-122-

protectable so long as there are multiple ways of achieving the high level purposes of the
software returns us to the Apple v. Franklin and Whelan era. Such a regime effectively protects
particular machines under copyright law so long as the general functions of those machines can
be implemented in varying ways. Such broad copyright protection intrudes upon the functional
realm.

Under the Federal Circuit’s Oracle ruling, a company that controls a widely adopted
platform can leverage copyright protection to control the investments of programmers and users
of that technology. They can stand in the way of subsequent innovators that seek to effectuate a
leap to a new functional paradigm. With three decades of experience in software platform
evolution, we have a sounder basis for assessing the proper balance of promoting network
externalities and encouraging platform innovation.

This section reexamines the role of copyright protection for computer software in the
current and foreseeable digital age. Section A critically analyzes the Oracle v. Google decisions
and explains that copyright law’s fundamental exclusion of protection for functional features
dictates that the labeling conventions and packaging of functions within interface specifications
generally fall outside of the scope of copyright protection even as implementing code garners
thin copyright protection. Section B explains that this interpretation of copyright law serves the
larger goals of intellectual property law and competition policy.

 A. Legal Analysis

This section begins by reviewing the foundational principles guiding copyright protection
for computer software. It then assesses the Federal Circuit’s Oracle decision. It concludes with a
comprehensive framework for adjudicating software copyright cases.

1. Overarching Principles

The intellectual property system channels innovative, creative, and source-identifying
works among distinct modes of protection: utility patent law protects technological works;
copyright law protects expressive works;518 and trademark law protects source-identifying
symbols. The requirements for eligibility, scope, duration, and remedies for each of the modes of
protection vary significantly based on the differing underlying purposes and legislative design of
patent, copyright, and trademark protection.

To a first approximation, technological and creative works have generally fallen into
different modes of protection. Machines, technical processes, and chemical compositions are

518 Design patent law can be used to protect the ornamental (non-functional) aspects of useful
articles. See 17 U.S.C. § 171. It co-exists with and overlaps copyright protection. See Mazer v.
Stein, 347 U.S. 201 (1954).

-123-

eligible for patent protection (or trade secret protection if maintained as secrets.519 Literary,
pictorial, graphic, sculptural, and musical works are protected through copyright law. Ttrade
symbols are protected as trademarks, although a graphic symbol might also garner copyright
protection.

The challenge posed by computer software and other useful articles is that they can fall
into two or more of the intellectual property modes. Patent-eligible machines can be
characterized as sculptural works or source-identifying trade dress. Software code for running a
machine can be characterized as literary text. The Supreme Court cogently resolved this overlap
by recognizing that functional features of works are properly protected solely by the most
restrictive of the intellectual property regimes–patent law. Otherwise, inventors could effectively
extend their statutory exclusive rights beyond the limited times that Congress intended. As the
Supreme Court explained in Baker v. Selden,

[t]he copyright of the book, if not pirated from other works, would be valid
without regard to the novelty, or want of novelty, of its subject-matter. The
novelty of the art or thing described or explained has nothing to do with the
validity of the copyright. To give to the author of the book an exclusive property
in the art described therein, when no examination of its novelty has ever been
officially made, would be a surprise and a fraud upon the public. That is the
province of letters-patent, not of copyright.520

A book describing a technological method can be the subject of a copyright without
impinging on the public’s use of the method taught and illustrated in text and pictures. As the
Supreme Court summarized, “[t]here is a clear distinction between the book, as such, and the art
which it is intended to illustrate. The mere statement of the proposition is so evident, that it
requires hardly any argument to support it.”521 As the Supreme Court further explained,

[a] treatise on the composition and use of medicines, be they old or new; on the
construction and use of ploughs, or watches, or churns; or on the mixture and
application of colors for painting or dyeing; or on the mode of drawing lines to
produce the effect of perspective,—would be the subject of copyright; but no one
would contend that the copyright of the treatise would give the exclusive right to
the art or manufacture described therein.522

519 Trade secret law protects information that derives value from not being generally known and
is subject to reasonable efforts to maintain secrecy. See Uniform Trade Secrets Act § 1(4).

520 Baker v. Selden, 99 U.S. 99, 102 (1879).

521 Id.

522 Id.

-124-

This foundational channeling principle frames the intellectual property system. Without
this principle, the potential overlaps among patent, copyright, and trademark protection would
topple the edifice. Any patent-eligible method, machine, article of manufacture, or chemical
composition can be described in a book. Any machine or article of manufacture can serve as an
indicator of source. The long duration and low threshold requirements of copyright and
trademark protection would displace patent’s primacy in protecting technological advance or
functional features. Inventors could use copyright or trademark protection to easily secure rights
in technological advances for substantially longer duration than patent protection. Thus, the
courts have barred copyright or trademark protection for methods, machines, and functional
elements of sculptural works.523 This same rationale preempts state laws aimed at directly
protecting technology.524

Congress expressly codified these doctrines in the 1976 Copyright Act. Section 102(b)
provides that “[i]n no case does copyright protection for an original work of authorship extend to
any idea, procedure, process, system, method of operation, concept, principle, or discovery,
regardless of the form in which it is described, explained, illustrated, or embodied in such
work.”525 The Copyright Act excludes “mechanical or utilitarian aspects” of useful articles from
the definition of “pictorial, graphic, and sculptural works.”526 The statute provides that “the
design of a useful article . . . shall be considered a pictorial, graphic, or sculptural work only if,
and only to the extent that, such design incorporates pictorial, graphic, or sculptural features that
can be identified separately from, and are capable of existing independently of, the utilitarian

523 See Baker v. Selden, 99 U.S. 99, 102 (1879); TrafFix Devices, Inc. v. Marketing Displays,
Inc., 532 U.S. 23 (2001); Inwood Laboratories, Inc. v. Ives Laboratories, Inc., 456 U.S. 844, 863
(1982) (White, J., concurring in result) (explaining that where an item in general circulation is
unprotected by patent, “[r]eproduction of a functional attribute is legitimate competitive
activity.”).

524 See Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 159–64 (1989); Sears,
Roebuck & Co. v. Stiffel Co., 376 U.S. 225, 233 (1964) (barring state law from offering “the
equivalent of a patent monopoly” in the functional aspects of a product which had been placed in
public commerce absent the protection of a valid patent); Compco Corp. v. Day–Brite Lighting,
Inc., 376 U.S. 234 (1964). State trade secret protection does not, in the Supreme Court’s view,
conflict with the federal patent regime. See Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470
(1974). Rather, trade secret protection focuses on misappropriation of secret information. It does
not stand in the way of scientific discovery or technological innovation. The public may freely
use knowledge that is not protected by patents, including information gleaned through reverse
engineering of publicly available protections. Id., at 490.

525 17 U.S.C. § 102(b).

526 17 U.S.C. § 101 (definition of “pictorial, graphic, and sculptural works”).

-125-

aspects of the article.”527

The legislative history of the 1976 Copyright Act states that Congress’s purpose in
enacting § 102(b) was “to restate, in the context of the new single Federal system of copyright,
that the basic dichotomy between expression and idea remains unchanged.”528 These limitations
developed through judicial decisions, such as Baker v. Selden, and have produced a body of
common law doctrines, such as merger, scènes à faire, and fair use. Congress intended to
perpetuate judicial evolution of these doctrines as a means of adapting copyright law to
technological change.529

As regards copyright protection for computer software, the legislative history comments
that:

 [s]ome concern has been expressed lest copyright in computer programs should
extend protection to the methodology or processes adopted by the programmer,
rather than merely to the “writing” expressing his ideas. Section 102(b) is
intended, among other things, to make clear that the expression adopted by the
programmer is the copyrightable element in a computer program, and that the
actual processes or methods embodied in the program are not within the scope of
the copyright law.530

The Computer Software Copyright Act of 1980,531 implementing CONTU’s recommendations,
affirmed CONTU’s emphasis on the importance of applying the judicially-developed
idea-expression doctrine to ensure that copyright protection did not interfere with technological
progress in computer programming.532

527 17 U.S.C. § 101 (definition of “pictorial, graphic, and sculptural works”).

528 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. 57 (1976).

529 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 66 (“The bill endorses the purpose and
general scope of the judicial doctrine of fair use, but there is no disposition to freeze the doctrine
in the statute, especially during a period of rapid technological change. Beyond a very broad
statutory explanation of what fair use is and some of the criteria applicable to it, the courts must
be free to adapt the doctrine to particular situations on a case-by-case basis.”); see generally,
Peter S. Menell, The Mixed Heritage of Federal Intellectual Property Law and Ramifications for
Statutory Interpretation, in INTELLECTUAL PROPERTY AND THE COMMON LAW (Shyam
Balganesh, ed., 2013).

530 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 57.

531 Pub. L. No. 96-517, 94 Stat. 3007, 3028 (codified at 17 U.S.C. §§ 101, 117).

532 See, supra Section I(B)(1).

-126-

The 1976 Copyright Act, as amended by the 1980 software amendments, put courts in the
critical role of adapting copyright law’s traditional, judicially-developed standards to the rapidly
developing medium of computer software. Over the course of the next two decades, the courts
successfully surmounted the challenge. After some initial missteps which threatened to provide
undue legal protection for the first entity to develop computer software for a particular purpose
(such as managing a dental laboratory’s records533), courts came to apply the idea-expression
doctrine and other critical limiting doctrines with fuller appreciation of the purposes underlying
copyright protection and its interplay with patent protection. The Ninth Circuit was especially
forward-thinking in ensuring a proper balance.

2. Critique of the Federal Circuit Copyrightability Decision

The Federal Circuit’s Oracle v. Google decision purports to apply Ninth Circuit
jurisprudence to its review of Judge Alsup’s decision holding that the compilation of functions
and the structure, sequence, and organization of the Java APIs were not copyrightable. This
section shows that the Federal Circuit misinterpreted §102(b) of the Copyright Act, misconstrued
Ninth Circuit software copyright jurisprudence, conflated technological innovation and
expressive or artistic “creativity,” and applied an overly rigid approach to copyright law’s
limiting doctrines.

i. Misinterpretation of the Copyright Act

The Federal Circuit’s opinion takes a broad view of the scope of copyright protection for
computer software.534 While recognizing the § 102(b) limitations, the court did not view those
constraints as applicable to copyrightability.535 Rather, the court saw § 102(b) as only applying
at the infringement and defenses stages of analysis.

The Federal Circuit misreads the clear language of the Copyright Act as well as the
legislative history. It also misapprehends the larger legislative intent and purpose regarding
copyright protection for useful articles and other functional subject matter.

 a. Misreading Section 102

533 See, supra TAN __ <discussing Whelan Assocs., Inc. v. Jaslow Dental Laboratory, Inc.>.

534 See Oracle v. Google, 750 F.3d at 1356 (quoting Feist Publ’ns, Inc. v. Rural Tel. Serv. Co.,
499 U.S. 340, 345, 358 (1991) (originality “means only that the work was independently created
by the author (as opposed to copied from other works), and that it possesses at least some
minimal degree of creativity”; “the originality requirement is not particularly stringent”).

535 Id. at 1354 (finding that the “district court failed to distinguish between the threshold question
of what is copyrightable–which presents a low bar–and the scope of conduct that constitutes
infringing activity.”)

-127-

Section 102 of the Copyright Act addresses “Subject matter of copyright: In general.”
Section 102(a) sets forth a broad list of categories, such as literary works, musical works, and
pictorial, graphic, and sculptural works, in which copyright protection subsists.”536 Section
102(b) sets forth limitations on copyrightable subject matter: “In no case does copyright
protection for an original work of authorship extend to any idea, procedure, process, system,
method of operation, concept, principle, or discovery, regardless of the form in which it is
described, explained, illustrated, or embodied in such work.”

Google argued that the particular compilation of functions in Java API packages were
uncopyrightable “method[s] of operation.” The Federal Circuit rejected the proposition that §
102(b) can be invoked in this way, quoting a comment in the legislative history of the 1976 Act
stating that Section 102(b) “in no way enlarges or contracts the scope of copyright protection,”
but merely “restates . . . that the basic dichotomy between expression and idea remains
unchanged.”537 The Federal Circuit then turned to a 10th Circuit case (Mitel) for the proposition
that “Section 102(b) does not extinguish the protection accorded a particular expression of an
idea merely because that expression is embodied in a method of operation.”538 From there, the
Federal Circuit, following Mitel, concluded that § 102(b) only comes into play as part of
abstraction-filtration-comparison analysis.539

The Federal Circuit overrode the plain text of the 1976 Act–“In no case does copyright
protection for an original work of authorship extend to any . . . method of operation . . .,
regardless of the form in which it is described, explained, illustrated, or embodied in such
work”–based on the comment in the legislative history that “Section 102(b) in no way enlarges
or contracts the scope of copyright protection.” As the Federal Circuit recognizes, however,
Congress intended § 102(b) to codify the idea-expression dichotomy.540 Under that doctrine,
methods of operation–such as the accounting method in Baker v. Selden–were categorically
excluded from copyright eligibility. The Supreme Court did not inquire into whether there were
other methods that achieved the same purpose (accounting). Rather, the Court excluded any
claim to a method of accounting even as it ruled that Selden’s accounting book describing the
method was copyrightable.541

536 17 U.S.C. § 102(a).

537 Oracle v. Google, 750 F.3d at 1356 (quoting Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499
U.S. 340, 356 (1991) (quoting H.R.REP. No. 1476).

538 Id. at 1356-57 (quoting Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1372 (10th Cir.1997)).

539 See id. at 1357.

540 See id. at 1355.

541 The Federal Circuit attempts to fit Baker v. Selden into its atextual reading of § 102 by stating
that “The [Supreme] Court [in Baker v. Selden] indicated that, if it is necessary to use the forms

-128-

Reinforcing this understanding of the idea-expression dichotomy, the CONTU Report
declared that “one is always free to make a machine perform any conceivable process (in the
absence of a patent)” so long as they don’t “take another’s program.”542 Following this principle,
it is difficult to understand why Google would not be entitled to make a mobile device (“a
machine”) perform the same functions as a Java API package (a “conceivable process”) with
clean-roomed computer code (not “another’s program”). Each Java API package constituted a
particular subsystem within a larger particular computing environment. Extrapolating one step
further, it is difficult to understand why Google would not be entitled to select a set of Java API
packages and implement them with original code to create a new machine.

Congress directly addressed the interplay of copyright protection for computer software
and the idea-expression dichotomy in the following passage from the House Report: “Section
102(b) is intended, among other things, to make clear that the expression adopted by the
programmer is the copyrightable element in a computer program, and that the actual processes or
methods embodied in the program are not within the scope of the copyright law.”543 This
language, unlike the general statement about that “Section 102(b) in no way enlarges or contracts
the scope of copyright protection,” captures the essence of API design. The implementing code
is the protectable computer program. The declaring code constitutes the “the actual processes or
methods embodied in the program [which] are not within the scope of the copyright law.” This
construction of § 102(b) is faithful to the text and specific legislative history of the Copyright
Act.

 b. Legislative Intent and Purpose

The Copyright Act’s provisions relating to useful articles and general legislative history
reinforce § 102(b)’s role as a threshold doctrine, not merely an infringement or fair use
consideration.

The definition of “pictorial, graphic, and sculptural works” states that “the design of a
useful article, as defined in this section, shall be considered a pictorial, graphic, or sculptural
work only if, and only to the extent that, such design incorporates pictorial, graphic, or sculptural
features that can be identified separately from, and are capable of existing independently of, the

Selden included in his books to make use of the accounting system, that use would not amount to
copyright infringement. See [Baker v. Selden, 101 U.S. at 104] (noting that the public has the
right to use the account-books and that, ‘in using the art, the ruled lines and headings of accounts
must necessarily be used as incident to it’).” Oracle v. Google, 750 F.3d at 1355. A faithful
reading of Baker v. Selden recognizes that the Court held that the accounting method was
uncopyrightable, not merely not infringed. That is the essence of the idea-expression dichotomy.

542 See CONTU FINAL REPORT at 20.

543 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 56-57.

