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Abstract

Many markets, including the market for IPOs, are syndicated; a bidder who wins
a contract often invites competitors to join a syndicate to fulfill the contract. We
model syndicated markets as a repeated extensive form game and show that standard
intuitions from industrial organization may fail: collusion may become easier as market
concentration falls, and market entry may facilitate collusion. In particular, firms
can sustain collusion by refusing to join the syndicate of any firm that undercuts the
collusive price. Our results can thus rationalize the apparently contradictory facts that
IPO underwriting exhibits seemingly collusive pricing despite low market concentration.
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1 Introduction

The fees that investment banks collect for initial public offerings (IPOs) strongly suggest
collusive behavior, with investment banks apparently coordinating on fees of 7% of issuance
proceeds for moderately sized IPOs (Chen and RitterChen and Ritter, 20002000). At the same time, the number
of investment banks running moderately sized IPOs is quite large, and there appears to be a
nontrivial amount of entry and exit in the market (HansenHansen, 20012001); this presents a puzzle, as
standard industrial organization intuitions would therefore suggest that pricing should be
competitive.

One possible explanation lies in the structure of the IPO underwriting market. The
market for running IPOs is syndicated; once the bid to run an IPO is accepted, the winning
investment bank must then organize a syndicate to complete the IPO. In this paper, we
show that syndication can explain how collusion may be maintained in the presence of many
small firms. We show that the presence of syndication can reverse the standard intuition
regarding the effect of market concentration: below a certain level of concentration, the scope
for collusion in a syndicated market increases as concentration declines. Because syndication
follows the pricing stage, colluding firms can punish a firm that undercuts the collusive price
by refusing to participate in that firm’s syndicate. This type of in-period punishment is not
available in non-syndicated markets. Moreover, these in-period punishments become more
powerful as a market becomes less concentrated; when the market is comprised of many small
firms, joint production lowers production costs dramatically.

Figure 11 shows a snapshot of IPO spreads11 in 1999.22 In the late 1970s, spreads for IPOs
tended to be quite high, exceeding 7%. In the early 1980s, spreads for IPOs with proceeds
in excess of $20 million began to fall below 7%. However, over the course of the late 1980s,
and particularly through the 1990s, spreads for IPOs with proceeds between $20 and $100
million became increasingly clustered at 7%. This clustering continues in the 2000s. Notably,
the IPO market largely ceased to operate following the 2007-2008 financial crisis, and very
few IPOs took place; nevertheless, those that did still paid the 7% spread. Yet, as first
documented by HansenHansen (20012001), the market for IPOs since the 1990s appears “competitive,”
in the sense that many firms were active in the market; indeed, the largest four firms together
only make up between 40% and 50% of the market in this period, as depicted in Figure 22.

We model a market with syndication as a repeated extensive form game: In each period,
firms compete on price for the opportunity to complete a single project and, upon being

1The spread on an IPO is the difference between the price that the underwriters pay for the issuer’s stock
and the price that investors pay, expressed as a percentage of the price investors pay.

2See the version of the paper posted at http://bit.ly/2uOfEWvhttp://bit.ly/2uOfEWv for an animation showing how spreads
evolved over time.
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Figure 1: This figure shows the relationship between IPO proceeds and spreads for IPOs with
proceeds less than $100 million in 1999. Proceeds (in millions of dollars) are plotted on the
x-axis and spreads (i.e., the percent of the proceeds that go to the underwriter) are plotted
on the y-axis. A description of the data used for this figure can be found in Appendix AA.

selected, the chosen firm may invite additional firms to join in the production process.
Recruiting additional firms is valuable because production costs are convex in the amount
of production done by a single firm. Each invited firm then decides whether to join the
syndicate. The project is then completed by the syndicate members, payoffs are realized, and
play proceeds to the next period.

We show that, in markets with syndication, less concentrated markets may have prices
that are farther from the marginal cost of production. In particular, the highest price that can
be sustained under equilibrium play is a U-shaped function of market concentration: When
markets are very concentrated, collusion can be sustained as in many standard industrial
organization models: after a firm undercuts on price, all firms revert to a “competitive”
equilibrium in which firms earn no profits in every subsequent period.33 However, when
many small firms are present, collusion can be sustained by in-period punishments: after a
firm undercuts on price, other firms can punish the undercutting firm in the same period
by refusing to join its syndicate. Of course, such behavior by other firms must itself be
incentive compatible. Thus, firms that reject offers of syndication from a firm that undercut
on price must be rewarded in future periods. Moreover, firms that turn down more attractive
syndication offers receive greater rewards in subsequent periods.

In repeated normal form games, punishments can be enforced using the simple penal
3See, for instance, TiroleTirole (19881988).
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Figure 2: The Herfindahl-Hirschman index (HHI) of, and the market share of the
largest four firms in, the market for IPOs. The U.S. Department of Justice de-
fines an industry with an HHI of less than .15 to be an “unconcentrated market”
(Department of Justice and Federal Trade CommissionDepartment of Justice and Federal Trade Commission, 20102010, p. 19). A description of the
data used for this figure can be found in Appendix AA.

codes of AbreuAbreu (19861986), under which only one punishment strategy is needed for each player,
regardless of the timing or nature of the deviation. However, as noted by Mailath et al.Mailath et al.
(20162016), in the analysis of repeated extensive form games it is necessary to consider more
complex responses to deviations.44,55 In particular, in our setting, it is key that firms punish a
price undercutter in-period by refusing the undercutter’s offers of syndication; to do this,
we must construct strategies that simultaneously punish a firm that undercuts on price and
reward firms which refuse to join a price undercutter’s syndicate.66

4It is not sufficient to consider the repeated version of the reduced normal form game, as the equilibria of
that game will not necessarily correspond to subgame-perfect equilibria of the original repeated extensive
form game.

5Nocke and WhiteNocke and White (20072007) were the first to use the theory of repeated extensive form games to study
collusion, showing that vertical mergers can facilitate collusion under certain circumstances. Byford and GansByford and Gans
(20142014) consider collusion via market segmentation by considering a repeated extensive form game with market
segment entry decisions followed by production decisions; they, however, restrict attention to a class of
equilibria in which agents’ decisions regarding production can not depend on past play, eliminating the
extensive-form considerations which are central to our work here. See also the work of Atakan and EkmekciAtakan and Ekmekci
(20112011), who consider how reputation may be built in a repeated extensive form game with initial uncertainty
about one player’s type.

6To our knowledge, we are the first to model syndication, i.e., subcontracting, in a repeated extensive
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Our baseline model considers the case of symmetric firms; we extend our results to markets
with heterogeneous firms. As in the case with symmetric firms, firms can collude even when
the market is very fragmented; indeed, heterogeneity itself can increase firms’ ability to
collude. Moreover, the entry of small firms enhances the scope for collusion in markets with
syndication, again counter to standard results in the theory of industrial organization.