-129-

utilitarian aspects of the article.”544 Congress plainly viewed the separability test as a threshold
issue. The legislative history explains that

the Committee is seeking to draw as clear a line as possible between
copyrightable works of applied art and uncopyrighted works of industrial design. .
. . [A]lthough the shape of an industrial product may be aesthetically satisfying
and valuable, the Committee’s intention is not to offer it copyright protection
under the bill. Unless the shape of an automobile, airplane, ladies’ dress, food
processor, television set, or any other industrial product contains some element
that, physically or conceptually, can be identified as separable from the utilitarian
aspects of that article, the design would not be copyrighted under the bill. The test
of separability and independence from ‘the utilitarian aspects of the article’ does
not depend upon the nature of the design–that is, even if the appearance of an
article is determined by esthetic (as opposed to functional) considerations, only
elements, if any, which can be identified separately from the useful article as such
are copyrightable.545

The functional characteristics of a work come into play in the infringement and fair use analyses
if a useful article is physically or conceptually separable–i.e., if the entirety of the work is not
categorically excluded at the copyrightability stage of analysis.

Congress intended a similar threshold exclusion for functional elements of architectural
works that are not separable from the artistic features:

 A special situation is presented by architectural works. An architect’s plans
and drawings would, of course, be protected by copyright, but the extent to which
that protection would extend to the structure depicted would depend on the
circumstances. Purely nonfunctional or monumental structures would be subject
to full copyright protection under the bill, and the same would be true of artistic
sculpture or decorative ornamentation or embellishment added to a structure. On
the other hand, where the only elements of shape in an architectural design are
conceptually inseparable from the utilitarian aspects of the structure, copyright
protection for the design would not be available.546

544 17 U.S.C.§ 101 (definition of “pictorial, graphic, and sculptural works”).

545 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 55; Jane Ginsburg, “Courts have twisted
themselves into knots”: US Copyright Protection for Applied Art, __ COLUM. J. L. & THE ARTS

___ (forthcoming); Shira Perlmutter, Conceptual Separability and Copyright in the Designs of
Useful Articles, 37 J. COPYRIGHT SOC’Y U.S.A. 339, 351 (1990) (explaining that the House
Judiciary Committee “stressed Congress’s desire to exclude from protection the general class of
industrial products, notwithstanding any ‘aesthetically satisfying’ design”).

546 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 55.

-130-

As part of achieving compliance with the Berne Convention, Congress amended the Copyright
Act in 1990 to expand protection for architectural works and move away from the separability
standard for architectural works.547 Nonetheless, Congress retained non-functionality as a
threshold requirement for copyrightability. The Architectural Works Copyright Protection Act
defined “architectural work” to include the “the overall form as well as the arrangement and
composition of spaces and elements in the design, but does not include individual standard
features.”548 Thus, Congress retained a threshold exclusion for “individual standard features.”549

The legislative history explains that

 The Committee does not suggest . . . that in evaluating the copyrightability or
scope of protection for architectural works, the Copyright Office or the courts
should ignore functionality. A two-step analysis is envisioned. First, an
architectural work should be examined to determine whether there are original
design elements present, including overall shape and interior architecture. If such
design elements are present, a second step is reached to examine whether the
design elements are functionally required. If the design elements are not
functionally required, the work is protectible without regard to physical or
conceptual separability.550

Thus, Congress plainlyenvisioned that functionality would be considered by the courts in
evaluating copyrightability and scope of protection.

Moreover, the text and legislative history of the Copyright Act, drawing on Baker v.
Selden and its progeny, make clear that Congress intended a parsimonious approach to copyright
protection for useful articles and other functional works.551 The Federal Circuit’s expansive
approach diverges from the important channeling function of the idea-expression dichotomy.

ii. Misreading Ninth Circuit Jurisprudence

547 See Architectural Works Copyright Protection Act, Pub. L. No 101-650, 104 Stat. 5089
(1990) (codified at 17 U.S.C. §§ 101, 102(a)(8), 120); H.R. Rep. No. 101-735, Copyright
Amendments Act of 1990, 1990 U.S.C.C.A.N. 6935, 6952.

548 17 U.S.C.§ 101 (definition of “architectural work”).

549 See id.; H.R. REP. NO. 101-735, Copyright Amendments Act of 1990, 1990 U.S.C.C.A.N.
6935, 6949 (explaining that “the definition makes clear that protection does not extend to
individual standard features, such as common windows, doors, and other staple building
components”).

550 H.R. REP. NO. 101-735, Copyright Amendments Act of 1990, 1990 U.S.C.C.A.N. 6935, 6951-
52 (emphasis added).

551 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 54-55, 56-67.

-131-

Beyond misconstruing § 102(b), the Federal Circuit’s opinion diverges from the clear
language and evolution of the Ninth Circuit’s software copyright jurisprudence. Judge Alsup
drew principally from the First Circuit’s Lotus decision and the Ninth Circuit’s Sega decision in
framing his analysis. The Federal Circuit held that the Lotus decision is “inconsistent” with
Ninth Circuit precedent552 and that the Sega decision is inapt.553 Neither of these interpretations,
however, withstands scrutiny. Furthermore, the Federal Circuit applied interpretations and
analytical frameworks from Third Circuit decisions (Apple v. Franklin and Whelan) that the
Ninth Circuit rejected.

 a. Viability of the Lotus Decision in the Ninth Circuit

The Federal Circuit ruled that “the Ninth Circuit has not adopted the court’s ‘method of
operation’ reasoning in Lotus, and we conclude that is inconsistent with binding precedent.”554

While it is true that the Ninth Circuit has not expressly adopted the First Circuit’s “method of
operation” framework, it has never rejected it. Furthermore, the Ninth Circuit’s Sega decision,
which predates the Lotus decision, is consistent with its analysis.

The Federal Circuit’s ruling that the Lotus framework is “inconsistent with binding
precedent” extrapolates well beyond the holding of the Ninth Circuit’s Johnson Controls
decision. In that early decision that focused on copyright protection for computer code as
opposed to API design, the Ninth Circuit held that“[w]hether the non-literal components of a
program, including the structure, sequence and organization and user interface, are protected
depends on whether, on the particular facts of each case, the component in question qualifies as
an expression of an idea, or an idea itself.”555 That terse opinion neither distinguishes between
API design and implementing code nor addresses interoperability.

The Federal Circuit reinforces its strained reading of Ninth Circuit precedent by reference
to Atari Games v. Nintendo,556 its own early decision applying Ninth Circuit law, that concluded
that copyright law protects “the expression of [a] process or method.”557 The Ninth Circuit has
never embraced that ruling and its Sega and Sony decisions conclusively rule that interface

552 Oracle v. Google, 750 F.3d at 1365.

553 Oracle v. Google, 750 F.3d at 1369.

554 Oracle v. Google, 750 F.3d at 1365 (citing Johnson Controls, Inc. v. Phoenix Control Sys.,
Inc., 886 F.2d 1173 (9th Cir. 1989); in an accompanying footnote, the Federal Circuit notes that
the Ninth Circuit had only cited the Lotus decision once on a procedural issue.)

555 Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 (9th Cir. 1989).

556 Atari Games Corp. v. Nintendo of Am., Inc., 897 F.2d 1572 (Fed. Cir.1990).

557 Atari Games Corp. v. Nintendo of America, 975 F.2d 832, 839 (Fed. Cir. 1992).

-132-

specifications necessary for interoperability are not copyrightable.558 Thus, at least in that critical
context, “the expression of a process or method” is not copyrightable under Ninth Circuit law.

Thus, a fairer reading of Ninth Circuit jurisprudence is that although the Ninth Circuit
has not had occasion to specifically address the Lotus line of analysis, it holds that software that
is necessary for interoperability is not copyrightable. In Sega v. Accolade, the Ninth Circuit
states that “the functional requirements for compatibility with the Genesis [video game] console
[are] aspects of Sega’s programs that are not protected by copyright. 17 U.S.C. § 102(b).”559

Such aspects of the Genesis video game platform are functional specifications of the computer
system–a relatively simple API. The Ninth Circuit unequivocally ruled that the interface
specification was not copyrightable, which parallels the Lotus analysis. The Ninth Circuit could
not have cited the First Circuit’s Lotus decision because that decision was not handed down until
several years later. The Sega case had an additional alleged infringement: Accolade made
hundreds of intermediate copies in order to ascertain the unprotectable interface specification. As
the next section explains, the Federal Circuit erroneously used that entirely separate issue to
disregard the Ninth Circuit’s clear statement that the functional requirements for
compatibility–the API specifications–are uncopyrightable.

 b. Disregarding the Sega/Sony Decisions

Judge Alsup drew heavily upon the Ninth Circuit’s Sega decision,560 reaffirmed in Sony
v. Connectix,561 for the proposition that the code required for interoperability of computer
systems is uncopyrightable.562 The Federal Circuit downplayed the relevance of these decisions
because both “are fair use cases in which copyrightability was addressed only tangentially.”563

The Federal Circuit further rejected “Google’s suggestion that Sony and Sega created an
‘interoperability exception’ to copyrightability.”564

As suggested above, a careful reading of the Sega decision, as reaffirmed by Sony v.
Connectix, contradicts the Federal Circuit’s interpretation. While it is true that both of these

558 See, infra, Section III(A)(2)(ii)(b).

559 Sega Enterprises v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1992).

560 See Sega Enterprises v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).

561 See Sony Computer Entertainment, Inc. v. Connectix, Corp., 203 F.3d 596 (9th Cir. 2000).

562 872 F.Supp.2d at 1000 (characterizing the Sega and Sony cases as “close analogies” to the
Oracle v. Google case).

563 750 F.3d at 1369.

564 750 F.3d at 1370.

-133-

cases addressed fair use issues, the need to address fair use resulted from the fact that Sega and
Sony had not made their APIs publicly available. As a result, the defendants (Accolade and
Connectix) needed to make numerous copies of the entire software programs in order to reverse
engineer the pertinent APIs. None of that, however, detracts from or downplays the Ninth
Circuit’s antecedent ruling: that the code necessary for interoperability was uncopyrightable.

The fair use ruling is merely icing on the pro-interoperability/pro-functionality cake. It
expands the safe harbor for using API specifications necessary for interoperability by authorizing
repeated copying of the entirety of computer programs–including the copyright-protected
aspects–for purposes of determining the unprotectable elements. The underlying cake
(uncopyrightability of interface specifications needed for interoperability or achieving a
particular function) is not the least bit “tangential” to the Ninth Circuit’s rulings. It is
foundational to these decisions. Had Sun not made the Java APIs publicly available, Google
could have copied the full Java platform software (potentially hundreds of times) to determine
the unprotectable APIs. But that in no way alters the uncopyrightability of the API elements
necessary for interoperability.

The last point is critical to understanding the importance of the Ninth Circuit’s Sega and
Sony decisions. Both decisions expressly find that the software code necessary for
interoperability is unprotectable by copyright law. These holdings are essential to the Ninth
Circuit analysis. This is entirely consistent with the CONTU Report and § 102(b) of the
Copyright Act. It also shows that the Ninth Circuit recognizes an “interoperability exception” to
copyrightability so long as the second-comer independently re-implements the functional
specifications.

The Federal Circuit attempts to rebut this reading by suggesting that it “contradict[s]
Ninth Circuit case law recognizing that both the literal and non-literal components of a software
program are eligible for copyright protection. See Johnson Controls, 886 F.2d at 1175. And it
would ignore the fact that the Ninth Circuit endorsed the abstraction-filtration-comparison
inquiry in Sega itself.”565 This reasoning misses the mark for several reasons. First, the Johnson
Controls case did not focus on APIs but rather the entirety of a sophisticated computer
program.566 Second, the Johnson Controls decision does not delve into the specific program
features. The Ninth Circuit was reviewing the grant of a preliminary injunction under the
“limited” abuse of discretion standard.567 The court had substantial evidence that the defendants

565 750 F.3d at 1370.

566 See, supra TAN __ <I(C)(i)>

567 See Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1174 (9th Cir. 1989)
(“Our review of a preliminary injunction is limited. We will reverse the granting of a preliminary
injunction only if the district court abused its discretion, or based its decision on an erroneous
legal standard or clearly erroneous findings of fact. Dumas v. Gommerman, 865 F.2d 1093, 1095
(9th Cir. 1989).”).

-134-

copied many elements of the software program in question.568 Third, the Ninth Circuit use of the
abstraction-filtration-comparison test for analyzing the copyright of computer code in no way
contradicts the uncopyrightability of functional or network features of computer systems.
Furthermore, the Sega case comes after Johnson Controls and provides a clear, well-reasoned
analysis of why code necessary for interoperability is uncopyrightable. The CONTU Report
could not be more clear on this point: “In the computer context [the idea-expression dichotomy]
means that when specific instructions, even though previously copyrighted, are the only and
essential means of accomplishing a given task, their later use by another will not amount to an
infringement.” In order to achieve the same particular functionality of the 37 Java API packages,
Google had to copy the precise declarations of those APIs. They are the equivalent of the
“functional requirements for compatibility with the Genesis [video game console]–aspects of
Sega’s programs that are not protected by copyright.”569

 c. Resurrecting the Third Circuit’s Apple/Whelan Decisions

Not only does the Federal Circuit misread the Ninth Circuit’s Sega and Sony decisions, it
embraces lines of analysis that the Ninth Circuit has rejected. By holding that the code for
interoperability may be protectable, the Federal Circuit resurrects the Third Circuit’s dicta in
Apple v. Franklin: “courts have recognized that, once the plaintiff creates a copyrightable work,
a defendant’s desire ‘to achieve total compatibility . . . is a commercial and competitive objective
which does not enter into the . . . issue of whether particular ideas and expressions have
merged.’”570 To the contrary, the Ninth Circuit holds that copyright law does not stand in the way
of achieving functional interoperability. As noted earlier,571 the Third Circuit comment is dicta as
Franklin Computer had copied the entirety of Apple’s computer programs. More importantly, §
102(b), the CONTU Report, and the Sega/Sony decisions directly contradict the Third Circuit’s
proposition.

Second, the Federal Circuit endorses and follows the Third Circuit’s Apple/Whelan
framework, holding that everything not necessary to the general purpose or function of a work is
protectable expression: “We agree with Oracle that, under Ninth Circuit law, an original
work—even one that serves a function—is entitled to copyright protection as long as the author

568 Id. at 1175-76 (“The special master’s report sets forth, in detailed form, the various
similarities between the programs.”).

569 Sega Enterprises v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1992) (citing 17 U.S.C. §
102(b)).

570 See Oracle v. Google, 750 F.3d at 1357.

571 See, supra TAN __.

-135-

had multiple ways to express the underlying idea.”572 The Federal Circuit credited Oracle’s
statement that it only claimed “its particular way of naming and organizing each of the 37 Java
API packages” and that it “‘cannot copyright the idea of programs that open an internet
connection,’ but ‘it can copyright the precise strings of code used to do so, at least so long as
“other language is available” to achieve the same function.’”573 In an accompanying footnote, the
court noted that Oracle’s counsel explained at oral argument that Oracle “would never claim that
anyone who uses a package-class-method manner of classifying violates our copyright. We don’t
own every conceivable way of organizing, we own only our specific expression—our specific
way of naming each of these 362 methods, putting them into 36 classes, and 20 subclasses.”574

The Federal Circuit reasoned that as long as the same general functions could be accomplished
using different code, then the first author’s code for such general functions was protectable.575

While this mode of analysis comports with Ninth Circuit jurisprudence with regard to
implementing code, it contradicts copyright law principles and Ninth Circuit precedent as
regards declarations that are necessary to operate a particular computing system. Contrary to the
Third Circuit’s dicta in Apple v. Franklin, the Ninth Circuit’s Sega and Sony decisions hold that

572 See Oracle v. Google, 750 F.3d at 1371 (quoting Apple Computer, Inc. v. Franklin Computer
Corp., 714 F.2d 1240, 1253 (3rd Cir. 1983)); see also id. at 1366 (noting that the Third Circuit in
Apple v. Franklin “focused ‘on whether the idea is capable of various modes of expression’ and
indicated that, ‘[i]f other programs can be written or created which perform the same function as
[i]n Apple’s operating system program, then that program is an expression of the idea and hence
copyrightable’” (quoting Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240,
1252 (3d Cir. 1983)).

573 See Oracle v. Google, 750 F.3d at 1367-68 (emphasis in original; internal quotations from
Oracle’s Reply Brief).

574 Id., at n.13.

575 See Oracle v. Google, 750 F.3d at 1356 (setting the foundation for its analysis by observing
that “the Sun/Oracle developers had a vast range of options for the structure and organization” of
the Java APIs); id. at 1360 (“We have recognized, . . ., applying Ninth Circuit law, that the
‘unique arrangement of computer program expression . . . does not merge with the process so
long as alternate expressions are available.’ Atari, 975 F.2d at 840.”); id. (explaining that
“[b]ecause Nintendo produced expert testimony ‘showing a multitude of different ways to
generate a data stream which unlocks the NES console,’ we concluded that Nintendo’s specific
choice of code did not merge with the process.”); id., n.5 (noting that “[i]t is undisputed that
Microsoft and Apple developed mobile operating systems from scratch, using their own array of
software packages.”); id. at 1368, n.14 (referencing the amicus brief of former Sun executives
explaining that “a quick examination of other programming environments [Apple’s iOS and
Microsoft Windows Phone] shows that creators of other development platforms provide the
same functions with wholly different creative choices.”).

-136-

the code necessary for interoperability is uncopyrightable.576 Thus, a defendant’s desire to
achieve compatibility does enter into the issue of whether particular ideas and expressions have
merged in the Ninth Circuit. It resolves the issue so long as the defendant independently writes
the code to achieve the particular functions of the plaintiff’s software. Secondly, the Sega
decision unequivocally rejects the Whelan framework of simply asking whether there are
multiple ways of programming a particular function: “[t]he Whelan rule . . . has been
widely—and soundly—criticized as simplistic and overbroad.”577 (citing the Second Circuit’s
decision in Computer Associates, Inc. v. Altai)), and its recognition of that “the functional
requirements for compatibility with [a software platform developed by another company] are not
protected by copyright. 17 U.S.C. § 102(b),” see Sega, 977 F.2d at 1522.

The Federal Circuit elides this issue by emphasizing that the Ninth Circuit adopted the
Altai abstraction-filtration-comparison framework. But the Ninth Circuit’s endorsement of the
Altai framework for cases involving implementing code does not exclude the possibility that the
possibility that the Ninth Circuit would not apply § 102(b) and the Lotus decision in analyzing
copyrightability of API design elements that are essential to achieving a particular set of
functions. In fact, as Judge Alsup recognized, the Sega ruling supports such as an approach. In
any case, the Federal Circuit contradicted Ninth Circuit precedent in following the Third
Circuit’s Apple v. Franklin and Whelan decisions.

iii. Conflation of Expressive and Technological “Creativity”

The Federal Circuit embraced Oracle’s argument (and that of former Sun executives578)
that API design is a “creative,” “noble craft”579 entitled to robust protection. Oracle’s analogized

576 See Sega, 977 F.2d at 1522 (holding that “the functional requirements for compatibility with
[a software platform developed by another company] are not protected by copyright. 17 U.S.C. §
102(b).”).

577 See Sega, 977 F.2d at 1522 (citing Computer Associates, Inc. v. Altai, 23 U.S.P.Q.2d at 1252
(2nd Cir. 1992), Opinion Withdrawn and Superseded on Rehearing by Computer Associates
Intern., Inc. v. Altai, Inc., 982 F.2d 693 (2nd Cir. 1992).

578 See Corrected Brief of Scott Mcnealy and Brian Sutphin as Amici Curiae in Support of
Reversal, Oracle America, Inc. v. Google, Inc., U.S. Court of Appeals for the Federal Circuit,
No. 2013-1021, -1022 (Feb. 22, 2013) (characterized API design as a highly creative process in
which programmers work from a limitless pallet of choices).

579 See Opening Brief and Addendum of Plaintiff-Appellant, Oracle America, Inc. v. Google,
Inc., U.S. Court of Appeals for the Federal Circuit, No. 2013-1021, -1022, 12-13, 72 (Feb. 11,
2013).

-137-

API design to the crafting of HARRY POTTER novels.580

Plaintiffs in the first wave of API copyright litigation deployed a similar strategy.581 As
the courts came to appreciate, analogizing software design to classical operas overlooks
fundamental principles undergirding the intellectual property system. For purposes of copyright
law, technological creativity differs fundamentally from expressive creativity. Section 102(b)
provides the touchstone. Where the work or element of the work constitutes an “idea, procedure,
process, system, method of operation, concept, principle, or discovery,” no amount of artistic or
expressive “creativity” will suffice. The work or element of a work falls outside of copyright
protection. That is the point of Baker v. Selden and the idea-expression dichotomy. “[T]he actual
processes or methods embodied in [a computer] program are not within the scope of the
copyright law.”582 “[O]ne is always free to make a machine perform any conceivable process (in
the absence of a patent)” so long as they don’t “take another’s program. . . . [W]hen specific
instructions . . . are the only and essential means of accomplishing a given task, their later use by
another will not amount to an infringement.”583

The Federal Circuit, however, accepted Oracle’s analogy between complex API design
and the crafting of HARRY POTTER novels.584 The court portrays Java’s APIs as highly creative,
difficult, and time-consuming works of authorship:

Scott McNealy and Brian Sutphin—both former executives at Sun who were
involved in the development of the Java platform—provide a detailed example of
the creative choices involved in designing a Java package. Looking at the
‘java.text’ package, they explain that it ‘contains 25 classes, 2 interfaces, and
hundreds of methods to handle text, dates, numbers, and messages in a manner

580 See, supra, TAN __; Oracle v. Google, 750 F.3d at 1356 (citing the district court’s
Copyrightability Decision for the proposition that “[t]he overall name tree [of the Java API, of
course, has creative elements”).

581 See note __. <citing Anthony L. Clapes, Patrick Lynch & Mark R. Steinberg, Silicon Epics
and Binary Bards: Determining the Proper Scope of Copyright Protection for Computer
Programs, 34 U.C.L.A. L. REV. 1493 (1987); Arthur Miller, Copyright Protection for Computer
Programs, Databases, and Computer-Generated Works: Is Anything New Since CONTU?, 106
HARV. L. REV. 977 (1993); Jack Brown, ‘Analytical Dissection’ of Copyrighted Computer
Software-Complicating the Simple and Confounding the Complex, 25 ARIZ. ST. L.J. 801 (1993).>

582 H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 66.

583 See CONTU FINAL REPORT at 20.

584 See, supra, TAN; Oracle v. Google, 750 F.3d at 1356 (citing the district court’s
Copyrightability Decision for the proposition that “[t]he overall name tree [of the Java API, of
course, has creative elements”).

-138-

independent of natural human languages.’ Java’s creators had to determine
whether to include a java.text package in the first place, how long the package
would be, what elements to include, how to organize that package, and how it
would relate to other packages. This description of Sun’s creative process is
consistent with the evidence presented at trial. See Appellant Br. 12–13 (citing
testimony that it took years to write some of the Java packages and that
Sun/Oracle developers had to ‘wrestle with what functions to include in the
package, which to put in other packages, and which to omit entirely’).585

There is no question that both J.K. Rowling’s novels and sophisticated API designs are
“creative” in a dictionary sense of the term.586 The critical distinction, however, relates to the
idea-expression dichotomy and the channeling of protection among the modes of intellectual
property law. Affording robust protection to the characters, settings, and plot elements of J.K.
Rowling’s stories does not monopolize technological functionality. Furthermore, subsequent
authors remain free to develop their own wizardry stories. They may freely partake of Rowling’s
ideas, just not her expression og those ideas.

By contrast, APIs function as the levers and gears of particular digital machines. The
declarations must be reproduced to replicate the particular functionality. Referring back to
Figure 4 (Oracle’s Closing Argument Slide Deck, Slide 7), Android programmers needed to
reproduce the same package name (java.security), class name (ProtectionDomain), and method
name (ClassLoader) to effectuate a computer program that responds to the same inputs and
produces the same outputs as the java.security machine. As the faded background text indicates
(and as Oracle acknowledged), Google implemented the declarations using different code.

585 Oracle v. Google, 750 F.3d at 1361, n.6 (some citations omitted).

586 See WEBSTER’S THIRD NEW INTERNATIONAL DICTIONARY 532 (1986) (defining “creative” as
“having the quality of something created rather than imitated or assembled”).

-139-

Figure 4
Oracle’s Closing Argument Slide Deck, Slide 7
java.security ProtectionDomain ClassLoader

-140-

To a lay audience, phrases such as “ProtectionDomain” and “getClassLoader” as well as
mingling of traditional parentheses and curly braces might seem indicative of arbitrary, if not
creative, expression. To the Java API developer and the third-party programmers seeking invoke
particular Java APIs, the names, along with capitalization, define the particular methods that the
virtual machine runs. The curly braces signify that source code follows the declarations
(definitions). Their usage in the way depicted follows the syntactical rules of the Java
programming language. Hence, it is no coincidence that Android contains the identical
declarations as the Java APIs.

As reflected in Figure 10, which sets forth the official Java specification of the
ProtectionDomain class,587 a component of the java.security API, Android programmers copied
the method names necessary to effectuate the java.security functionality. The ProtectionDomain
sub-machine is defined by the particular combination of methods and constructors. Diverging
from a single character (or capitalization) within a declaration renders the particular machine
inoperable. This is no different from having the wrong activation code for the Sega Genesis
platform or using the wrong letters in a Lotus macro.

587 See java.security, Class ProtectionDomain,
https://docs.oracle.com/javase/7/docs/api/java/security/ProtectionDomain.html, in Java™
Platform, Standard Edition 7 API Specification,
https://docs.oracle.com/javase/7/docs/api/overview-summary.html.

-141-

Figure 10
Java™ Platform Standard Edition 7

java.security
Class ProtectionDomain

-142-

Affording copyright protection for a combination of methods and constructors
monopolizes that particular machine or sub-machine. It is for this reason that Congress, through
§ 102(b), and the Supreme Court, through Baker v. Selden, require inventors to meet patent law’s
higher thresholds of novelty, non-obviousness, and disclosure to garner protection for
technological innovation. Furthermore, that protection is limited to 20 years from the filing of
the application. Such limitations promote competition and innovation. Consumers do not become
locked into arbitrary and only minimally innovative platforms and competitors have greater
freedom to expand and improve platforms.

The Federal Circuit’s decision misses the profound wisdom of Baker v. Selden and §
102(b). The panel’s conflation of expressive and technological creativity allows Oracle and other
platform sponsors to control access to technological platforms for what is effectively eternity (95
years for corporate authors) if they satisfy copyright law’s low threshold for protection and there
are multiple ways of achieving the same general functionality of the platform. To the 10 million
Java programmers, having to learn a new programming platform is a substantial impediment to
making the switch to what may be a better platform. It destroys their substantial investment in
human capital and code development. It was that same consideration that made it commercially
important for Borland to implement a feature that would enable macros designed to run on Lotus
1-2-3 to operate on Borland’s Quattro.

The Federal Circuit’s analysis is internally inconsistent. In distinguishing the Lotus case,
the Federal Circuit explains that “the Lotus court found that the commands at issue there (copy,
print, etc.) were not creative, but it is undisputed [in Oracle v. Google] that the declaring code
and the structure and organization of the API packages are both creative and original.”588 Yet
earlier in its opinion, the Federal Circuit explained that the Lotus “menu command hierarchy
referred to a series of commands—such as ‘Copy,’ ‘Print,’ and ‘Quit’—which were arranged
into more than 50 menus and submenus.”589 If, as the Federal Circuit recognized, the creativity
threshold for copyright protection is “not particularly stringent,”590 then the unique selection and
arrangement of hundreds of labels easily clears copyright’s creativity threshold.591 Furthermore,
there are many alternative labels that could be selected, such as “Reproduce” for “Copy” and
“End” for “Quit.” The difference between the First Circuit’s and the Federal Circuit’s analyses is

588 Oracle v. Google, 750 F.3d at 1365.

589 Oracle v. Google, 750 F.3d at 1365.

590 See Oracle v. Google, 750 F.3d at 1354 (quoting Feist Publ’ns, Inc. v. Rural Tel. Serv. Co.,
499 U.S. 340, 358 (1991)); see also Feist, 499 U.S. at 354 (characterizing copyright’s creativity
threshold as “low”).

591 See 17 U.S.C. § 103(a) (extending copyright protection to “compilations”); id. at 101
(defining a “compilation” as “a work formed by the collection and assembling of preexisting
materials or of data that are selected, coordinated, or arranged in such a way that the resulting
work as a whole constitutes an original work of authorship”).

-143-

that the First Circuit recognized that the technological creativity involved in API design is not of
the type that copyright protects and only patent law can protect machine functionality.

Proper application of the idea-expression dichotomy solves the creativity conundrum.
Menu command hierarchies and API designs are technological and hence uncopyrightable–they
are ideas, processes, systems, and methods of operation. They might also be discoveries. The
implementing code for these designs, however, is copyrightable. Java API declarations are
functional specifications that are necessary to achieve particular functionality. Hence, they fall
outside of copyright protection. Only those particular segments of implementing code that are
necessary to accomplish a particular function (i.e., merger) as well as those structural features
that are unoriginal (e.g., copied from others, standard programming techniques (scènes à faire))
or functionally-based (e.g., the most efficient means of coding) are free for others to use.

Thus, for purposes of copyright law, technological creativity differs fundamentally from
expressive creativity. Where a work or element of a work constitutes an “idea, procedure,
process, system, method of operation, concept, principle, or discovery,” no amount of creativity
will suffice to attract copyright protection. That work or element of that work falls outside of
copyright protection.

iv. Overly Rigid Approach to Limiting Doctrines

The Federal Circuit errs by shoehorning analysis of API design into a framework
designed for analyzing copying of software code. As the Lotus court and Judge Alsup
recognized, copyright law does not dictate a monolithic approach. Copyright law has long relied
upon a common law approach for adapting the law to deal with new technologies and other
dynamic considerations.592 The idea-expression dichotomy provides flexibility in the domain of
functional works. Courts need to be sensitive to the technological nuance in applying § 102(b)
and evolving the family of doctrines (merger, scènes à faire, Baker v. Selden, and fair use) on
which it is based.

I confronted a similar challenge two decades ago. As I noted earlier,593 I co-organized an
effort in the late 1980s to identify consensus regarding how copyright law should treat computer
software. My colleagues and I were concerned that several of the early software copyright
decisions misunderstood the nature of computer programming and the economics of software
markets. We convened leading copyright authorities to discuss how traditional copyright
principles, most notably the idea-expression dichotomy and fair use, should apply to computer
software. Our consensus report articulated several principles and ways of addressing particular

592 See Peter S. Menell, The Mixed Heritage of Federal Intellectual Property Law and
Ramifications for Statutory Interpretation, in INTELLECTUAL PROPERTY AND THE COMMON LAW

70 (Shyam Balganesh, ed., 2013).

593 See supra note __.

-144-

issues. Among our recommendations was that the fair use doctrine provided a pathway for
software developers to reverse engineer computer programs to determine how they worked. We
also believed that programmers should be free to develop interoperable computer programs so
long as they wrote their own implementations.

Our work was cited in the parties’ and amici briefs filed in the Altai case.594 That
litigation produced a watershed in the evolution of software copyright doctrine.595 When the Sega
case emerged, we saw an opportunity to bring our insights to the attention of the Ninth Circuit.
Our amicus brief articulated the framework that the court adopted.596

As the Lotus case headed for appeal, a group of copyright law professors circulated a
brief arguing that the Altai framework provided the key to correcting Judge Keeton’s district

594 See, e.g., Brief Amicus Curiae of American Committee for Interoperable Systems, Computer
Associates International, Inc., v. Altai, Inc., No. 91-7893 (U.S. Court of Appeals for the Second
Circuit) (Nov. 27, 1991), 1991 WL 11010231 (C.A.2) (Appellate Brief).

595 While the district court and Second Circuit were receptive to our work, advocates for broad
copyright protection for computer software were critical. See Anthony Clapes, Confessions of an
Amicus Curiae: Technophobia, Law and Creativity in the Digital Arts, 19 U. DAYTON L. REV.
903, 923 (1994). Mr. Clapes, then-Assistant General Counsel at IBM, which had acquired Lotus
Corporation, noted that “[t]he [Altai] court cited only one law review article and one academic
text as sources of criticism of the Third Circuit rule that a program’s structure, sequence, and
organization may be protectable expression. The law review article was written by a well-known
antiprotectionist law professor.” The accompanying footnote states: “In addition to being a
member of the widely criticized LaST Frontier conference steering committee, Professor Menell
is a member of the ‘gang of ten’ law professors who filed amicus briefs in support of copyright
defendants in software copyright cases.” See id., n.81; see also id. at 913, n.23 (“Perhaps
unaware of the peculiar Luddist filter through which Professor Menell looks at the art of
programming, the [Altai] court adopted his views as to the nature of computer programs in whole
cloth.” As the LaST Frontier Conference explains, we sought to achieve balance among the law
professors at the conference and included a wide range of perspectives. See LaST Frontier
Report, supra n. __, at __. Mr. Clapes co-authored the highly imaginative and misleading article
analogizing computer programs to literature and opera. See Anthony L. Clapes, Patrick Lynch, &
Mark R. Steinberg, Silicon Epics and Binary Bards: Determining the Proper Scope of Copyright
Protection for Computer Programs, 34 UCLA L. REV. 1493 (1987) (authored by in-house and
outside counsel for IBM). I did not represent parties in any of this work and was not
compensated for submitting any of these briefs.