Whether spreads on IPOs are set in a competitive or collusive manner has been debated
in the finance literature since Chen and RitterChen and Ritter (20002000) first documented the clustering of
IPO spreads at 7%. Abrahamson et al.Abrahamson et al. (20112011) documented that the spreads for IPOs are
significantly higher in the United States than in Europe, and cited this as evidence that
pricing in the U.S. underwriting market is collusive. Kang and LoweryKang and Lowery (20142014) presented and
estimated a formal model of why collusion would lead to clustering on spreads, combining
insights on collusive behavior from Rotemberg and SalonerRotemberg and Saloner (19861986) and Athey et al.Athey et al. (20042004).77

By contrast, HansenHansen (20012001) claims that the clustering of IPO spreads is likely to be the
result of efficient contracting, documenting the apparent relative ease of entry and lack of
concentration in the market.88 Our work helps reconcile the apparently conflicting evidence:
we show that collusion in IPO markets is possible despite—and in fact may be facilitated
by—low levels of market concentration.

There also is a related debate over whether the pricing of the IPO securities themselves is
collusive. IPO shares generally gain about 15% on their first day of public trading, suggesting
that issuers are “leaving money on the table” (Loughran and RitterLoughran and Ritter, 20042004). Some authors ar-
gue that underpricing is a means for underwriters to extract rents from issuers—likely a feature
of an uncompetitive market (Biais et al.Biais et al., 20022002; Cliff and DenisCliff and Denis, 20042004; Loughran and RitterLoughran and Ritter,
20042004; Liu and RitterLiu and Ritter, 20112011; Kang and LoweryKang and Lowery, 20142014). On the other hand, other authors argue
that issuers may desire underpricing, and thus underpricing can occur even when underwriters
compete aggressively (RockRock, 19861986; Allen and FaulhaberAllen and Faulhaber, 19891989; Benveniste and SpindtBenveniste and Spindt, 19891989;
ChemmanurChemmanur, 19931993; Brennan and FranksBrennan and Franks, 19971997; Stoughton and ZechnerStoughton and Zechner, 19981998; Lowry and ShuLowry and Shu,
20022002; Smart and ZutterSmart and Zutter, 20032003). While our work does not address the issue of underpricing
directly, it does show that underwriters could collude in the market for IPOs, even though—or
even because—the market is highly fragmented.

The remainder of the paper is organized as follows: Section 22 introduces our model of a
market with syndicated production. Section 33 characterizes the highest price sustainable via

form game. There is, however, a large literature on horizontal subcontracting in the context of one-shot
interactions, starting with the work of Kamien et al.Kamien et al. (19891989); see also the work by, among others, SpiegelSpiegel
(19931993) and Shy and StenbackaShy and Stenbacka (20032003).

7Kang and LoweryKang and Lowery’s work also helps to explain why, under collusion, spreads may not change with IPO
size or changes over time in the cost of performing an IPO.

8TorstilaTorstila (20032003) documents the clustering of spreads in countries other than the United States at lower
levels, arguing that this provides evidence that clustering does not imply collusive behavior.
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collusion in such markets. Section 44 considers how the highest price sustainable via collusion
depends on market conditions. Section 55 extends the model to allow for contracting over
production shares. Section 66 explores the effect of firm heterogeneity and market entry on
the highest sustainable price. Section 77 concludes.

2 Model

We introduce a model of price competition in markets with syndication. There is a finite set
of long-lived identical firms F and an infinite sequence of short-lived identical buyers {bt}t∈N;
we let ϕ ≡ 1

|F | be the market concentration. Time is discrete and infinite; firms discount the
future at the rate δ ∈ (0, 1).

Each firm f is endowed with a production technology with a cost function c(s,m), where
s is the quantity of production done by firm f and m is the mass of the productive capacity
controlled by firm f . We assume that the cost function is strictly increasing and strictly
convex in the production done by the firm and strictly decreasing and strictly convex in
the productive capacity of the firm. We also assume that a firm which does not engage in
production incurs no costs, i.e., c(0,m) = 0 for all m, and that production becomes arbitrarily
costly as the productive capacity of the firm goes to 0, i.e., limm→0 c(s,m) ≥ ∞ for all s > 0.
Finally, we assume that the cost function is homogeneous of degree one.99

We let the total productive capacity in the economy be given by k > 0; in this section, we
assume that the total productive capacity is evenly divided among the firms, so that the cost
of producing s for any one firm is c(s, ϕk).

In each period t, the firms and the buyer bt play the following extensive-form stage game:

Step 1: Each firm f ∈ F simultaneously makes a price offer pft ∈ [0,∞). All offers to the
buyer are immediately and publicly observed.

Step 2: The buyer accepts at most one offer; the buyer’s action is immediately and publicly
observed. If no offer is accepted, the stage game ends.

Step 3: If the offer from some firm is accepted, then that firm becomes the syndicate leader,
`. Firm ` then simultaneously offers each non-leader firm g ∈ F r {`} a fee wgt . These

9This last assumption is stronger than is generally necessary for our analysis but it greatly simplifies our
presentation here. It is enough for our results that, as we proportionately increase the production required
and the productive capacity, the cost function increases at a slower rate, i.e., ∂

2c(s,sm)
∂s2 ≤ 0 for all s,m > 0; in

the homogeneous case, this expression holds with equality. Economically, this implies that larger firms are
weakly more efficient, in the sense that one firm with productive capacity sm can complete a production
share s at a (weakly) lower cost than multiple firms with combined productive capacity sm.
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offers are immediately and publicly observed.1010

Step 4: Each firm g ∈ F r {`} either accepts or rejects the fee wgt from `. We call the set of
firms that accept `’s offer, along with the firm `, the syndicate Gt. At the end of the
period, all agents observe the syndicate.1111

The buyer bt has a fixed value of v > c(1, 1) for the finished product.1212 Thus, the payoff
to the buyer bt is v − pft if he accepts the price offer from firm f and 0 if he does not accept
any offer.

If the buyer bt does not accept any offer, then each firm f ∈ F obtains a payoff of 0.
If firm ` becomes the syndicate leader, i.e., the buyer bt accepts the offer of firm `, then
production is performed efficiently ex post by the members of `’s syndicate, and so each
member of the syndicate performs an equal share of production.1313 Thus, the stage game
payoffs for the firms after a successful offer to the buyer from firm ` are as follows:

1. The payoff for ` is p`t − c
(

1
|Gt| , ϕk

)
−∑g∈Gtr{`}w

g
t , i.e., the price paid by the buyer less

the cost of `’s production less the fees paid to other firms.