596 See Brief Amicus Curiae of Copyright Law Professors, Sega Enters., Ltd. v. Accolade, Inc.,
977 F.2d 1510 (9th Cir. 1992).

-145-

court decision.597 While I applauded the abstraction-filtration-comparison framework as a sound
basis for analyzing the alleged infringement of computer code–and one of my articles was cited
by the Second Circuit opinion–I did not feel that this approach fit the Lotus case. Borland had
not copied the Lotus code but rather had independently implemented the menu command
hierarchy–an API design. The particular structure and function names were required to run
macros written for the Lotus platform. Professor Dennis Karjala and I saw copyrightability, as
opposed to infringement analysis, to be the proper framework for addressing the Lotus case.598

We emphasized the underlying principle of Baker v. Selden as well as the language of § 102(b)
categorically excluding menu command hierarchies from copyright protection. Similarly, the
First Circuit properly distinguished the Altai case as dealing with software code as opposed to
API design.599

597 See Brief Amicus Curiae of Copyright Law Professors, Lotus Development Corp. v. Borland
Int’l, Inc. No. 93-2214 at 33 (Dec. 13, 1993) (arguing that “The Successive Filtering Test For
Infringement Endorsed In Altai Is More Consistent With Traditional Principles of Copyright
Law Than Is The Paperback/Borland Test”), 1993 WL 13624511 (C.A.1) (Appellate Brief).

598 See Brief Amicus Curiae of Professor Dennis S. Karjala and Professor Peter S. Menell, Lotus
Development Corp. v. Borland Int’l, Inc. No. 93-2214 (Dec. 23, 1993), 1993 WL 13624512
(C.A.1) (Appellate Brief), reprinted in Dennis S. Karjala & Peter S. Menell, Applying
Fundamental Copyright Principles to Lotus Development Corp. v. Borland International, Inc.,
10 HIGH TECH. L.J. 177 (1995).

599 See Lotus Development Corp. v. Borland Intern., 49 F.3d 807, 815 (1st Cir. 1995) (recognizing
that

[w]hile the Altai test may provide a useful framework for assessing the alleged
nonliteral copying of computer code, we find it to be of little help in assessing
whether the literal copying of a menu command hierarchy constitutes copyright
infringement. In fact, we think that the Altai test in this context may actually be
misleading because, in instructing courts to abstract the various levels, it seems to
encourage them to find a base level that includes copyrightable subject matter
that, if literally copied, would make the copier liable for copyright infringement.
While that base (or literal) level would not be at issue in a nonliteral-copying case
like Altai, it is precisely what is at issue in this appeal. We think that abstracting
menu command hierarchies down to their individual word and menu levels and
then filtering idea from expression at that stage, as both the Altai and the district
court tests require, obscures the more fundamental question of whether a menu
command hierarchy can be copyrighted at all. The initial inquiry should not be
whether individual components of a menu command hierarchy are expressive, but
rather whether the menu command hierarchy as a whole can be copyrighted.

(footnote and citation omitted)).

-146-

Oracle v. Google is the first litigated copyright case since Lotus to focus specifically on
copyright protection for API design.600 Judge Alsup saw that although the Ninth Circuit had
endorsed the Altai framework for cases involving implementing code, the Oracle v. Google case
required an alternative framework to address API design. He recognized that the Lotus case
provided pertinent analysis and that the Sega case addressed the uncopyrightability of code
necessary for interoperability. His decision thoughtfully combined these elements to produce a
sound framework.601

Beyond the misreading of copyright law and Ninth Circuit jurisprudence, the Federal
Circuit’s elevates wooden rules over the underlying logic of copyright law. The Federal Circuit
builds much of its copyrightability analysis on the notion that merger analysis must be evaluated
at the time that the plaintiff’s work is created, not at the time that the defendant prepares its
allegedly infringing work and that the limiting doctrines only come into play as part of a fair use
defense.602 It supports this proposition by noting that the CONTU Report recognized that the
Copyright Act was designed “to protect all works of authorship from the moment of their
fixation in any tangible medium of expression.”603 While accurate in describing § 102(a), the
statement ignores the comparably important limiting doctrines of § 102(b). As the CONTU
Report recognized later in that same paragraph, the Copyright Act leaves application of the idea-
expression doctrine to the judgment of the courts.604

The scope of protection for computer software brought new issues to the fore. When Sega
developed its lock-out code for Genesis game console, there were no constraints on the arbitrary
string characters that it designated for the key. Just as bank customers are unconstrained in
choosing their PIN codes (within the field constraint of four numbers), Sega was free to choose

600 As noted above, the Sega case addressed this issue as part of a fair use analysis of
intermediate copying of software code. See, supra notes __-__. This API design issue has,
however, arisen in in other litigation contexts, but was not resolved by judicial decisions. As
noted earlier, I advised Sun Microsystems about these issues during their Java-related breach of
contract and copyright infringement litigation with Microsoft in the late 1990s. I also testified
about these issues in an arbitration proceeding applying Ninth Circuit law in 2007. The
arbitration panel interpreted Ninth Circuit law very similarly to Judge Alsup and found the
declaring code (header files) at issue in that case to be uncopyrightable. (I served as a consultant
in the Sun matter and as an expert witness in the Green Hills matter. In contrast to my amicus
briefs, I was compensated by the parties that retained me in these matters. My testimony
reflected my writings on legal protection for computer software.)

601 See Copyrightability Decision, 872 F.Supp.2d at 984-97.

602 Oracle v. Google, 750 F.3d at 1361.

603 See id. (quoting CONTU REPORT at 21).

604 See CONTU REPORT at 21.

-147-

an arbitrary string of letters, numbers, and symbols to lock and unlock its platform. Yet the Ninth
Circuit determined that the lock-out code was unprotectable under § 102(b) because once it was
“created” for use as lock-out code, it became functional.

The First Circuit reached a similar conclusion in the Lotus case. At the time that Lotus
designed its menu command hierarchy for the Lotus 1-2-3 program, there were numerous
options for labeling the functions and countless compilations of function names. Once such
function names were learned by programmers, however, they took on tremendous importance to
the user community. To bestow copyright protection on such a system would potentially confer
tremendous market power over the particular method of operating a spreadsheet due to users’
high switching costs–many had developed sophisticated macros for automating their accounting
and other record keeping. The First Circuit recognized that this issue was best addressed at the
copyrightability stage. Like Selden’s accounting book, Lotus’s spreadsheet program was entitled
to copyright protection at the moment it was created (or in the case of Selden’s book, when the
applicable formalities at the time were met) but the method of operation (like Selden’s
accounting system) remained outside of copyright protection.

Although far more sophisticated than an ATM PIN code, the Genesis lock-out code, or
even Lotus’s multi-level menu command hierarchy, the declarations of the Java APIs similarly
functioned as methods of operating particular digital machines–packages of functions. Judge
Alsup’s focus on § 102(b) and the Lotus court’s framework better addresses the copyright issues
in Oracle v. Google than the Altai framework, which was developed for analyzing copyright
code.

By rigidly focusing on Ninth Circuit cases that treat the merger and scènes à faire
doctrines as defenses to infringement rather than copyrightability doctrines,605 the Federal Circuit
missed the forest for the trees. Section 102(b) can operate as both a threshold doctrine and as part
of the filtration step of infringement analysis. In fact, in the Ets–Hokin case, on which the
Federal Circuit bases its analysis, the Ninth Circuit treats the bottle that is the object of the
photograph in question as uncopyrightable under the useful article doctrine, at a threshold
copyrightability level.606 Copyright law, like the patent law’s non-obviousness doctrine, does not
fit a rigid mold.607

605 The Federal Circuit cites to Ets–Hokin v. Skyy Spirits, Inc., 225 F.3d 1068, 1073, 1082 (9th
Cir. 2000) (involving photography), and Satava v. Lowry, 323 F.3d 805, 810 n.3 (9th Cir. 2003)
(involving glass-encased jellyfish sculptures; holding that “[t]he Ninth Circuit treats scènes à
faire as a defense to infringement rather than as a barrier to copyrightability”).

606 See Ets–Hokin v. Skyy Spirits, Inc., 225 F.3d 1068, 1073, 1080 (9th Cir.2000)

607 Cf. KSR Intern. Co. v. Teleflex Inc., 550 U.S. 398 (2007) (reversing the Federal Circuit for
applying too rigid a test (the teaching-suggestion-motivation requirement) for analyzing patent
law’s non-obviousness doctrine).

-148-

v. Treating API Design as Variable Expression Rather than Unique Function

The root cause of the Federal Circuit’s flawed analysis is its treatment of the set of 37
Java API declarations–what it confusingly called declaring “code”–as software code rather than
as the essential functional specifications for a computer system.608 Such API design defines the
particular data processing capabilities of a particular computing machine and is necessary for
another virtual machine to perform the same processes.

From a copyright standpoint, the critical question is whether a particular set of
instructions, expressed in a particular way, is “the only and essential means of accomplishing a
given task.”609 Alternatively, are these particular instructions, expressed in this particular way,
the only way to effectuate “the actual processes or methods embodied in the program”?610 As
CONTU explained, “one is always free to make a machine perform any conceivable process (in
the absence of a patent)” so long as they don’t “take another’s program.”611 The test is not
whether there are multiple ways of writing code to perform a general purpose. Congress viewed
the idea-expression dichotomy as enabling anyone to build a machine capable of performing any
particular function, including those for which others had written computer code. Under the idea-
expression dichotomy, copyright protection must not lock competitors out of a particular
platform; only patent protection can. Copyright protection can only require that competitors
write their own implementing code. If the only way to achieve such “certain result”612 includes
literally copying even detailed textual-represented information–such as declarations–then
copyright law does not stand in the way.

Google followed this path. It sought to achieve the particular functionalities of 37 Java
API packages. After negotiations to license the Java APIs reached an impasse, Google
independently wrote its own implementing code. Oracle does not dispute that Google needed to
include the particular declarations to make its Android platform perform the particular functions
of the 37 Java APIs. Thus, the Federal Circuit should have affirmed Judge Alsup’s
copyrightability ruling and the case should have ended at that stage.

608 See 750 F.3d at 1368 (“Given the [district] court’s findings that the SSO is original and
creative, and that the declaring code could have been written and organized in any number of
ways and still have achieved the same functions, we conclude that Section 102(b) does not bar
the packages from copyright protection just because they also perform functions.”).

609 See CONTU FINAL REPORT at 20.

610 See H.R. REP. No. 1476, 94th Cong., 2d Sess. at 57.

611 See CONTU FINAL REPORT at 20.

612 As added in the 1980 amendments, the Copyright Act defines a “computer program” as “set
of statements or instructions to be used directly or indirectly in a computer in order to bring
about a certain result.” 17 U.S.C. § 101.

-149-

3. Proper Legal Frameworks for Analyzing Copyright Protection for Computer
Software

“Computer software, by its very nature as written work intended to serve utilitarian
purposes, defies easy categorization within our intellectual property system.”613 Like other useful
articles, computer software combines expressive and functional elements in complex ways.

The nature of computer programming and the economics of software markets were
relatively primitive when Congress brought computer software into copyright law in mid 1970s.
Congress and the CONTU Commissioners articulated general principles for ensuring that
copyright protection would not trench on patent law’s domain in protecting procedures,
processes, systems, methods of operation, and discoveries. Congress tasked the courts with
applying and evolving the idea-expression dichotomy to protect against unwarranted market
power over advances that are subject to patent law’s more stringent requirements and shorter
duration.

Computer software comprises distinct elements or components. The idea-expression
dichotomy provides the principle for distinguishing between unprotectable processes and
protectable expression. After some early missteps, the courts developed a variety of effective
approaches for dealing with a range of software features. The Altai abstraction-filtration-
comparison test provides an effective framework for analyzing copying of software code. The
Sega, Apple v. Microsoft, and Lotus cases provide valuable alternative frameworks for dealing
with software components: code segments necessary for interoperability, graphical user interface
features, and menu command hierarchies.

A key issue is whether to apply the idea-expression dichotomy at the threshold
copyrightability stage, as part of the infringement analysis, or as part of the fair use defense. The
following sections present an overarching framework for applying copyright law to API design
elements, software code, and other software elements.

i. API Design

The declarations of an API package serve as the functional specifications of the computer
program or computer program module. They specify the function prototypes614–function names
and signature (arity615 (number of arguments (independent variables) which the function takes),
parameter types, and return types)–of the computer program. This information defines function
names, characteristics (data types that go in and come out of the functions), and syntax. If this
precise textual information is essential to a machine performing specific processes or methods,

613 See Menell, supra n.__, at 46.

614 See Function prototype, https://en.wikipedia.org/wiki/Function_prototype.

615 See Arity, https://en.wikipedia.org/wiki/Arity.

-150-

then they fall outside of the scope of copyright protection.616 This is not a question of merger. It
is a question of whether the subject matter is categorically excluded as a process or method of
operation.

The separability doctrine used to analyze copyright protection for pictorial, graphic, and
sculptural (“PGS”) works provides a useful model for applying the idea-expression dichotomy to
API declarations. Courts must determine whether the expressive features of a PGS work–such as
a ribbon-shaped bicycle rack617–“can be identified separately from, and are capable of existing
independently of, the utilitarian aspects of the article.”618 As the House Judiciary Committee
explained,

athough the shape of an industrial product may be aesthetically satisfying and
valuable, the Committee’s intention is not to offer it copyright protection under
the bill. . . . The test of separability and independence from ‘the utilitarian aspects
of the article’ does not depend upon the nature of the design–that is, even if the
appearance of an article is determined by esthetic (as opposed to functional)
considerations, only elements, if any, which can be identified separately from the
useful article as such are copyrightable.619

Courts make this determination at the copyrightability stage of analysis.620 Only if there are
expressive elements that are separable from the utilitarian attributes of the useful article does the
court proceed to the infringement stage of analysis.

API declarations entail the same basic inquiry–can the textual information in an API
header be distinguished from the utilitarian aspects of the API package? The idea-expression
dichotomy means that “the actual processes or methods embodied in the program are not within
the scope of the copyright law.”621 If the declarations of an independently written program must
contain the precise textual formation in the plaintiff’s program, then those features of the

616 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 57 (“Section 102(b) is intended, among other
things, to make clear that the expression adopted by the programmer is the copyrightable
element in a computer program, and that the actual processes or methods embodied in the
program are not within the scope of the copyright law.”)

617 See e.g., Brandir International, Inc. v. Cascade Pacific Lumber Co., 834 F.2d 1142 (2d Cir.
1987).

618 See 17 U.S.C. § 101 (definition of “pictorial, graphic, and sculptural” works).

619 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 55.

620 See Brandir, 834 F.2d at 1143-48.

621 See H.R. REP. NO. 1476, 94th Cong., 2d Sess. at 57.

-151-

program are excluded from copyright protection. It does not matter that the declarations may be
compiled or structured in a “creative” manner. Other programmers are free to copy them if they
are needed to effectuate particular processes or methods, just as sculptors are free to create
ribbon-shaped bicycle racks if the utilitarian features are inseparable from the expressive design
elements. There is no need to engage in infringement analysis in such cases.

Oracle’s comparison of API declarations to chapters in HARRY POTTER novels622

fundamentally misapprehends the idea-expression dichotomy. The book chapter titles and topic
sentences do not operate a machine. By contrast, the Java API declarations define the gears and
levers of a virtual machine. Without them, no one else can create a machine that performs the
same processes or methods. Oracle’s suggestion that “tapp[ing] into the Harry Potter fan base”
by copying book chapter titles and topic sentences623 is analogous to copying API design misses
this key point. The chapter titles and topic sentences of a novel do not control any particular
machine or impinge upon technological freedom. Section 102(b) excludes processes and
methods of operating machines from copyright protection, not detailed plot outlines and non-
functional expressive text.

Nonetheless, § 102(b) does not categorically exclude the code implementing API
declarations, although it limit some elements and affects the scope of protection for such code.
The next section explores those issues.

ii. Computer Code

The code implementing the Java APIs is copyrightable. To prevail in an infringement
action, the copyright owner must prove both factual and legal copying. The requirement that the
plaintiff prove that the defendant actually copied the protected work opens up the possibility that
a defendant can avoid infringement by independently writing a computer program that will
accomplish the same functions as the plaintiff’s copyrighted implementation code. If, however,
the defendant copies some of the plaintiff’s implementing code, a court must evaluate whether
the defendant’s program is substantially similar to the plaintiff’s protected expression.

 a. Independent Creation

Unlike patent law, which does not require any proof that a defendant knew of or copied
the patentee’s invention,624 copyright law requires either direct or inferential from which the

622 See, supra TAN __.

623 See Opening Brief and Addendum of Plaintiff-Appellant, Oracle America, Inc. v. Google,
Inc., U.S. Court of Appeals for the Federal Circuit, No. 2013-1021, -1022, 12-13, 1 (Feb. 11,
2013).

624 See Jurgens v. CBK, Ltd., 80 F.3d 1566, 1570 n.2 (Fed. Cir. 1996) (characterizing patent
infringement as a strict liability tort); Robert P. Merges, A Few Kind Words for Absolute

-152-

court can find that actual copying occurred.625 Thus, a defendant can successfully defend a
copyright lawsuit by proving that the author of the defendant’s work had no knowledge of the
plaintiff’s work, i.e., that the defendant’s work was independently created.

The notion that a sophisticated expressive work could be independently created seems
fanciful in many fields of creative endeavor. As Learned Hand whimsically posited to illustrate
the doctrine, “if by some magic a man who had never known it were to compose anew Keats’s
Ode on a Grecian Urn, he would be an ‘author,’ and, if he copyrighted it, others might not copy
that poem, though they might of course copy Keats’s.”626

In the realm of computer programming, however, no magic is required–just
time-consuming and painstaking work. Skilled programmers with no knowledge of the
implementing code of a preexisting (and copyright-protected) computer program can
independently develop a computer program with the same functionality if they have the same
functional specifications. As § 102(b) and the Sega case hold, such functional specifications as
well as code that is uniquely required to accomplish a particular task, are not protected by
copyright law and hence can be used by independent code developers. They can be passed along
to the clean room programmers.

As noted earlier,627 it was through such a process that IBM lost its hold on the early
microcomputer industry. Phoenix Technologies successfully implemented an IBM-compatible
Basic Input Output System (BIOS) using a “clean room” process.

Phoenix’s clean room approach consisted of an engineering team in Texas that
examined the BIOS software documented in IBM’s Technical Reference manual,
and wrote a set of specifications that described how the program functioned,
without including any actual examples of IBM code. These specifications were
given to a single programmer in Massachusetts who had no experience with the
IBM’s microprocessor. Another Phoenix employee acted as a gatekeeper to route
formal questions so as to ensure that the engineers in Texas did not give the
programmer in Massachusetts any material that might infringe IBM copyrights.
‘A third group tested the Phoenix software against a variety of programs that ran
on IBM's computer.’ Phoenix engineers created an evidentiary audit trail nearly
five thousand pages long to document the process in the event that they were

Infringement Liability in Patent Law, 31 BERKELEY TECH. L.J. 1, 3 (2016) (explaining that “[i]t
is irrelevant under current [patent] law whether the defendant actually copied the patentee’s
technology”).

625 See Arnstein v. Porter, 154 F.2d 464 (2d Cir. 1946).

626 See Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 54 (1936).

627 See, supra n.__.

-153-

challenged in an infringement suit. Phoenix also took sworn affidavits that its
programmer had never seen the source code for IBM BIOS and even offered IBM
a chance to examine their code. Phoenix had been so thorough that IBM has never
challenged them in court.628

The “clean room” process was formalized during the first wave of copyright litigation as
a means of developing interoperable software. The network effects driving software users and
programmers made interoperability critical to competition in the software industry. Nearly every
major litigation from Apple v. Franklin in 1983 through the Oracle v. Google litigation involves
interoperability issues.

As illustrated in Phoenix Technologies’ successful emulation of the IBM PC BIOS,
enterprises during the first API copyright wave faced two challenges in developing interoperable
software: (1) discerning the functional specifications of the target computer program or system;
and (2) independently developing interoperable software.629

The clean room process typically involves three teams of engineers and legal specialists.
The first team–referred to as the “specification” or “dirty room” team–works with the target
software to determine the functional specifications.630 It was initially unclear whether these
programmers could make copies of target program code for the purpose of deciphering
functional specifications. Sega targeted that intermediate copying because the software that
Accolade ultimately manufactured and distributed in its video games only copied unprotectable
code elements required for interoperating with Sega’s console. The Ninth Circuit’s decision in
the Sega case established that the intermediate copying by the “dirty room” team constituted fair
use.

A second “coordination” or “audit” team, comprising attorneys and engineers, establishes
clear ground rules for managing the clean room process, screens programmers for the “clean
room” team so as to ensure they have never seen the copyright-protected code, documents the
activities and communication of the “dirty room” and “clean room” teams, oversees the process,

628 See Russell Moy, A Case Against Software Patents, 17 SANTA CLARA COMPUTER & HIGH

TECH. L.J. 67, 72-73 (2000) (footnotes and omitted).

629 See generally P. Anthony Sammi, Christopher A. Lisy, & Andrew Gish, Good Clean Fun:
Using Clean Room Procedures in Intellectual Property Litigation, 25 No. 10 INTELL. PROP. &
TECH. L.J. 3 (2013); Jorge Contreras, Laura Handley, & Terrence Yang, NEC v. Intel: Breaking
New Ground in the Law of Copyright, 3 HARV. J.L. & TECH. 209 (1990); G. Gervaise Davis III,
Scope of Protection of Computer-Based Works: Reverse Engineering, Clean Rooms and
Decompilation, in 370 Computer L. Inst., 115 (PLI Patents, Copyrights, Trademarks, and
Literary Property Practice Course Handbook Series No. G-370, 1993).

630 See Duncan M. Davidson, Reverse-Engineering of Software in COMPUTER SOFTWARE 1989:
PROTECTION MARKETING, 95-114 (1989).

-154-

and advises on what constitutes functional specifications and how to determine code segments
that are unprotectable–e.g., unoriginal, standard programming practices, and necessary for
interoperability or to accomplish specific processes or methods.631 The coordination team seeks
to ensure that no copyright-protected expression or trade secrets get communicated to the clean
room team.632 It is only after those checks are completed that the process of independently
coding an interoperable program commences.

The functional specifications detailing the particular processes or results that the target
program accomplishes is then passed to the “clean room” team of programmers. This team
remains shielded from the copyright-protected code. This team designs, writes, and tests code
aimed at accomplishing the target functional specifications.

In the second API copyright wave, the first stage of the process is not required because
platform companies like Sun and Cisco publish their interface specifications–API
declarations–in an effort to encourage widespread learning and use their programming language
and platforms. Hence, Google could go directly to the second stage. But even that was costly and
time consuming.633

Oracle challenged the authenticity of Google’s clean room process during the first trial,
but their evidence of “cheating” was weak.634 Thus, since Google succeeded in its independent
creation defense regarding the implementing code, the litigation should have ended without any
need for a fair use defense.

 b. Abstraction-Filtration-Comparison

631 See Marc Visnick, Forensic Code Audits: Sometimes GPL Can Be A Four-Letter Word, in
OPEN SOURCE SOFTWARE, 2005: CRITICAL ISSUES IN TODAY’S CORPORATE ENVIRONMENT, at
354-55 (PLI Intellectual Property, Course Handbook Ser. No. G-846, 2005); Norm Alster, New
Profits from Patents, FORTUNE, April 25, 1988, at 185, 190); Steven Burke, Court Support of
‘Clean Room’ Cloning May Legalize Intel ‘386 Chip Work-Alikes, P.C. WEEK, February 27,
1989 at 63; Douglas K. Derwin, Licensing Software Created Under ‘Clean Room’ Conditions, in
COMPUTER SOFTWARE 1989: PROTECTION AND MARKETING 439, 448-49 (1989).

632 Clean room processes are also increasingly used to ensure that software does not become
“infected” with open source code subject to viral licensing requirement–most notable, the GNU
General Public License. See HEATHER MEEKER, OPEN SOURCE FOR BUSINESS: A PRACTICAL

GUIDE TO OPEN SOURCE LICENSING, chs. 8, 9, 10, 12 (2015); David A. Wormser, Open-Source
Software: The Value of ‘Free,’ 22 INTELL. PROP. & TECH. L.J. 22 (2010); Ryan Paul, Surveys
Show Open Source Popularity on the Rise in Industry, ARS TECHINCA (Jan. 20, 2006),
http://arstechnica.com/uncategorized/2006/01/6017-2/.

633 See, supra, TAN __-__.

634 See <pre-trial briefing>.

-155-

Even if factual copying is conceded or proved, the copyright owner must further establish
that the amount and significance of copying exceeds copyright law’s infringement threshold.
This standard is typically stated as substantial similarity of protected expression,635 although
some courts apply a higher “virtual identity” or “bodily appropriation” standard where the
plaintiff’s work is very simple and hence only narrowly protected.636

Even without using a formal clean room process, software developers often integrate pre-
existing pieces of software code–both intentionally and unintentionally. Companies often hire
programmers from other companies who bring code with them.637 Programmers often find useful
code through Internet searches and integrate that code into their projects. In addition,
programmers use standard coding techniques and logical structures that can produce similarities.

The Altai court developed a principled, systematic framework for determining copyright
infringement of computer software code.638 It adapted Judge Learned Hand’s classic levels of
abstraction/limiting doctrines framework639 to the computer software medium. Applying this test
often requires expert witnesses to explain computer programming design, languages, standard
practices, and the various constraints.

The abstraction-filtration-comparison framework can come into play where the alleged
infringer has used a clean room. Like a court deciding copyright infringement of software code,
the coordination team of a clean room process must make calls about what elements of a target
program are unprotected. As the Altai court noted, “[d]rawing the line between idea and

635 See NIMMER ON COPYRIGHT § 13.03[A].

636 See Harper House, Inc. v. Thomas Nelson, Inc., 889 F.2d 197 (9th Cir. 1989) (visual layout of
a day planner comprised of a calendar and ruled lines); see also Mattel, Inc. v. MGA Entm’t, Inc.,
616 F.3d 904 (9th Cir. 2010) (“sculpt” for human-based dolls); Charles W. Ross Builder, Inc. v.
Olsen Fine Home Bldg., LLC, 827 F. Supp.2d 607, 611-12 (E.D. Va. 2011) (architectural works
in which “nearly every design element of the two houses at issue” was dictated by external
constraints for Colonial Williamsburg), vacated, 496 Fed.Appx. 314 (4th Cir. 2012); Incredible
Technologies, Inc. v. Virtual Technologies, Inc., 400 F.3d 1007 (7th Cir. 2005) (visual elements
of a golf video game); Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435 (9th Cir. 1994)
(largely unoriginal (and licensed) graphical office icons); Satava v. Lowry, 323 F.3d 805 (9th
Cir. 2003) (a jellyfish sculpture encased in a domed glass cylinder).

637 See, e.g., TAN __-__ <discussing Whelan case>; TAN __-__ <discussing Altai case>; TAN
__-__ <discussing Johnson Controls case>.

638 See Computer Associates International, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992).

639 See Nichols v. Universal Pictures Corp., 45 F.2d 119 (2d Cir. 1930).

-156-

expression is a tricky business.”640 The coordination team must apply various complex copyright
doctrines, such as originality, merger, scènes à faire, and the § 102(b) exclusions. Thus, as in the
Altai case, the plaintiff may challenge the legitimacy of the independent creation defense by
alleging that protected literal code or non-functional SSO made it across the transom to the clean
room and into the final product.

iii. Other Software Elements

Computer software can involve a variety of other potentially copyrightable elements.
Many software programs include textual elements, including programmer comments, and audio-
visual elements. Web sites feature expressive design elements and compilations of elements,
some of which are functional. Most forms of conventional copyrightable works–books, pictorial
and graphic images, music, motions pictures–are distributed through digital media and websites
and hence are embedded within software. Graphical user interfaces, such as desktop icons, have
compilations of pictorial elements.641 Sculptural works can be represented as three-dimensional
computer-aided design files.642

Copyright applies to the literary, PGS, musical, and other works embedded in software to
the same extent and in the same manner that it would apply to these works in analog form. The
software encoding the works may be derivative works to the extent that they translate, recast, or
transform the preexisting underlying work.

* * * * *

The Oracle v. Google litigation highlights the pitfalls of a monolithic, one-size-fits-all
approach to copyright protection of computer software. Many of the problems with the Federal
Circuit’s analysis trace to its treating declaring code as protectable expression as opposed to the
functional specifications for a particular machine. By reimplementing that code in a clean
room–i.e., without copying, but rather independently producing a code set that achieves the same
functions as the Java APIs–Google steered clear of infringing copyright in the Java API
components.

 B. Policy Analysis

This Section assesses the extent to which the proper legal framework for copyright

640 See Computer Associates International, Inc. v. Altai, Inc., 982 F.2d 693, 704 (2d Cir. 1992)
(noting that “[d]rawing the line between idea and expression is a tricky business”).

641 See Apple Computer, Inc. v. Microsoft Corp., 799 F.Supp. 1006 (N.D. Cal. 1992), aff’d in
part, rev’d in part, 35 F.2d 1435 (9th Cir. 1994).

642 See Haritha Dasari, Note, Assessing Copyright Protection and Infringement Issues Involved
with 3D Printing and Scanning, 41 AIPLA Q.J. 279 (2013).

-157-

protection for computer software, as articulated in Section III(A)(3), comports with policy
analysis. Section 1 presents an economic framework for analyzing legal protection for computer
software. Section 2 traces the evolution of software markets. Section 3 explains that the proper
legal framework for copyright protection for computer software best promotes software
innovation and competition. Section 4 discusses the problems that the Oracle v. Google decision
poses for achieving the proper copyright balance.

1. Economic Analysis of Legal Protection for Computer Software

Economic analysis of legal protection for computer software addresses two market
failures: (i) the public problem associated with technological innovation; and (ii) network effects
associated with network technologies.643

 i. The Public Goods Problem

Competitive markets generally provide an efficient allocation of resources when all of the
costs and benefits of producing and distributing goods and services are reflected in market
prices.644 The government need only secure economic exchange through protection of private
property and effective contract enforcement to promote economic efficiency. It is only when
costs or benefits of producing and distributing goods are not fully reflected in market prices,
such as when factories emit pollution without bearing the full social cost, that additional
government intervention may be necessary to better promote economic efficiency.

Markets for many basic commodities, such as wheat, function relatively well without
significant government intervention.645 By contrast, markets for goods embodying intellectual
work exhibit a significant market failure commonly referred to as the “public goods” problem.646

Economists use the term “public goods” to describe goods that confer benefits upon the general
public without individual members of the public having to pay for the goods. Classic examples
include national defense and lighthouses. Public goods have two distinguishing features: (1)
nonexcludability—it is difficult to exclude those who do not pay for the good from consuming it;
and (2) nonrivalrous competition—additional consumers of the good do not deplete the quantity
of the good available to others. A lighthouse warns all ships of rocky shoals whether or not they

643 See Menell, supra note __ <Tailoring Legal Protection>.

644 See generally PAUL A. SAMUELSON & WILLIAM D. NORDHAUS, ECONOMICS (12th ed. 1985).

645 Even wheat markets, however, may require some government intervention. For example,
there may be concerns about food safety.

646 See Peter S. Menell & Suzanne Scotchmer, Intellectual Property Law, in 2 HANDBOOK OF

LAW AND ECONOMICS 1474 (A. Mitchell Poninsky & Steven Shavell eds., 2007). Even wheat
markets may be affected by innovation. For example, scientists might be able to improve wheat
crops through plant breeding.

-158-

have paid for the service; and one ship’s “enjoyment” of the lighthouse beacon does not diminish
other ships’ benefit of the warning. Although the private market can generate some investment in
building warning beacons,647 it is likely to be less than the optimal level.648

The research and development involved in technological innovation or the words of a
novel falls within the public goods domain. Without some special form of legal protection, such
intellectual work is nonexcludable–competitors can copy the innovation (a better mouse trap) or
literary work (a Harry Potter novel) without bearing the costs of research and development.
Furthermore, knowledge is nonrivalrous–an individual’s enjoyment of the innovation or literary
work does not reduce the availability of the good to others. Free markets will compete the price
of the good to the marginal cost of production and distribution without taking into consideration
the costs of research and development. As a result, the private market will tend to undersupply
these goods because producers cannot reap the marginal (incremental) value of their investment
in providing such goods.649

The provision of intellectual property protection can address the public goods problem
associated with innovation and expressive creativity. By affording exclusive rights to inventions
and writings, the government enables inventors and authors to appropriate a return on the
investments in research and development.