2. The payoff for g ∈ Gt r {`} is wgt − c
(

1
|Gt| , ϕk

)
, i.e., the fee paid to g less the cost of

g’s production.

3. The payoff for h ∈ F rGt is 0.

3 Optimal Collusion

We now characterize the highest price sustainable via collusion in markets with syndication.
A price p is sustainable if there exists a subgame perfect Nash equilibrium in which, along
the equilibrium path, the buyer accepts a price offer of p in every period.

When the market is very concentrated, i.e., there are a small number of firms, any price
(less than or equal to v) can be sustained by “grim trigger” strategies in which deviations from
the collusive price are punished in subsequent periods by play in which every firm obtains
0 profits. This type of equilibrium is standard in the analysis of markets with Bertrand
competition; in such markets, however, once there are enough firms in the market, no price
above the cost of production can be sustained.

10In Section 55, we consider the case where an offer specifies not only a fee but also the share of production
done by the firm.

11Consequently, all agents know which syndication offers were accepted.
12We assume that v > c(1, 1) to avoid the trivial case where no trade is efficient.
13In Section 55, we consider a “complete contracting” version of the model in which a syndicate offer specifies

a firm’s production share as well as its fee.
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In markets with syndication, as in Bertrand competition markets, grim trigger strategies
lose their bite as the number of firms in the market grows. However, unlike in the standard
Bertrand competition model, markets with syndication admit a second method of maintaining
collusion: if a firm becomes a price deviator—i.e., if a firm bids lower than the price mandated
by the collusive equilibrium—other firms can punish that firm “in period” by refusing offers
of syndication. This raises the cost of production for that firm, as it must now complete
the project on its own instead of engaging in (more efficient) syndicated production. To
incentivize firms to not join the price deviator’s syndicate, we need to promise them rewards in
future periods; reverting to “perfect competition” after a price deviation does not accomplish
this goal, as all firms would earn 0 profits in all future periods. For this reason, reverting
to “perfect competition” in periods after a price deviation is not the best continuation plan
to sustain collusion. Instead, an optimal continuation plan should simultaneously reward
firms for refusing offers of syndication while punishing the price deviator. In particular, the
higher the price deviator’s syndication offer to a firm g, the higher the continuation payoff
needed to induce g to reject the offer of syndication; “the reward should fit the temptation”
(Mailath et al.Mailath et al., 20162016). It is also important to punish a firm if it accepts an offer of syndication
from the deviating firm: to do this, we do revert to perfect competition if any firm accepts a
price deviator’s offer of syndication. This punishes both the initial deviator and any firm
which joins the syndicate as harshly as possible; these strategies make recruiting a syndicate
sufficiently costly that lone production is a more attractive option than recruiting a syndicate.

Unlike grim trigger strategies, syndicate punishment strategies become more powerful as
the market becomes less concentrated, as the cost of completing the project alone becomes
increasingly expensive. Consequently, the preceding observations imply that, in general,
the highest sustainable price is not monotone in market concentration: At high levels of
market concentration, firms can collude at the monopoly price, as in the standard Bertrand
competition model. When market concentration is sufficiently low, syndicate punishments
again enable firms to collude at the monopoly price. However, at intermediate levels of market
concentration, there are no subgame-perfect Nash equilibrium strategies which sustain the
monopoly price.

We now formally derive the highest sustainable price.

Theorem 1. For δ ≥ 1
2 , the highest sustainable price, p?, is given by1414

p? =

v ϕ ∈ [1− δ, 1]

min
{

(1−δ)c(1,ϕk)−ϕc(1,k)
1−δ−ϕ , v

}
ϕ ∈ (0, 1− δ).

14Our result also obtains for some discount factors less than 1
2 , but assuming that δ ≥ 1

2 greatly simplifies
our presentation here.
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Figure 3: The highest sustainable price p? as a function of market concentration ϕ. Here,
c(s,m) = s2

m
, k = 1, δ = 3

4 , and the maximum price that the buyer is willing to pay is
v = 25. For sufficiently concentrated industries, the monopoly price can be sustained through
grim trigger strategies. The highest sustainable price is lower for intermediate industry
concentration levels, but as market concentration goes to 0 the highest sustainable price
reaches the buyer’s value v. The cost of efficient production (i.e., when the syndicate includes
all firms) is 1 for all market concentrations ϕ.

Moreover, p? is quasiconvex in ϕ and limϕ→0 p
? = v.

Figure 33 plots the highest sustainable price p? as a function of ϕ. We call an equilibrium
in which, along the equilibrium path, the buyer accepts an offer of the highest sustainable
price p? and firms engage in efficient joint production an optimal collusion equilibrium. In
an optimal collusion equilibrium, the combined per-period profits for all firms are given by
p? − c(1, 1). An optimal collusion equilibrium maximizes industry profits; the buyer accepts
the highest sustainable price, and efficient joint production ensures that costs are as low as
possible.

In the rest of this section, we show that the p? defined in Theorem 11 can be sustained as
a subgame-perfect Nash equilibrium of the game defined in Section 22 and, moreover, p? is
the highest sustainable price. For ease of exposition, we set k = 1 throughout the rest of this
section.

3.1 Bertrand Reversion Nash Equilibrium

We first describe the Bertrand reversion Nash equilibrium of the stage game, i.e., the subgame-
perfect equilibrium in which all firms make zero profits and the buyer obtains the good
at the lowest possible cost of production. In this equilibrium, each firm f offers a price

9



pft = c(1, 1), which is exactly the cost of producing the good under full participation in the
syndicate. The buyer then chooses each firm as syndicate leader with equal probability. The
syndicate leader then offers each non-leader firm g a fee wgt = c(ϕ, ϕ) equal to g’s cost of
production (assuming all syndication offers are accepted). Each firm g ∈ F r{f} accepts this
offer. Under this behavior, each firm in the syndicate other than f then incurs production
costs of c(ϕ, ϕ) and thus breaks even. Moreover, the syndicate leader also breaks even as
he obtains c(1, 1) = |F |c(ϕ, ϕ) from the buyer, he incurs production costs of c(ϕ, ϕ), and he
pays (|F | − 1)c(ϕ, ϕ) in total to the syndicate, leaving him with exactly 0 in profit.1515

If any firm makes an offer other than c(1, 1) to the buyer, the buyer chooses the lowest
offer.1616 Firms’ responses to syndication offers do not depend on the set of offers made
to the buyer. If the syndicate leader offers a fee of c(ϕ, ϕ) to each other firm, then each
other firm accepts this offer. If the syndicate leader offers a fee other than c(ϕ, ϕ) to
any firm, then within-period continuation play can follow any profile of actions for the
other firms g 6= f that constitutes a Nash equilibrium of the within-period continuation
game.1717 Note, however, that regardless of the equilibrium play after a fee other than
c(ϕ, ϕ) has been offered to some firm, the syndicate leader f ’s profits are no greater than
pf − c(ϕ, ϕ) − (|F | − 1)c(ϕ, ϕ) ≤ c(1, 1) − |F |c(ϕ, ϕ) = 0. This follows as no offer greater
than c(1, 1) will be accepted by the buyer, and no firm will accept a syndication offer of less
than c(ϕ, ϕ), which is its minimal cost of production as a member of a syndicate. Thus, the
syndicate leader will not wish to deviate from the strategy prescribed above. Given his play,
other firms will not wish to deviate from their prescribed strategies either.

Our first result shows that the Bertrand reversion Nash equilibrium strategies just
described in fact constitute a subgame-perfect Nash equilibrium of the stage game in which
each firm obtains its lowest individually rational payoff.

Proposition 1. There exists a subgame-perfect Nash equilibrium of the stage game, i.e., the
Bertrand reversion Nash equilibrium, in which each firm obtains a payoff of 0, its lowest
individually rational payoff.

In the analysis of repeated normal form games, reverting to the stage game equilibrium
described in Proposition 11 would be sufficient to punish any off-equilibrium behavior. That is,
the Bertrand reversion Nash equilibrium can be used to implement the simple penal codes of
AbreuAbreu (19861986). However, as noted by Mailath et al.Mailath et al. (20162016), simple penal codes are insufficient
to characterize the set of equilibrium payoffs in repeated extensive form games. Nevertheless,

15Recall that c(·, ·) is homogeneous of degree one.
16If there are multiple lowest offers, the buyer chooses each with equal probability.
17Note that there may be multiple such Nash equilibria, as whether a syndication offer is profitable for an

agent may depend on whether other agents accept their syndication offers.
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as we will show, the Bertrand reversion equilibrium is a key component in constructing the
equilibrium that supports the highest sustainable price.

3.2 Maintaining Collusion with Grim Trigger Strategies When the
Market Is Concentrated

We first show that the monopoly price v is sustainable when firms are patient and the
number of firms is sufficiently small. Moreover, under these conditions, collusion can be
sustained via “grim trigger” strategies: after a deviation in either step of the stage game,
play in all subsequent periods reverts to the Bertrand reversion Nash equilibrium described
in Section 3.13.1.

Proposition 2. If the discount factor is sufficiently high, i.e., δ ≥ 1− ϕ, then there exists a
subgame-perfect Nash equilibrium in which every firm offers the monopoly price, i.e., pft = v

for any v ≥ c(1, 1), for all f ∈ F and for all t.

To prove Proposition 22, we construct an equilibrium in which, in every period, each firm
bids the monopoly price v; the short-lived buyer then accepts one such offer (choosing each
offer with equal probability). If the offer from firm ` is accepted, ` offers a fee wgt = c(ϕ, ϕ)
to each other firm g ∈ F r {`}; each other firm g then accepts and joins the syndicate.

If a firm offers a lower price in the first step, i.e., becomes a price deviator, the buyer
chooses this lower offer. Then, the price deviator makes a syndication offer to every other
firm; every other firm accepts the offer of syndication if the price deviator offers c(ϕ, ϕ) to
each firm.1818 However, in every subsequent period following such a deviation, play reverts
to the Bertrand reversion Nash equilibrium described in Section 3.13.1. Finally, if any firm
chooses to not accept an offer of syndication with fee c(ϕ, ϕ), play also reverts to the Bertrand
reversion Nash equilibrium. Thus, in each period, the syndicate leader has profits of

v − c(ϕ, ϕ)− (|F | − 1)c(ϕ, ϕ) = v − |F |ϕc(1, 1) = v − c(1, 1)

and each other member of the syndicate has profits of

c(ϕ, ϕ)− c(ϕ, ϕ) = 0.

Given this proposed equilibrium structure, in which the syndicate leader offers every other
firm a syndication fee of c(ϕ, ϕ), it is clear that it is a best response for each firm to accept

18If the syndicate leader offers a fee other than c(ϕ,ϕ) to any firm, then within-period continuation play can
follow any profile of actions for the other firms g 6= ` that constitutes a Nash equilibrium of the within-period
continuation game.
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its offer of syndication, as accepting leads to (weakly) higher profits than rejecting. It is also
clear that the buyer in each period is acting optimally. Thus, to ascertain whether this is an
equilibrium, we need only check whether each firm is willing to offer the monopoly price in
the first step, or would rather offer an infinitesimally lower price to the buyer and have its
offer accepted with certainty. The expected discounted value of the current payoff and all
future payoffs from following the equilibrium strategies is

∞∑
t=0

δtϕ(v − c(1, 1)) = ϕ

1− δ (v − c(1, 1)).

This expression is greater than v − c(1, 1) so long as ϕ > 1 − δ. Meanwhile, the expected
discounted value of all future payoffs from offering an infinitesimally lower price is

v − c(1, 1).

Proposition 22 is the analogue in our setting to the familiar result that, in models of
Bertrand competition, collusion at any price can be maintained by grim trigger strategies
when the industry is sufficiently concentrated. However, in the standard model of Bertrand
competition, collusion cannot be maintained at any price when δ < 1−ϕ; in the next section,
we show that this is not true in our setting.

3.3 Maintaining Collusion with Syndicate Punishments

In this section, we first provide an intuitive description of an equilibrium which sustains the
price p? defined in Theorem 11. We then give a formal construction of the strategy profile,
and show that the strategy profile constitutes a subgame-perfect Nash equilibrium. Finally,
we show that no subgame-perfect Nash equilibrium can sustain a price higher than p?.

The key idea is to construct strategies that exploit syndicate boycotting to enforce higher
prices. Play begins in the cooperation phase, in which each firm offers the same price p? and
a firm, upon having its offer accepted, engages in efficient syndication. Play continues in the
cooperation phase so long as no one deviates. If some firm deviates in the first step—i.e.,
offers a lower price to the buyer in order to guarantee that it wins the bid—we call such
a firm a price deviator. Because of the efficiency gains from syndicated production, the
price deviator will wish to induce the non-leading firms to join its syndicate, and thus will
be willing to offer each firm a fee above its cost of production as an inducement. By the
same token, if the non-leading firms refuse to join the price deviator’s coalition, they can
raise the deviator’s cost of production, punishing the price deviator in-period. Thus, the
optimal collusion plan will promise future-period rewards to non-leading firms that reject
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above-cost syndication offers from the price deviator. For this reason, Bertrand reversion
after a price deviation is not necessarily the best continuation plan to sustain collusion.
Moreover, it is also important to punish a firm if it joins a price deviator’s syndicate; to do
this, we do use Bertrand reversion, as it punishes both the initial deviator and any firm that
joins the syndicate as harshly as possible. Thus, whenever any firm deviates by accepting a
price deviator’s syndication offer—or rejecting a non-price deviator’s equilibrium syndication
offer—play enters the Bertrand reversion phase, in which firms play the Bertrand reversion
Nash equilibrium each period.