Such protection, however, imposes several social costs upon consumers, competitors, and
other inventors. Intellectual property enables inventors and authors to charge more than the
marginal cost of supplying goods, thereby raising prices and resulting in what economists refer
to as “deadweight loss”–an equilibrium in which some consumers who are willing to pay more
than the marginal cost of a product are priced out of the market.

Monopolistic exploitation distorts market pricing in the short run and can significantly
affect entry and cumulative innovation over longer time horizons. Exclusive use of patented
technology can inhibit cumulative inventors who seek to improve upon patented technology.
Historical and industry studies of the innovation process find that inventions are highly
interdependent: “Technologies . . . undergo a gradual, evolutionary development which is

647 See Ronald H. Coase, The Lighthouse in Economics, 17 J. L. & ECON. 357 (1974)
(challenging the traditional view that lighthouses are examples of public goods by showing that
privately owned lighthouses existed in England); see also William Barnett & Walter Block,
Coase and Van Zandt on Lighthouses, 35 PUB. FIN. REV. 710 (2007) (contending that private
lighthouses are possible and could obtain fees through voluntary clubs and turning off the light
to free riders).

648 See Elodie Bertrand, The Coasean Analysis of Lighthouse Financing: Myths and Realities, 30
CAMBRIDGE J. ECON. 389 (2006); David E. Van Zandt, The Lessons of the Lighthouse:
‘Government’ or ‘Private’ Provision of Goods, 22 J. LEG. STUD. 47 (1993).

649 See Menell & Scotchmer, supra note __, at ___.

-159-

intimately bound up with the course of their diffusion.”650 In fact, “secondary
inventions”—including essential design improvements, refinements, and adaptations to a variety
of uses—are often as crucial to the generation of social benefits as the initial discovery.651

Although licensing can alleviate this concern, licensing can entail significant transaction costs.

Furthermore, the costs of determining the existence and scope of intellectual property
rights can hinder competition and cumulative innovation.652 In addition, administering
intellectual property regimes and adjudicating disputes further contributes to social cost.

Thus, the desirability and contours of intellectual property protection depend upon a
balancing of social benefits and costs as well as consideration of alternative ways of promoting
innovation and creativity.

Where the innovative aspect of a product can be hidden from public view–for example,
through encryption or contractual restrictions–the innovators can appropriate a direct return for
research and development from direct consumers. Trade secret protection complements and
reinforces this appropriation strategy. While secrecy will not work for book authors who must
expose their creative product to the public for consumers to enjoy their works, secrecy has been
successfully used in various sectors of the software where the source code can be hidden from
view. For example, Google is able to protect its core search technology by only returning search
results to users. World of Warcraft is able to charge consumers directly for access to its online
multi-player gaming platform through subscription fees.

Software producers can use technological means for preventing those who do not pay for
the good from enjoying the benefits. For example, anti-copying devices can impede reproduction
and disclosure of intellectual work embodied in products.

Beyond secrecy and technical protection measures, the first to introduce a product into
the marketplace can in some contexts earn substantial and long-lived advantages in the market.
Competitors in many product and service areas will need some time to ramp up their supply,
thereby enabling first-movers to front-run competition and be able to charge above marginal cost
until the competition catches up and possibly longer. Moreover, innovative companies can
develop a strong reputation for innovation, which can translate into loyal customers who are

650 Id. at 384. See generally Nathan Rosenberg, Factors Affecting the Diffusion of Technology,
10 EXPLORATIONS ECON. HIST. 3 (1972).

651 See, e.g., John L. Enos, A Measure of the Rate of Technological Progress in the Petroleum
Refining Industry, 6 J. INDUS. ECON. 180, 189 (1958); James Mak & Gary M. Walton,
Steamboats and the Great Productivity Surge in River Transportation, 32 J. ECON. HIST. 619,
625 (1972).

652 See Peter S. Menell & Michael J. Meurer, Notice Failure and Notice Externalities, J. LEG.
ANAL. 1 (2013).

-160-

willing to pay premium prices. In this way, trademark protection reinforces the economic return
of innovative first-movers.

First-movers can capitalize on their market-leading position by continuing to upgrade
their products. This is a common strategy in the software marketplace. First-movers can also
develop long-term relationships with customers, thereby ensuring a steady revenue flow. They
can also deepen these relationships through service contracts and by customizing products and
services for particular customers.

Companies can also subsidize their research and development by developing ancillary
means of appropriation for research and development. Television and radio networks funded
development of content by interleaving commercial advertisements. Such multi-sided market
strategies have proven especially effective in many software industries. Sun Microsystems, for
example, used Java to support its hardware business and licensing platform products that build
on the Java language. Google successfully underwrote its search engine by developing a
successful and innovative advertising business.

Government research and development subsidies have been extremely important in the
development of computer technology. Moreover, universities, whose work product is often in the
public domain, have played an important role in the development of computer technology.

The linkage between intellectual property protection and social welfare is greatly
complicated in markets for products in which innovation occurs at many stages. What ultimately
determines the social value of technological progress is the speed at and extent to which new,
improved, and less expensive products are available. The number and type of individual
technological innovations at particular intermediate stages are important, but no more important
than the pattern of adoption and diffusion of these innovations.653

These interactions have been and continue to be particularly important in the evolution of
computer technology. Advances in computer technology are made at many interrelated
levels—basic research, hardware and devices, operating systems, program languages, APIs,
application programming, network design, security—by diverse individuals, firms, and research
institutions. It cannot be assumed automatically, therefore, that expansive legal protection for
intellectual property at any one level will generate both the optimal amount of innovation and the
optimal diffusion path.

 ii. Network Externalities

The second principal market failure in the computer software market arises from the

653 See Paul A. David, New Technology Diffusion, Public Policy, and Industrial Competitiveness,
in RALPH LANDAU AND NATHAN ROSENBERG (EDS.), THE POSITIVE SUM STRATEGY:
HARNESSING TECHNOLOGY FOR ECONOMIC GROWTH (1986).

-161-

presence of network externalities. Network externalities exist in markets for products for which
the utility or satisfaction that a consumer derives from the product increases with the number of
other consumers of the product.654 Telephone networks illustrate the phenomenon. The benefits
to a person of a particular network depend on the number of other people connected to that same
telephone network; the more people on the network, the more people each person can call and
receive calls from. Robert Metcalfe, one of the inventor’s of Ethernet technology,655 estimated
that the value of a telecommunications network is proportional to the square of the number of
connected users of the system.656

Another classic network externality flows from the prevalence of a standard typewriter
keyboard.657 Because almost all English language typewriters feature the same keyboard
configuration, commonly referred to as “QWERTY,” typists need learn only one keyboard
system. Languages–from human to programming–also generate network effects. They enable
communication, expression, and accomplishment of tasks.

Network externalities also inhere in product standards that allow for the
interchangeability of complementary products and communication among devices.658 Computer
operating systems provide a compatibility nexus for interaction the components of a computer
system. The IBM BIOS, for example, established the protocols for using the IBM personal
computer system. Sega programmed its Genesis video game console to run only those video
game disks with a key for the lock-out code. Macros written for the Lotus 1-2-3 spreadsheet will
only run on computer systems that recognize Lotus’s menu command hierarchy. The
declarations of the Java API packages enable particular API functionality. These codes and
functional specifications control interoperability and particular functionality.

Consumers benefit when they and their devices, systems, and programs “speak” the most
widely adopted platform–the lingua franca–or can translate that code into language that their
devices understand. This often provides for greater functionality, such as more software that will

654 See Michael Katz & Carl Shapiro, Network Externalities, Competition, and Compatibility, 75
AM. ECON. REV. 424 (1985); DAVID HEMENWAY, INDUSTRYWIDE VOLUNTARY PRODUCT

STANDARDS (1975).

655 Ethernet technology connects computers into a network. Its cables and software were
standardized in the 1980s and became the foundation for many important advances in network
technologies, including the Internet.

656 See Metcalfe’s law, https://en.wikipedia.org/wiki/Metcalfe%27s_law.

657 See Paul A. David, Clio and the Economics of QWERTY, 75 AM. ECON. REV., May 1985, at
332 (Vol. 75, No. 2, Papers and Proceedings of the 97th Annual Meeting of the American
Economic Association).

658 See HEMENWAY, supra n.__.

-162-

run on their platform, and larger communication networks. At the same time, widely adopted
product standards can strand the industry on an obsolete platform.659 Consumers dislike the
switching costs of learning new tools and languages. We often need strong reasons to jettison our
well-worn devices and software tools for the less familiar. But occasionally, break-through
products and software–such as versatile smartphones–can win us over.

Thus, the installed base built upon the dominant platform—reflected in durable goods
and human capital (training) specific to the old standard—can create an inertia that makes it
much more difficult for any one producer to break away from the old standard by introducing a
noncompatible product, even if the new standard offers a significant technological improvement
over the current standard.660 In this way, network externalities can retard innovation and slow or
prevent adoption of improved product standards.661

Thus, companies seeking to leapfrog a widely adopted standard face substantial risk.
They must not only invent an improved platform but they must also devise and execute a
successful strategy to migrate consumers from the dominant platform. They also face the
challenge of encouraging other software and complementary product developers to build for the
new platform. One strategy is to steeply discount the costs of the new platform or to give access
away for free. This is not a sustainable strategy unless the platform developer has ancillary
revenue streams to cover their research, development, product, and support costs.

Another strategy is to build a convenient bridge over which consumers can easily migrate
to and become accustomed to a new platform. Borland’s motivation for building the Lotus 1-2-3
emulation mode was to support such migration. Java’s “Write Once, Run Anywhere” approach
provided programmers with the ability to write web applications that could run on multiple
hardware platforms.

A third strategy is to coordinate with other companies to jointly develop and market a
new platform.662 Standard setting organizations play an important role in overcoming bandwagon

659 See Joseph Farrell & Garth Saloner, Standardization, Compatibility, and Innovation, 16 RAND

J. ECON. 70 (1985).

660 See HEMENWAY, supra note __, at 30, 39; Joseph Farrell & Garth Saloner, Installed Base and
Compatibility: Innovation, Product Preannouncements, and Predation, 76 AM. ECON. REV. 940,
940 (1986); Farrell & Saloner, supra note __, at 71-72, 75-79.

661 See Farrell & Saloner, supra note __, at 75-79.

662 See Timothy Simcoe, Standard Setting Committees: Consensus Governance for Shared
Technology Platforms, 102 AMER. ECON. REV. 305 (2012); Joseph Farrell and Timothy Simcoe,
Choosing the Rules for Consensus Standardization, 43 RAND J. ECON. 235 (2012); Stanley
Besen & Joseph Farell, Choosing How to Compete: Strategy and Tactics in Standardization, 8 J.
ECON. PERSPECTIVES 117 (1994); Joseph Farrell & Garth Saloner, Coordination Through

-163-

effects. They also facilitate cross-licensing and fair licensing of intellectual property rights.663

Intellectual property protection both contributes to and alleviates the network externality
dilemma. On the one hand, intellectual property protection for the network features of computer
technology can discourage realization of positive network externalities by limiting access to
network technologies. The intellectual property owner can exclude competitors or charge a
licensing fee for access, thereby raising costs. The intellectual property owner can also limit
innovation. On the other hand, intellectual property protection can provide valuable incentives
for overcoming bandwagon effects that entrench obsolete platforms.664 Without the potential for
a large reward, the platform innovator might not be able to surmount the technological and
marketing challenging of leapfrogging the dominant platform.

As I explored in my early scholarship, the optimal design of intellectual property
protection for addressing the network externality challenge is to protect the functional features of
computer software under a limited patent-type regime, although with shorter duration and more
flexibility to gain access to platforms that become widely adopted.665 I advocated a genericide-
type doctrine666 which could protect emerging platforms but give way to broader access when a
platform becomes dominant and risks affording the proprietor the ability to leverage that control
to hinder cumulative innovators. This analysis anticipated Microsoft’s rise and its abusive
market tactics in undermining Netscape and Sun.667 As the same time, I opposed copyright

Committees and Markets, 19 RAND J. ECON. 235 (1988).

663 See Jorge Contreras, Patents, Technical Standards and Standards-Setting Organizations: A
Survey of the Empirical, Legal and Economics Literature, in RESEARCH HANDBOOK

ON THE ECONOMICS OF INTELLECTUAL PROPERTY LAW VOL. 2–ANALYTICAL METHODS (Peter S.
Menell & David Schwartz (eds.) (forthcoming 2017); Jorge Contreras, A Brief History of
FRAND, 80 ANTITRUST L.J. 39 (2015); Mark A. Lemley, Intellectual Property Rights and
Standard-Setting Organizations, 90 CAL. L. REV. 1889 (2002).

664 See Menell, Tailoring, supra note __, at 1343.

665 See Menell, Tailoring Legal Protection for Computer Software, supra note __, at 1364-66.

666 See Menell, An Analysis of the Scope of Copyright Protection for Application Programs,
supra note __, at 1101. Under trademark law, a trademark can lose protection if it becomes
associated in the public’s mind with a category of product rather than the source of a particular
brand of the product. See, e.g., The Murphy Door Bed Co., Inc. v. Interior Sleep Systems, Inc.,
874 F.2d 95 (2d Cir. 1989) (“Murphy bed” for a bed that folds up into a wall cabinet); Miller
Brewing Co. v. Falstaff Brewing Corp., 655 F.2d 5 (1st Cir. 1981) (‘Lite’ beer); King-Seely
Thermos Co. v. Aladdin Indus., Inc., 321 F.2d 577 (2d Cir. 1963) (“Thermos”vacuum insulated
bottle).

667 See, supra TAN __-__.

-164-

protection for the functional and interoperable aspects of computer technology so as to avoid
large returns to first movers that win a standards battle without offering significant technological
innovation and to afford competitors to use and build on unpatented methods of operation.

These ideas were referenced in the Apple v. Microsoft litigation,668 where Apple sought to
leverage its early lead in graphical user interface to control valuable, but largely unoriginal,
interface features. They were also discussed by the Altai court in developing the abstraction-
filtration-comparison framework for ensuring that copyright protection does not extend to the
functional features of computer software.669 Similarly, the Lotus court recognized the importance
for competition and innovation of original developers and competitors being able to use and
build upon unpatented methods of operation.670

The next section explores how the evolution of software markets over the past two
decades has added to our understanding of the proper role for intellectual property protection of
network and functional features of computer software.

2. The Evolution of Software Markets

The first API copyright wave developed during a formative stage of the software industry
during which the scope of copyright protection was uncertain, the programmer-driven open
source movement was in its infancy, and the Internet had not yet emerged. Established
companies, venture capitalists, and entreprenuers looked primarily to proprietary strategies to
appropriate a return on their investments in research and development. They saw strong legal,
technological, and contractual protection for APIs–which control the network features of
products–as critical to building their software kingdoms.671 One entrepreneur from this era
analogized creating an API to building a city:

First you try to persuade applications programmers to come and build their
businesses on [your tract of land]. This attracts users, who want to live there
because of all the wonderful services and shops the programmers have built. This
in turn causes more programmers to want to rent space for their businesses, to be

668 See Apple Computer, Inc. v. Microsoft Corp., 799 F.Supp. 1006, 1025 (N.D. Cal. 1992), aff’d
in part, rev’d in part, 35 F.2d 1435 (9th Cir. 1994).

669 See Computer Associates Int’l v. Altai, Inc., 982 F.2d 693, 697-98, 705, 708, 712 (2d Cir.
1992).

670 See Lotus Development Corp. v. Borland Intern., 49 F.3d 807, 818 (1st Cir. 1995); see also id.
at 819-21 (Boudin, J., concurring).

671 See JERRY KAPLAN, STARTUP 49-50 (1995) (explaining that “‘our value is the APIs”’ and
“[t]he real wars [in the computer industry] are over control of APIs” (quoting an industry
remark)

-165-

near the customers. When this process gathers momentum, it’s impossible to stop.

 Once your city is established, owning the API is like being the king of the city.
The king gets to make the rules: collecting tolls for entering the city, setting the
taxes that the programmers and users have to pay, and taking first dibs on any
prime locations (by keeping some APIs confidential for personal use).672

Many of the first API copyright wave involved proprietary appropriation strategies–such as the
use of lock-out codes. The Microsoft antitrust case litigated the extent to which a dominant
player could leverage its intellectual property rights to control the Internet.