After a period in which a firm f is a price deviator, but no firm joins its syndicate, we
enter a collusive punishment phase which both punishes the price deviator and rewards those
who refused to join its syndicate. In the collusive punishment phase, each firm offers the
same price q to the buyer. The higher that q is, the higher total industry profits will be,
which permits larger rewards to firms that reject a price deviator’s syndication offer. At the
same time, behavior during such a collusive punishment phase must itself be subgame-perfect.
If the price q is too high, the collusive punishment phase will not be subgame-perfect, as the
price deviator or another firm will wish to price-deviate in this phase.

Moreover, the continuation payoff to a firm other than the price deviator during a collusive
punishment phase may depend on the offer that was made to that firm by the price deviator.
In particular, “the reward should fit the temptation” (Mailath et al.Mailath et al., 20162016)—the larger the
fee offered to the firm by the price deviator, the greater the continuation payoff offered to
that firm to induce it to reject the offer of syndication.

Thus, to characterize the highest sustainable price, we specify a subgame-perfect Nash
equilibrium that exploits the possibility of in-period punishments. This equilibrium is
composed of three types of phases: In the cooperation phase, each firm offers p to the
short-lived buyer, who then chooses each firm with equal probability; afterwords, an efficient
syndicate is formed. If any firm f price-deviates, but no other firm joins its syndicate, then
we enter a collusive punishment phase with continuation values ψ, in which the continuation
values are determined by the syndication offers. In a collusive punishment phase with
continuation values ψ, each firm offers a specific price q to the short-lived buyer, who then
chooses each firm with equal probability; we call q the collusive punishment price. The
winning bidder then efficiently syndicates production; in so doing, it offers each non-leading
firm g a fee equal to its assigned continuation value, ψg, plus g’s production cost, c(ϕ, ϕ).
Finally, if any firm deviates from equilibrium play with respect to accepting or rejecting offers
of syndication, play enters the Bertrand reversion phase, in which firms play the Bertrand
reversion Nash equilibrium each period.

By making future play conditional on offers of syndication, firms are incentivized to punish

13



price deviators in-period, by refusing to join their syndicates. This then reduces the incentive
for agents to deviate on price, since each firm is aware that, if it deviates on price, it will have
to engage in lone production. Since lone production becomes costlier as the market becomes
more fragmented, reducing market concentration may make it easier to sustain collusion at a
given price.

We now give a formal construction of the strategy profile that sustains p?. The equilibrium
is constructed as follows:

• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p?,
– the short-lived buyer accepts one such offer of p?, choosing each offer with

equal probability,
– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) to every

non-leading firm g ∈ F r {`} to join the syndicate, and
– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

2. In the collusive punishment phase with continuation values ψ,

– every firm submits the same bid q = min{c(1, ϕ), v},
– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,
– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) + ψg to

every non-leading firm g ∈ F r {`} to join the syndicate, and
– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

3. In the Bertrand reversion phase, agents play the Bertrand reversion Nash equilib-
rium.

• Under equilibrium play, play continues in the same phase. In the cooperation phase
or a collusive punishment phase, some firm f may price-deviate in the first step, in
which case the buyer accepts this offer, or deviate with respect to the prescribed set of
syndication offers. If so, future play depends on the sum over the non-leading firms of
the (positive) difference between the syndication fee offered to each firm and the cost to
that firm of doing ϕ of the project, ∑g∈Fr{f}(wg − c(ϕ, ϕ))+.1919 Based on this sum, we

19Here, (x)+ ≡ max{0, x}.
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categorize the set of offers made by a deviating firm f into three cases: uniformly low
offers, insufficient offers, and sufficient offers. Future play in each case is as follows:

Uniformly Low Offers: ∑g∈Fr{f}(wg − c(ϕ, ϕ))+ = 0. In this case, rejecting the syn-
dication offer is a best response for each non-leading firm, as the fee offered is
weakly less than each non-leading firm’s cost of production. Thus, every firm
rejects the offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
g∈Fr{f}(wg − c(ϕ, ϕ))+ ≤ δ

1−δ (q − c(1, 1)). In this case, ab-
sent dynamic rewards and punishments, some non-leading firms may be tempted
to accept their syndication offers. All non-leading firms do reject their syndication
offers and play proceeds going forward in a collusive punishment phase with

ψh =


(wh−c(ϕ,ϕ))+∑

g∈Fr{f}(wg−c(ϕ,ϕ))+ (q − c(1, 1)) h 6= f

0 h = f.

Sufficient Offers: ∑g∈Fr{f}(wg − c(ϕ, ϕ))+ > δ
1−δ (q − c(1, 1)). In this case, play en-

ters the Bertrand reversion phase in the next period. In period, each non-
leading firm h accepts its syndication offer if and only if wh ≥ w̄, where w̄ =
c
(∑

g∈Fr{f} 1{wg≥w̄}, ϕ
)
; i.e., each non-leading firm accepts or rejects its syndica-

tion offer so as to maximize its in-period payoff given the actions of other firms.
Here, each firm accepts its syndication offer if and only if that offer is profitable
within-period, as play enters the Bertrand reversion phase in the next period
regardless of the firm’s behavior.

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,
we proceed to the Bertrand reversion phase.

Figure 44 provides an automaton representation of the subgame-perfect Nash equilibrium
described here.

It is immediate that the conjectured equilibrium delivers a price of p? in each period. We
now verify that the prescribed strategies constitute a subgame-perfect Nash equilibrium.

Responding to Syndication Offers

We first show that the prescribed actions regarding accepting or rejecting syndication offers
are best responses. It is immediate that, after equilibrium play in either the cooperation
phase or a collusive punishment phase, it is a best response for each non-leading firm to
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Figure 4: Automaton representation of the class of equilibria we consider. Labeled nodes are
phases; unlabeled nodes are intermediate phases, which represent the branching of transitions
based on behavior in the second step of the game.

accept its syndication offer.2020 It is also immediate that, in the case of uniformly low offers,
it is a best response for each non-leading firm to reject its syndication offer.2121 Finally, it is
immediate that, in the case of sufficient offers, each non-leading firm plays a best response;
each non-leading firm only accepts its syndication offer if accepting provides a non-negative
payoff in this period, and play continues to the Bertrand reversion phase regardless of the
firm’s actions.

To show that, in the case of insufficient offers, it is a best response for each non-leading
firm to reject the offer of syndication, we calculate the total payoff for h from accepting the
offer as

wh − c
(1

2 , ϕ
)
< wh − c(ϕ, ϕ),

as play reverts to the Bertrand reversion phase if h accepts the offer (even if other firms
reject their syndication offers).2222 Meanwhile, the total payoff for h in the continuation game

20This follows as each syndication offer provides the firm with non-negative surplus and, if the firm rejects
the syndication offer, play continues to the Bertrand reversion phase, in which the firm’s future payoffs are 0.

21This follows as each syndication offer provides the firm with non-positive surplus and play continues to
the Bertrand reversion phase regardless of the firm’s actions.

22Note that, since the equilibrium calls for each firm to reject its offer of syndication, h expects that, if it
accepts its offer of syndication, it will be the only firm to join the syndicate and thus will have production
costs of c

( 1
2 , ϕ

)
.
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from rejecting the offer is

δ

1− δψ
h = δ

1− δ

(
(wh − c(ϕ, ϕ))+∑

g∈Fr{f}(wg − c(ϕ, ϕ))+ (q − c(1, 1))
)

≥ wh − c(ϕ, ϕ),

where the inequality follows from the fact that ∑g∈Fr{f}(wg − c(ϕ, ϕ))+ ≤ δ
1−δ (q − c(1, 1)),

as we are in the insufficient offers case. Thus, it is a best response for every non-leading firm
to rejects its syndication offer in the insufficient offers case.

Responding to Price Offers

It is immediate that each short-lived buyer bt is acting optimally as bt always chooses one of
the lowest price offers less than or equal to its reservation price v.

Deviating on Price or Syndication Offers in the Collusive Punishment Phase

We begin by verifying that, during a collusive punishment phase, no firm has an incentive
to price-deviate or, if selected as the syndicate leader, not make the prescribed syndication
offers. First, consider the payoff to a deviating firm f that is selected as syndicate leader
and then makes uniformly low or insufficient offers. No other firm will join f ’s syndicate,
and f will receive a payment of at most q from the buyer. Thus, firm f ’s profit in-period is
at most q − c(1, ϕ) ≤ c(1, ϕ)− c(1, ϕ) = 0 as q = min{v, c(1, ϕ)}. Moreover, firm f ’s profits
in every future period will be 0. Therefore, firm f ’s total profits from making uniformly
low or insufficient offers are at most 0. On the other hand, firm f enjoys a continuation
value ψf ≥ 0 by not deviating; consequently, it is not profitable for f to deviate and make
uniformly low or insufficient offers.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and
then makes sufficient offers during a collusive punishment phase. Recall that sufficient offers
require that the price deviator provide the non-leading firms with dynamic compensation
totaling at least δ

1−δ (q − c(1, 1)) above their costs of production. Thus, the in-period payoff
to the deviating firm f is at most

q︸︷︷︸
Price

− c(1, 1)︸ ︷︷ ︸
Cost of production

when all firms participate

− δ

1− δ (q − c(1, 1))︸ ︷︷ ︸
Dynamic compensation

to other firms

=
(

1− δ

1− δ

)
(q − c(1, 1)) ≤ 0,

where the last inequality follows as δ ≥ 1
2 . In future periods, play reverts to the Bertrand

reversion Nash equilibrium, and so firm f ’s future payoffs will be 0. Thus, f ’s total payoff
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from deviating is less than or equal to 0. By contrast, if firm f continues with equilibrium
play, it receives a non-negative payoff. Thus, not deviating is a best response for firm f .

Deviating on Price or Syndication Offers in the Cooperation Phase

Finally, we verify that, during the cooperation phase, no firm has an incentive to price-deviate
or, if selected as the syndicate leader, not make the prescribed syndication offers. First,
consider the payoff to a deviating firm f that is selected as syndicate leader and then makes
uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f will receive a
payment of at most p? from the buyer. Thus, firm f ’s profit in-period is at most p? − c(1, ϕ).
Moreover, firm f ’s profits in every future period will be 0. Therefore, firm f ’s total profits
from making uniformly low or insufficient offers are at most p? − c(1, ϕ). On the other hand,
firm f enjoys profits each period of ϕ(p? − c(1, 1)) by not deviating. Consequently, it is not
profitable for f to deviate and make uniformly low or insufficient offers so long as

1
1− δϕ(p? − c(1, 1)) ≥ p? − c(1, ϕ),

which holds as p? ≤ (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ by construction.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and
then makes sufficient offers during the cooperation phase. Recall that sufficient offers require
that the price deviator provide the non-leading firms with dynamic compensation totaling
at least δ

1−δ (q − c(1, 1)) above their costs of production. Thus, the in-period payoff to the
deviating firm f is at most

p?︸︷︷︸
Price

− c(1, 1)︸ ︷︷ ︸
Cost of production

when all firms participate

− δ

1− δ (q − c(1, 1))︸ ︷︷ ︸
Dynamic compensation

to other firms

. (1)

In future periods, play reverts to the Bertrand reversion Nash equilibrium, and so firm f ’s
future payoffs will be 0. Thus, f ’s total payoff from deviating is less than or equal to that
given by (44). By contrast, if firm f continues with equilibrium play, firm f enjoys profits
each period of ϕ(p? − c(1, 1)). Consequently, it is not profitable for f to deviate and make
sufficient offers so long as

1
1− δϕ(p? − c(1, 1)) ≥ p? − c(1, 1)− δ

1− δ (q − c(1, 1)),

which reduces to
p? ≤ (1− δ)c(1, 1) + δ(q − c(1, 1))− ϕc(1, 1)

1− δ − ϕ .
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There are now two cases to consider, depending on q = min{c(1, ϕ), v}: In the first case,
q = c(1, ϕ). Thus, as p? = min{ (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ , v} ≤ (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ , it is not profitable for

f to deviate by making sufficient offers so long as

(1− δ)c(1, ϕ)− ϕc(1, 1)
1− δ − ϕ ≤ (1− δ)c(1, 1) + δ(c(1, ϕ)− c(1, 1))− ϕc(1, 1)

1− δ − ϕ
(1− δ)c(1, ϕ) ≤ (1− δ)c(1, 1) + δ(c(1, ϕ)− c(1, 1))

(2δ − 1)c(1, 1) ≤ (2δ − 1)c(1, ϕ),

which holds since δ ≥ 1
2 and c(1, 1) < c(1, ϕ).