The rise of the Internet and advances in information storage and communication
technologies in the late 1990s and early 2000 period significantly shifted software development
strategies away from the proprietary model. Following the early success of Netscape’s open
strategy for distributing its Navigator browser,673 Sun chose an even more permissive strategy for
Java. Sun promoted widespread adoption through community outreach. It invited companies and
programmers to collaborate in evolving the platform. Sun benefitted in a variety of ways from
Java’s rapid adoption and widespread use. Java’s success modestly complemented its hardware
business and maintained Sun’s reputation and salience even as its core hardware business
declined. More importantly, Sun blunted Microsoft’s efforts to pull web development into its
desktop monopoly.

Following Sun’s bold strategy of encouraging widespread use of Java through free and
open access, other major platform developers followed a similar strategy. Google successfully
popularized its search engine by offering free search results. Its multi-sided market
strategy–whereby advertisers would bid for keyword-triggered advertisements–revolutionized
software economics. The power of network economics proved especially robust in the Internet
age. Interoperability was only a part of the story. A variety of breakthrough software
entrepreneurs found that they could succeed by giving away software services in exchange for
user data.

As the Internet took root as a prime economic driver for software and ecommerce, many
companies (and their programmers) came to see open source software as an effective way of
reducing software development costs and pre-committing to collaborative, non-predatory
business practices. The open source movement transitioned from a quirky programmer protest

672 See KAPLAN, supra note __, at 150.

673 Microsoft would do Netscape one better by integrating its browser, Explorer, into its
Windows operating system, making the marginal cost for Explorer essentially zero. This became
one of the central issues in the government’s antitrust enforcement action against Microsoft. But
in the end, Google did Microsoft one better by developing a better browser and giving it away
and using keywords to trigger advertisements.

-166-

movement to a mainstream business strategy.674 Companies could precommit to ensuring that
their products and services would remain competitive, drawing in critical mass for establishing
sustainable platforms. Open source infrastructure companies, such as Apache Software
Foundation675 and Mozilla,676 displaced proprietary software providers. Even IBM, a staunch
advocate for robust intellectual property protection, embraced open source as an competitive
alternative to Microsoft’s market power.677

Moreover, Google, Facebook, and other software companies successfully deployed
advertising and other ancillary appropriability strategies to dominate some of the most important
software markets. Network effects and multi-sided markets enabled these companies to make
“free” an attractive price678 and “open” an attractive strategy679 for software development. The
more “free” services they provided, the more dominant their platforms became.

Unfortunately for Sun, they lacked a robust ancillary revenue stream to support the Java
platform. Sun had used an open source philosophy to build its model. Although it had amassed
some patents, the validity and scope of those patents were open to question and Sun had not
enforced them, raising questions about equitable defenses.

Google’s Android project married various Internet business strategies to maintain and
extend the success of its search and related services while ensuring a prominent role in the
mobile Internet economy. Google combined a familiar programming environment with a free
and open strategy to attract handset manufacturers, telcos, and app developers. It piggybacked on
programmers’ familiarity with the Java programming language and APIs. Its model motivated
telcos, handset makers, and app developers to innovate and compete in the mobile field, enabling
Android to blow past Sun, Microsoft, RIM, and Symbian and eventually to surpass Apple in the

674 See Robert P. Merges, A New Dynamism in the Public Domain, 183 U. CHI. L. REV. 183
(2004); Josh Lerner & Jean Tirole, Some Simple Economics of Open Source, 50 J. INDUS. ECON.
197 (2002); Josh Lerner & Jean Tirole, The Economics of Technology Sharing: Open Source and
Beyond, J. ECON. PERSP. 99 (Summer 2005).

675 See Apache Software Foundation,
https://en.wikipedia.org/wiki/Apache_Software_Foundation.

676 See Mozilla, https://en.wikipedia.org/wiki/Mozilla

677 See Merges, supra note __.

678 See CHRIS ANDERSON, FREE: THE FUTURE OF A RADICAL PRICE (2009).

679 See Tim O’Reilly, Open Source Paradigm Shift (June 2004),
http://archive.oreilly.com/pub/a/oreilly/tim/articles/paradigmshift_0504.html; ERIC S. RAYMOND,
THE CATHEDRAL & THE BAZAAR: MUSINGS ON LINUX AND OPEN SOURCE BY AN ACCIDENTAL

REVOLUTIONARY (2001).

-167-

marketplace. The telcos gained a competitive alternative to Apple’s restrictive iOS platform.
And the less restrictive open source license enabled handset makers and telcos to innovate and
compete without losing control of their software innovations through GPL licensing. Google
profited indirectly by ensuring that its ad-based services were central to the Android mobile
platform and through new mobile-based opportunities.

This is not to suggest that the Internet has fully driven out proprietary software models.
To the contrary, many sectors, including relational databases, customer relationship
management, social networks, and multi-player online video games, continue to rely upon
proprietary software strategies. Further advances in bandwidth, speed, and storage capacity have
pushed software business into Internet-based clouds.680 Oracle has long used cloud-based
business models to run its core relational database business. Like Google’s search engine, a
growing number of software businesses are able to protect their code through Software as a
Service (SaaS) cloud platforms. Nonetheless, many of the sectors that rely upon interoperability
and coordination have shifted to open and collaborative development models.

Compared to the early development of software markets in the 1980s and early 1990s, the
contemporary and foreseeable future software marketplace reflects a zoned landscape featuring
different governance structures. Much of web infrastructure is governed through standard setting
bodies and open source communities run by nonprofit organizations, such as the Linux
Foundation, the Apache Foundation, and Mozilla.org. These enterprises develop and update core
software platforms through collaborative processes. The cloud provides software vendors with a
variety of appropriability options, ranging from open to closed. The ability to maintain software
in the cloud, through SaaS models, affords complete control over software through trade secrecy.
Yet developers of complementary products, such as smartphones, have a need to make their
platforms available to handset makers, telcos, and app developers.

The major “open” platforms largely operate as communities, whether or not they are
sponsored by a single company or organization. Some rely on formal standards bodies; other use
informal alliances. We have moved past the stage where one major player, such as IBM in the
mainframe and early microcomputer eras or Microsoft in the microcomputer era,681 can exercise
dictatorial control over a widely adopted platform governing many inter-related products and
services. We have instead seen the triumph of open, community-based platforms in critical
Internet infrastructure markets.

680 See Lothar Determann & David Nimmer, Software Copyright’s Oracle from the Cloud, 30
BERKELEY TECH. L.J. 161 (2015); Lothar Determann, What Happens in the Cloud: Software as a
Service and Copyrights, 29 BERKELEY TECH. L.J. 1095 (2014).

681 See Thomas A. Piraino, Identifying Monopolists’ Illegal Conduct Under the Sherman Act, 75
N.Y.U. L. REV. 809, 888-89 (2000) (quoting a Microsoft manager’s internal e-mail stating that
“to control the APIs is to control the industry”).

-168-

The mobile phone marketplace illustrates this evolution. Early entrants–ranging from
Sun’s open Java ME platform to Microsoft’s proprietary approach for feature phones–gave way
to Apple’s iOS and Google’s Android platforms for smartphones. Apple provides a closed
platform whereas Android provides a relatively open platform that evolves through a community
process. Given the importance of widespread adoption of such technology, it is difficult to
imagine a new entrant being able to make significant inroads without a relatively open,
community-based process.

3. The Optimality of Limited Copyright Protection for Computer Software

As Section III(B)(1) explained, intellectual property policy aims to address two inter-
related market failures: (1) the public goods problem–enabling innovators to appropriate
sufficient return on their investment in research and development; and (2) the network
externalities problem–encouraging realization of network externalities while avoiding excess
inertia. Yet, intellectual property protection is not a panacea. It entails administrative and
monopoly costs and can hamper cumulative creativity. Other government policies and private
ordering (such as formal and informal standard setting) may be able to address aspects of the
market failures more effectively.

Furthermore, the design of copyright protection for computer software depends critically
on the larger intellectual property landscape. It was evident by the mid-1970s that computer
software did not fit neatly within the traditional forms of legal protection for intellectual
property.682 By its inherent nature as written work intended to serve utilitarian purposes, software
straddles the line between patent protection and copyright protection. The functional features of
computer software and machines fall within the patent system’s domain. The importance of
interoperability and compatibility bring trademark protection into play. In addition, software can
often be protected through trade secret law. Developers can hide their programming by only
releasing object code versions to the public. They can also employ password-protections and
contractual limitations. Furthermore, software can be entirely shielded from users through cloud
services which provide users with only the results of software processes.

The potential anti-competitive effects of intellectual property protection also come into
play. Intellectual property protection and antitrust law interact in complex ways. Antitrust law
aims to promote free competition. It recognizes, however, that patent and copyright protection
can be pro-competitive in that they promote dynamic competition. Major technological advances
can improve product quality and drive down costs. For example, Intel Corporation, relying on
patent protection, has been able to enhance the performance of microprocessor chips by a factor
of 3,500 while improving energy efficiency by a factor of 90,000 and reducing cost by a factor

682 See Menell, Tailoring, supra n. __, at 1329 (citing CONTU REPORT, supra n.__, at 3).

-169-

60,000 over the past 50 years.683 Because of its inherent limitations–barring protection for ideas,
processes, systems, methods of operation, and discoveries–copyright protection, properly
interpreted, posed little threat to competition.

Yet with intellectual property protection comes the potential for abuse. As the Microsoft
antitrust litigation illustrated, network industries are especially prone to leveraging market power
in one software field to hamper innovation and competition in other sectors. The antitrust
doctrines seeking to resolve this tension are difficult to apply, especially in network industries,
which are naturally prone to high concentration.

When I first wrote about legal protection for computer software three decades ago, the
economic theory was relatively clear but the technological and market contexts were evolving
rapidly. The experience of the past several decades have reinforced the insights of that earlier
research. Although copyright law has a valuable role to play in protecting computer software,
that role must be limited, especially with regard to network and other functional features of
computer software.

As explicated in Section III(A)(3), the proper legal contours of copyright for protection
for computer software–based on the seminal Baker v. Selden decision, the 1976 Act, the CONTU
Report, and the nature of computer technology–distinguishes between the functional
specifications and the implementing code. The functional specifications fall outside of copyright
protection regardless of their “creativity” and the difficulty of designing and coding them. Thus,
the declarations of an API are unprotectable (under copyright law) as they are necessary to build
a particular machine. Such features might be eligible for patent protection, but they would have
to meet patent law’s higher threshold requirements and the duration of such protection would be
shorter than copyright protection.684 By contrast, the implementing code is protectable, although
particular code, such as bits required for interoperability, and particular design elements, such as
standard programming techniques, might be filtered out as functional or unoriginal. Furthermore,

683 See Thomas Friedman, Moore’s Law Turns 50, N.Y. TIMES A27 (May 13, 2015); Moore’s
law, https://en.wikipedia.org/wiki/Moore%27s_law; Gordon E. Moore, Cramming More
Components onto Integrated Circuits, 38 ELECTRONICS No. 8 (Apr. 19, 1965) (predicting that
the number of transistors in an integrated circuit would double approximately every two years)..

684 Patent law has long provided protection for innovative interfaces. For example, Samuel F.B.
Morse patented not only the machinery for telegraphic communication, but also the system of
dots and dashes that came to be known as Morse Code. See O’Reilly v. Morse, 56 U.S. 62, 86
(1853) (“Fifth. I claim, as my invention, the system of signs, consisting of dots and spaces, and
of dots, spaces, and horizontal lines, for numerals, letters, words, or sentences, substantially as
herein set forth and illustrated, for telegraphic purposes.”). Under Baker v. Selden, such a system
is ineligible for copyright protection, even though a book explaining its use would garner thin
copyright protection. Others could not reproduce the book, although they could write their own
guide to the use of Morse Code.

-170-

copyright’s fair use doctrine authorizes competitors to reverse engineer protected code to
determine the unprotected elements.

This regime provides an effective tool for combating unauthorized distribution of
software programs while affording competitors and other innovators freedom to use functional
features and to develop interoperable products. This approach ensures that patent law serves as
the principal means for protecting functional software elements. This combination provides
balanced incentives for promoting progress in software platforms while supporting the
realization of network externalities. In the absence of patent protections for interface
specifications, competitors can emulate the interface specifications in developing interoperable
products or adapting those platforms. Companies seeking to establish proprietary platforms can
look to patent law.

Even though copyright law does not directly protect functional features of computer
software, the thin layer of copyright protection for implementing code provides developers with
valuable lead-time. By employing technological protection measures or distributing software
products solely in object code form, software developers can slow development of interoperable
products. Reverse engineering computer programs can be time-consuming and expensive.685

Even when the functional specifications are publicly disclosed so as to rapidly expand the
platform, as was the case with the Java APIs, re-implementing that functionality in a clean room
can be time consuming. It is often more efficient to write a program from scratch. But because of
interoperability concerns or user and programmer familiarity with a software product, reverse
engineering and re-implementing the precise functionality can be necessary to introduce a new
or complementary product. Thus, copyright protection in conjunction with trade secret protection
provides software developers with a first-mover advantage.

This interpretation of copyright protection for computer software provides a sound
regime for promoting software innovation and competition. Thus, the software industry today
can usefully be thought of like a zoning map. It comprises distinct sectors with varying
approaches for addressing the appropriability and network externality concerns.

The core Internet technologies and other high level platforms develop almost exclusively
through open source projects and standard setting processes. Many different
constituencies–ranging from major corporations to government and non-governmental
organizations–have come to see that such platforms are too important to be owned by any one

685 See Sammi, Lisy, & Gish, supra note __, at __-__ (discussing the high costs and risks
associated with reverse engineering); Contreras, Handley, & Yang, supra note __, at __-__
(same); Davis III, supra note __, at 151 (noting that “it would be easier and far less expensive to
develop entirely new software, were it not for the need in most such cases to have a functional
equivalent, compatible program that cannot be obtained in any other way”); Burke, supra note
__, at 63 (noting that reverse engineering the IBM BIOS doubled Phoenix’s cost of developing a
functioning BIOS).

-171-

enterprise. Moreover, the open source community has proven especially effective at generating
innovative research and development through collaborative processes that do not rely on
corporate ownership or direct remuneration. Thus, this critically important area of software
development has solved the public goods/network externalities problem without substantial
reliance on exclusive intellectual property rights. Affording copyright protection to API design
for this sector is neither needed nor desirable.

For entrepreneurs and companies operating within these high level platforms, the Internet
itself has largely solved the appropriability problem. The ability to operate software services in
the cloud obviates distribution of software products. The proprietors of cloud services can
largely protect their software through trade secret law, technological protection measures, and
contractual provisions. Google’s search engine, Facebook’s social network, and countless other
software-based companies secure much of their software without copyright protection.

Companies that choose to distribute their software products have clear protection against
piracy of their software. They also can garner lead-time through technological protection
measures and not distributing their source code. They cannot, however, protect the functional
features of their product beyond the time period necessary to reverse engineer and reimplement
the uncopyrightable functional features. This comports with a proper channeling of protection
between patent and copyright law.

We are left with the question of whether the lack of direct copyright protection for API
design–which must be exposed to the public in most commercial circumstances to be
effective–creates an undesirable lacuna in intellectual property protection. Are incentives to
innovate platforms inadequate without copyright protection for API design?

Patent law provides protection for novel, non-obvious, and adequately disclosed
advances in computer systems, processes, and interface design. It arguably overprotects interface
specifications for an excessive duration.686 Thus, adding robust copyright protection for API
design would further undermine realization of network externalities and hamper cumulative
innovation. The past three decades of software industry evolution has demonstrated that API
design projects typically require large community-building efforts to overcome the excess inertia
of widely adopted standards. Whereas as pre-Internet enterprises looked to proprietary models to
justify the research and development effort needed to surmount this inertia, modern software
markets demand more open, collaborative approaches. As with core Internet technologies, this
approach has largely surmounted the public goods/network externalities challenge. In this sector,
ancillary appropriability means, such as advertising, have proven especially important.

API design innovation solves the network effects problem through community
organization, formal and informal standard setting processes, and open licensing. It is nearly
impossible to compete or supplant a widely adopted platform without gaining buy-in from the

686 See Menell, Tailoring, supra note __, at 1364-65

-172-

target audience. The successful ventures are able to pair such community organization with
indirect appropriability strategies. Leaving API design specifications outside of copyright
protection enables entrepreneurs seeking to improve on successful platforms to build bridges for
users and programmers. This avoids excess inertia and accommodates creative destruction and
evolution687 in those areas in which the proprietor of the standard platform lacks patent
protection.

Thus, looking back over the three decades, the need for copyright protection to address
the dual public goods/network externality problem face by software developers has substantially
abated due to several factors. The emergence and development of the Internet has enabled
software developers to distribute software and services at very low cost. Furthermore, they can
protect their code through cloud service models. The Internet has also opened up and expanded
the effectiveness of ecommerce and advertising-based business models. More robust copyright
protection for API design would likely have stifled platform innovation and competition. Thus, a
parsimonious approach to copyright protection of computer software remains the best policy
choice.

The evolution of the smartphone mobile platform illustrates the wisdom of excluding API
specifications from copyright protection while affording the API implementing code limited
protection. Sun built the Java programming language and API platforms on the C programming
language. It successfully promoted Java through free and open licensing as well as through its
establishment of the Java Community Process.688 This strategy enabled Sun to thwart Microsoft’s
effort to monopolize web programming.

By the early 2000 period, Sun was well-positioned to lead the shift to mobile technology.
Its Micro Edition gained a strong position in the feature phone marketplace. It failed, however, to
recognize the potential for more versatile mobile devices. To some extent, it was held back by its
focus on backward compatibility with the WORA principle and its restrictive licensing
philosophy.

Google was able to leverage its highly profitable advertising business to support the
development of Android–a mobile platform that provided full browser functionality as well as
other mobile functionality. The Android team recognized that this operating system would need
to fit on the small chips in handsets and accommodate some other capabilities, such as users’
locations and preferences. They also saw the advantages of a more permissive licensing model.

687 See JOSEPH A. SCHUMPETER, CAPITALISM, SOCIALISM AND DEMOCRACY 82-83 (1942)
(describing economic evolution as driven by the “gale of creative destruction,” a “process of
industrial mutation that incessantly revolutionizes the economic structure from within,
incessantly destroying the old one, incessantly creating a new one”).

688 See Java Community Process, https://en.wikipedia.org/wiki/Java_Community_Process.

-173-

Rather than build the platform entirely from scratch, the Android team sought to use the
well-known Java programming language and some of the Java API packages. The Java
programming language was freely available. The APIs, however, were protected by copyright
law. Hence, Android developers reached out to Sun to negotiate a license. While desperate to
generate more licensing revenue for the Java unit, Sun was reluctant to license a platform that
did not have the full range of APIs necessary to extend “Write Once, Run Anywhere”
interoperability. In addition, Sun opposed the more permissive license that Google sought to
afford Android licensees.

Although Sun and Google came close to agreement in the spring of 2006, the
negotiations reached an impasse. In order to avoid infringement of Sun’s implementing code,
Google undertook the costly and time-consuming process of re-implementing 37 of the Java API
packages in a clean room. The Google vision succeeded for many of the reasons that Java
succeeded. Android enabled the target audience–handset manufacturers, telcos, and app
developers–to quickly learn the platform and to compete. The Android platform provided a
viable alternative to Apple iOS platform.

The result has been robust innovation and competition. Apple was not able to dominate
the mobile platform in the manner than Microsoft monopolized the desktop. Google’s power is
checked in part by the need to work within the open handset alliance. Moreover, Google seeded
substantial power to its partners. The smartphone ecosystem has been remarkably dynamic and
competitive.

The critical question is whether the lack of strong copyright protection for API design
stands in the way of the next great software platforms. The experience of the past several
decades suggest that strong copyright protection for API design would more likely hinder rather
than promote technological progress. Had Sun been able to stand in Google’s way based solely
on API design, we would never have gotten a bold new platform and the permissive licensing
structure that has ignited competition and innovation among downstream handset manufacturers,
telcos, and app developers. Apple iOS would likely have dominated the mobile platform for a
long time.

A subsidiary question is whether Android’s forking of Sun’s Java platform into an
implementation that is not compatible with Java’s WORA principle undermines network
externalities. Oracle contends that copyright protection for API functional specifications is
critical to enforcement of the GPL.689 The Free Software Foundation (FSF),690 which established

689 See Annette Hurst, Op-ed: Oracle attorney says Google’s court victory might kill the GPL,
ARS TECHNICA (May 27, 2016),
http://arstechnica.com/tech-policy/2016/05/op-ed-oracle-attorney-says-googles-court-victory-mi
ght-kill-the-gpl/.

690 See Free Software Foundation, https://en.wikipedia.org/wiki/Free_Software_Foundation.

-174-

and maintains the GPL, disagrees. In its amicus brief opposing Google’s petition for certiorari
following the Federal Circuit’s 2014 decision, the FSF stated that it “strongly rejects the use of
copyright law to prevent implementation of interoperable free software by inappropriately
applying copyright principles to ideas instantiated in the rules of inter-program communication
called ‘application program interfaces.’”691

The fact that Android does not afford complete end user compatibility with Java does not
necessarily lead to the conclusion that consumer or programmers will be harmed. Even Sun’s
Java Micro Edition was not fully interoperable with the Java Standard Edition.692 More
importantly, interoperability is but one of many functional considerations. Although complete
interoperability can be an important programming goal, it can also stand in the way of
technological progress. Google sought to draw on the Java APIs as part of its plan to develop a
more versatile and compact platform optimized for a new generation of mobile devices.
Adhering to the WORA principle would have compromised these important design objectives
and forced desirable cumulative innovation onto a risky path. Forking of code is an essential part
of creative destruction.

Furthermore, Google did not seek, as Microsoft did in the late 1990s in violation of its
contractual agreement, to undermine the Java platform. Nor did Google claim that Android was
compatible with Java. Rather it sought to implement particular function packages in a new,
familiar, and partially interoperable mobile platform. Using some of the Java APIs provided a
bridge for the millions of Java programmers. But by independently implementing the packages,
Google sought to work around copyright protection in the implementing code. It avoided
trademark liability by not using the Java trademark in a manner that created a likelihood of
confusion. Google risked patent infringement, but ultimately prevailed on Oracle’s patent claims.

More importantly, protecting API design through copyright law poses a much greater risk
to interoperability than the parsimonious approach that predated the Federal Circuit’s Oracle v.
Google decision. The many companies that build products that connect with established
platforms would risk copyright infringement by building interoperable features. If they did not
obtain licenses, they would potentially have to prove that their independently developed
interface code was fair use.693

691 See Brief of Software Freedom Law Center and Free Software Foundation, Amici Curiae in
Support of Respondent, Google, Inc. v. Oracle America, Inc., U.S. Supreme Court No. 14-410
(Dec. 8, 2014). Somewhat confusingly, FSF supported Oracle in opposing the Supreme Court
granting certiorari, although on entirely different grounds.

692 See <fair use trial>.

693 See Julie Samuels, Oracle v. Google and the Dangerous Implications of Treating APIs as
Copyrightable, Electronic Frontier Foundation (May 7, 2012),
https://www.eff.org/deeplinks/2012/05/oracle-v-google-and-dangerous-implications-treating-api
s-copyrightable

-175-

4. Impediments to Achieving the Proper Copyright Balance Posed by the Oracle v.
Google Litigation

This analysis shows that the fair use trial was a massive waste of time, party resources,
and judicial resources. The litigation has already established that Google independently
implemented the functional specifications for 37 machines. As a result, it cannot be held liable
for copyright infringement.

More importantly, even if Google ultimately prevails in this litigation under the fair use
doctrine, the Federal Circuit’s holding that API functional specifications are copyrightable will
hamper software innovation and competition. Its 2014 decision revives long dormant fears about
the scope of copyright protection for computer software.

The Federal Circuit has opened a Pandora’s Box that will lead legal advisors to caution
against independently implementing APIs without obtaining licenses. They will need to advise
their clients that so long as there is the potential for a patent infringement allegation–which is
likely in view of the proliferation and availability of software patents–then a company seeking to
control access to its platform can likely file a lawsuit outside of the First Circuit alleging both
patent and copyright infringement that would fall within the Federal Circuit’s exclusive appellate
jurisdiction.694 As such, the district court would be on notice that the appellate court considers
the functional specifications of APIs to be copyrightable. The defendant’s principal hope will be
to mount a fair use defense, which is notoriously unpredictable and costly. The range of factors
applicable to fair use opens up a broad range of discovery.

Furthermore, it is possible that other circuits could follow the Federal Circuit. The Third
Circuit likely already does. The unusual posture of the Oracle v. Google litigation creates the
risk that the Federal Circuit’s copyrightability decision will go unreviewed.695 The Supreme
Court has already declined one opportunity to review the matter.

The fair use doctrine is a especially poor vehicle for resolving API copyright disputes. As
Judge Boudin recognized in his thoughtful concurrence in Lotus v. Borland, a “privilege use”
doctrine–an alternative akin to the fair use doctrine that he considered as an to the “method of
operation” exclusion–“would cause cost and delay, and would also reduce the ability of the
industry to predict outcomes.”696

Software developers and investors greatly value clarity in making the difficult, time-

694 I exclude the First Circuit because the Federal Circuit would be bound by the First Circuit’s
Lotus v. Borland decision.

695 See supra, Section II(C).

696 See Lotus Dev. Corp. v. Borland Int’l, 49 F.3d 807, 821-22 (1st Cir. 1995) (Boudin, J.,
concurring), aff’d by an equally divided court, 516 U.S. 233 (1996) (per curiam).

-176-

sensitive decisions involved in designing products and platforms. Yet the fair use defense is fact-
dependent and case-specific. It is a classic example of a legal standard for which dispute
resolution is costly and time-consuming.697 The Android team struggled with these issues and
ultimately chose what it thought would be a safe harbor: re-implementing the code. While the
fair use trial partially vindicated its decision, the uncertainty imposed tremendous cost and
ultimately took nearly decade for resolution. And even that resolution remains in question as the
appeal looms. For a fast-moving industry like software, this regime for determining freedom to
operate is highly inefficient. It distorts and slows innovation activities.

Judge Boudin concluded his concurrence with this sage summary and observation:

 [T]he majority’s result [based on § 102(b)’s exclusion of methods of operation
from the scope of copyrightable subject matter] persuades me and its formulation
is as good, if not better, than any other that occurs to me now as within the reach
of courts. Some solutions (e.g., a very short copyright period for menus) are not
options at all for courts but might be for Congress. In all events, the choices are
important ones of policy, not linguistics, and they should be made with the
underlying considerations in view.

I would only add that Baker v. Selden and full consideration of the legislative history of the
Copyright Act of 1976 support the First Circuit’s approach. That approach properly immunizes
Android’s use of the functional specifications for Java APIs, although Google could nonetheless
infringe by failing to re-implement those specifications independently.

Conclusions

As we know from popular books and films, zombies (or vampires for pre-Millennials)
tend to awaken at inopportune times and wreak havoc. Eventually some suitable leading actor re-
inters the zombies or impales the vampire through the heart. We are not there yet. The Federal
Circuit’s flawed analysis brings the Apple v. Franklin/Whelan API copyright zombies back to
life. The district court’s fair use decision suggests that it will be difficult for copyrightable API
zombies to proliferate, but it does not resolve the issues beyond the particular case and thus is of
little to no precedential value. Furthermore, Oracle has appealed the jury’s fair use ruling. Thus,
API copyright zombies still roam Silicon Valley (and other innovation centers).

This article traces the fascinating history of the API copyright battles. It shows that after
some early missteps, the courts surmounted the copyright challenges posed by network and
functional features of computer software. But the Oracle v. Google litigation threatens to set
copyright law back to the misguided analyses of the 1980s. Part III explains that copyright law’s
fundamental exclusion of protection for functional features dictates that the labeling conventions

697 See Louis Kaplow, Rules versus Standards: An Economic Analysis, 42 DUKE L.J. 557, 563
(1992).

-177-

and packaging of functions within interface specifications generally fall outside of the scope of
copyright protection even as implementing code garners thin copyright protection. This
interpretation of copyright law comports with fundamental principles channeling protection
among the modes of intellectual property protection. It also serves the larger goals of intellectual
property law and competition policy.

Zombies thrive on the flesh and life blood of the living and are difficult to subdue. In the
software community, confusion over copyright treatment of APIs has exposed developers and
investors to chilling uncertainty that restrains and distorts the creative destruction that is critical
to advancing computer technology and industry industries. This article has explicated computer
programming, legislative and jurisprudential history, the evolution of the software industry, and
economic analysis in an effort to return the API copyright zombies to their rightful and hopefully
final resting place.698

698 Software innovation and progress can also be advanced through patent reforms. I continue to
believe that a sui generis regime would be the best approach. See Menell, Tailoring, supra note
__, at 1371. Nonetheless, re-interring the API copyright zombies is an important step that can be
accomplished without legislation.

-178-

Appendix A

37 Java API Packages Implemented in Android

Java API Packages Description

java.awt.font Provides classes and interface relating to fonts.

java.beans Contains classes related to developing beans -- components
based on the JavaBeans™ architecture.

java.io Provides for system input and output through data streams,
serialization and the file system.

java.lang Provides classes that are fundamental to the design of the Java
programming language.

java.lang.annotation Provides library support for the Java programming language
annotation facility.

java.lang.ref Provides reference-object classes, which support a limited
degree of interaction with the garbage collector.

java.lang.reflect Provides classes and interfaces for obtaining reflective
information about classes and objects.

java.net Provides the classes for implementing networking applications.

java.nio Defines buffers, which are containers for data, and provides an
overview of the other NIO (Non-blocking I/O) packages. Non-
blocking I/O is a collection of Java programming language
APIs that offer features for intensive I/O operations.
https://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)

java.nio.channels Defines channels, which represent connections to entities that
are capable of performing I/O operations, such as files and
sockets; defines selectors, for multiplexed, non-blocking I/O
operations.

java.nio.channels.spi Service-provider classes for the java.nio.channels package.

java.nio.charset Defines charsets, decoders, and encoders, for translating
between bytes and Unicode characters.

java.nio.charset.spi Service-provider classes for the java.nio.charset package.

java.security Provides the classes and interfaces for the security framework.

java.security.acl The classes and interfaces in this package have been
superseded by classes in the java.security package.

java.security.cert Provides classes and interfaces for parsing and managing
certificates, certificate revocation lists (CRLs), and
certification paths.

java.security.interfaces Provides interfaces for generating RSA (Rivest, Shamir and
Adleman AsymmetricCipher algorithm) keys as defined in the
RSA Laboratory Technical Note PKCS#1, and DSA (Digital
Signature Algorithm) keys as defined in NIST's FIPS-186

-179-

37 Java API Packages Implemented in Android

Java API Packages Description

java.security.spec Provides classes and interfaces for key specifications and
algorithm parameter specifications.

java.sql Provides the API for accessing and processing data stored in a
data source (usually a relational database) using the JavaTM
programming language.

java.text Provides classes and interfaces for handling text, dates,
numbers, and messages in a manner independent of natural
languages.

java.util Contains the collections framework, legacy collection classes,
event model, date and time facilities, internationalization, and
miscellaneous utility classes (a string tokenizer, a random-
number generator, and a bit array).

java.util.jar Provides classes for reading and writing the JAR (Java
ARchive) file format, which is based on the standard ZIP file
format with an optional manifest file.

java.util.logging Provides the classes and interfaces of the JavaTM 2 platform's
core logging facilities.

java.util.prefs This package allows applications to store and retrieve user and
system preference and configuration data.

java.util.regex Classes for matching character sequences against patterns
specified by regular expressions.

java.util.zip Provides classes for reading and writing the standard ZIP and
GZIP file formats.

javax.crypto Provides the classes and interfaces for cryptographic
operations.
The javax prefix is used by the Java programming language for
a package of standard Java extensions. These include
extensions such as javax.servlet, which deals with running
servlets, and javax.jcr, which deals with the Java Content
Library.

javax.crypto.interfaces Provides interfaces for Diffie-Hellman keys as defined in RSA
Laboratories’ PKCS #3.

javax.crypto.spec Provides classes and interfaces for key specifications and
algorithm parameter specifications.

javax.net Provides classes for networking applications.

javax.net.ssl Provides classes for the secure socket package.

javax.security.auth This package provides a framework for authentication and
authorization.

-180-

37 Java API Packages Implemented in Android

Java API Packages Description

javax.security.auth.callback This package provides the classes necessary for services to
interact with applications in order to retrieve information
(authentication data including usernames or passwords, for
example) or to display information (error and warning
messages, for example).

javax.security.auth.login This package provides a pluggable authentication framework.

javax.security.auth.x500 This package contains the classes that should be used to store
X500 Principal and X500 Private Credentials in a Subject.

javax.security.cert Provides classes for public key certificates.

javax.sql Provides the API for server side data source access and
processing from the Java™ programming language.

Source: Java™ Platform, Standard Edition 7 API Specification
https://docs.oracle.com/javase/7/docs/api/

-181-