In the second case, q = v, which implies that p? = v.2323 Thus, it is not profitable for f to
deviate by making sufficient offers so long as

v ≤ (1− δ)c(1, 1) + δ(v − c(1, 1))− ϕc(1, 1)
1− δ − ϕ

(1− δ − ϕ)v ≤ δv + (1− 2δ − ϕ)c(1, 1)

(2δ + ϕ− 1)c(1, 1) ≤ (2δ + ϕ− 1)v.

This holds since δ ≥ 1
2 , ϕ > 0, and v ≥ c(1, 1).

Thus, for δ ≥ 1
2 , p

? can be sustained.

Maximality of p?

It now remains to show that no price higher than p? can be sustained. There are two cases
to consider, depending on whether p? = v or p? = (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ : In the former case, no
price greater than p? = v can be sustained as no buyer will accept an offer higher than v.

In the latter case, suppose there existed an equilibrium in which the buyer accepted an
offer of p > p? each period. We show that at least one firm is not playing a best response: The
total industry profits generated each period are at most p− c(1, 1), and so the total expected
industry profits are at most 1

1−δ (p− c(1, 1)). Thus, there must exist at least one firm f with
total expected profits of at most 1

1−δϕ(p− c(1, 1)). If firm f deviated by offering a price of
p− ε and engaging in lone production, f ’s in-period profits approach p− c(1, ϕ) as ε→ 0.
No matter the behavior of other firms in subsequent play, f can guarantee itself non-negative
profits in each subsequent period.2424 Therefore, firm f has profits of deviating of at least

23Note that when 1 − δ − ϕ > 0, we may calculate that p? ≥ q, as (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ − c(1, ϕ) =

ϕ(c(1,ϕ)−c(1,1))
1−δ−ϕ > 0, and so min{ (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ , v} −min{c(1, ϕ), v} ≥ 0.
24For example, f could offer a price of c(1, ϕ) and, if chosen by the buyer, offer a syndication fee of 0 to all

other firms and, if not chosen, reject all syndication offers.
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p− c(1, ϕ) > 1
1−δϕ(p− c(1, 1)), its profits from not deviating, as p > p? = (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ .

Behavior of p?

We now show that p? is quasiconvex. In the region where p? is less than v, we have that the
second derivative of p? with respect to ϕ is given by

∂2p?

∂ϕ2 =
(1− δ)∂

2c(1,ϕ)
∂ϕ2

1− δ − ϕ + 2
1− δ − ϕ

(1− δ)
(
c(1, ϕ)− c(1, 1) + (1− δ − ϕ)∂c(1,ϕ)

∂ϕ

)
(1− δ − ϕ)2︸ ︷︷ ︸

∂p?

∂ϕ

,

which is positive at any critical point of p?: The first term is positive as the cost function is
convex in its second argument and the second term must be 0 at any critical point. Thus, p?

is quasiconvex over the region where p? < v. It is then immediate that p? is quasiconvex over
its entire domain as it is the minimum of a quasiconvex function and a constant.

Finally, given that, for ϕ < 1− δ,

p? = min
{

(1− δ)c(1, ϕ)− ϕc(1, 1)
1− δ − ϕ , v

}

it is immediate that limϕ→0 p
? = v as limϕ→0 c(1, ϕ) =∞ by assumption.

4 Prices, Profits, and Capacity

We now consider the question of how the highest sustainable price and industry profits in an
optimal collusion equilibrium vary as a function of the productive capacity k. In standard
industrial organization models, industry profits are increasing in the productive efficiency
of firms. However, in our setting, this is not necessarily the case: for a large class of cost
functions, industry profits in an optimal collusion equilibrium are strictly decreasing in the
productive capacity k.

Proposition 3. If c(s, ϕ) − c(s, 1) is convex in s for all ϕ ∈ (0, 1 − δ),2525 then the highest
sustainable price p? and industry profits in an optimal collusion equilibrium are decreasing in
productive capacity k.

Increasing the productive capacity affects the highest sustainable price, p?, through two
channels: First, it lowers the cost of efficient joint production, making collusion more profitable.
Second, it also lowers the cost of lone production, making price deviation and lone production

25For instance, all cost functions of the form c(s,m) = s
(
s
m

)α, where α > 0, satisfy this condition.
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more profitable. Since the sustainability of collusion depends on the relative profitability of
these two options—recall from our derivation of p? in Section 3.33.3 that p? is chosen so that
price-deviating and then engaging in lone production is unprofitable—increasing capacity
could potentially make collusion easier or harder to sustain. When the difference between the
cost of lone production (c(s, ϕ)) and the cost of efficient joint production (c(s, 1)) is increasing
and convex in the quantity produced s, the second effect dominates. This makes collusion
harder to sustain and thus the highest sustainable price falls with productive capacity.

Intuitively, one might expect that increasing the productive capacity k would enhance
industry profits in an optimal collusion equilibrium, as it lowers the cost of production c(1, k).
However, as described above, when the difference between the cost of lone production (c(s, ϕ))
and the cost of efficient joint production (c(s, 1)) is increasing and convex in the quantity
produced s, the highest sustainable price p? falls as productive capacity increases. Moreover,
as productive capacity increases, the highest sustainable price (and thus industry revenues)
drops faster than the cost of efficient production. Thus, industry profits decline as productive
capacity increases.

5 Contracting over Production Shares

We now consider a model in which each syndication offer to a non-leading firm g specifies not
only the fee that g will receive but also the share of production that g will complete. Under
this form of contracting, in Step 3 of the extensive form stage game, the syndicate leader `
offers each other firm g a contract (sgt , wgt ). If g accepts this syndication offer, it will receive a
fee of wgt from ` (as before) and will produce a production share sgt . The stage game payoffs
in this case (where, as before, the set of firms who accept the offer of syndication is denoted
by Gt) are given by

1. The payoff for ` is p`t − c
(
1−∑g∈Gtr{`} s

g
t , ϕk

)
−∑g∈Gtr{`}w

g
t , i.e., the price paid by

the buyer less both the cost of `’s production and the fees paid to other firms.

2. The payoff for g ∈ Gt r {`} is wgt − c(sgt , ϕk), i.e., the fee paid to g less the cost of g’s
production.

3. The payoff for h ∈ F rGt is 0.

Surprisingly, the highest sustainable price in this game is the same as in the case described
in Theorem 11, in which firms are unable to contract over production shares.
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Theorem 2. If syndication offers specify both production shares and fees, then for δ ≥ 1
2 , the

highest sustainable price is given by p?, as defined in Theorem 11; moreover, p? is quasiconvex
in ϕ and limϕ→0 p

? = v.

We give a full proof of Theorem 22 in Appendix B.3B.3. To prove that p? is sustainable
when syndication offers specify production shares, we construct an equilibrium that sustains
p?; this equilibrium is very similar to the one constructed in Section 33. In particular, the
equilibrium has the same set of phases and the circumstances under which play transitions
from one phase to another are comparable.

The sustainability of collusion depends on the relative profitability for each firm of
colluding versus price-deviating and then engaging in lone production. Recall from our
derivation of p? in Section 3.33.3 that p? is chosen so that price-deviating and then engaging in
lone production is unprofitable. Because price-deviating and then engaging in lone production
does not involve multi-firm syndicates, changing the contracting structure between syndicate
leaders and non-leading firms does not affect p? directly.

Changing the contracting structure does make recruiting syndicate members after a price
deviation easier. Thus, one might worry that collusion might not be sustainable because
a different type of deviation would become attractive: price-deviating and then building
a syndicate. However, so long as δ ≥ 1

2 , it is still more costly for a price deviator to
make sufficient offers (and thus recruit a syndicate) than to engage in lone production; see
Appendix B.3B.3 for details.

6 Heterogeneous Firms

We now extend the model of Section 55 to consider the case in which firms’ productive
capacities differ.2626 Thus, for each f ∈ F , let κf be the productive capacity controlled by firm
f . It will be helpful to define κmax as the largest share of productive capacity controlled by
a single firm, i.e., κmax ≡ maxf∈F{κf}. Moreover, the total productive capacity is given by
k = ∑

f∈F κ
f .

6.1 Equilibrium Characterization

We now characterize the highest sustainable price as a function of the firms’ productive
capacities, which we denote p̂?(κ; δ). To prove that p̂?(κ; δ) is sustainable, we construct an

26Here, modeling syndication contracts as specifying both a fee and a production share is natural, since
efficient production requires firms with different productive capacities to perform differing production shares.
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equilibrium that sustains p̂?(κ; δ); this equilibrium is very similar to the one constructed in
Section 55.

In our constructed equilibrium, if a firm is small enough, it is allocated no surplus in
the cooperation phase. This is because, if a firm is small enough, the highest sustainable
price will be less than that firm’s cost of production. Accordingly, it will not be profitable
for that firm to price-deviate and then engage in lone production. Therefore, no surplus is
needed to disincentivize this firm from price-deviating and then engaging in lone production.
This frees up additional surplus that can be allocated to larger firms that will be tempted to
price-deviate and then engage in lone production. We call firms that obtain positive surplus
in an equilibrium supporting the highest sustainable price p̂?(κ; δ) collusion beneficiaries and
denote the set of collusion beneficiaries as F̂ .

To prevent a collusion beneficiary f from undercutting on price and engaging in lone
production, f ’s profits from colluding must be large enough that f prefers to adhere to
the equilibrium. Consider an equilibrium that sustains the price p and let rf denote the
fraction of surplus allocated to f . In an equilibrium, f must not be tempted to engage in
lone production, so the following constraint must hold:

1
1− δ r

f (p− c(1, k)) ≥ p− c
(
1, κf

)
. (2)

Maximizing price subject to constraint (22) for each collusion beneficiary, along with the
constraints that rf ≥ 0 for all firms and that ∑f∈F r

f = 1, yields the highest sustainable
price p̂?(κ; δ), as expressed in Theorem 33.

Theorem 3. If syndication offers specify both production shares and fees, firms may have
heterogeneous production capacities, and c(1, κmax) ≤ v,2727 then the highest sustainable price
p̂?(κ; δ) is given by the p̂?(κ; δ)-maximizing solution to

p̂?(κ; δ) =


v ϕ ∈ [1− δ, 1]

min
{

(1−δ)ϕ̂(κ;δ)
∑

f∈F̂ c(1,κf)−ϕ̂(κ;δ)c(1,k)
1−δ−ϕ̂(κ;δ) , v

}
ϕ ∈ (0, 1− δ),

F̂ (κ; δ) =
{
f ∈ F : p̂?(κ; δ) ≥ c

(
1, κf

)}
,

ϕ̂(κ; δ) = 1
|F̂ (κ; δ)|

,

so long as δ ≥ δ̂(κ; δ) ≡ p̂?(κ;δ)−c(1,k)
p̂?(κ;δ)−c(1,k)+min{p̂?(κ;δ),c(1,κmax)}−c(1,k) ∈ [1

2 , 1).

We give a full proof of Theorem 33 in Appendix B.4B.4. To prove that p̂?(κ; δ) is sustainable
27When c(1, κmax) > v, the highest sustainable price is simply v; this corresponds to the case where

price-deviating and engaging in lone production is not profitable in-period for any firm.
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when firms are heterogeneous, we construct an equilibrium that sustains p̂?(κ; δ); this
equilibrium is very similar to the one constructed in Section 55. In particular, the equilibrium
has the same set of phases and the circumstances under which play transitions from one
phase to another are comparable.

In the cooperation phase of our constructed equilibrium, each firm submits a bid of
p̂?(κ; δ). However, the amount of surplus received by each firm now depends on that firm’s
productive capacity. Larger firms, i.e., firms with a larger productive capacity, receive a
greater share of surplus, as the cost of lone production is lower for a larger firm. After a
price deviation, if every non-leading firm rejects the price deviator’s offer of syndication play
enters a collusive punishment phase. The price in this collusive punishment phase is given by
min{c(1, κmax), v}. This ensures that no firm has an incentive to deviate and engage in lone
production (as the cost of lone production will be no less than the price). Finally, there is also
a Bertrand reversion phase, in which the price is the cost of efficient joint production c(1, k).
Play enters this stage whenever any firm deviates with respect to accepting or rejecting offers
of syndication.

To understand how the highest sustainable price p̂?(κ; δ) varies, note that the highest
sustainable price depends on the average cost for lone production among the collusion
beneficiaries, ϕ̂(κ; δ)∑f∈F̂ c

(
1, κf

)
. To see why this is the case, suppose the productive

capacity of a collusion beneficiary f decreases, increasing f ’s cost of lone production; then
constraint (22) slackens, and firm f could be allocated a smaller amount of surplus and still
not be tempted to price-deviate and engage in lone production. Hence, we can reallocate
some of firm f ’s profits to other firms, thereby making collusion relatively more attractive
for these firms and thus raising the highest sustainable price. Since this is true for every
collusion beneficiary, constraint (22), which depends on each collusion beneficiary’s cost of lone
production, must hold with equality for each collusion beneficiary. Summing constraint (22)
across all the collusion beneficiaries, we can then derive the expression for the highest
sustainable price given in Theorem 33.

The restriction on the discount factor δ̂(κ; δ) ensures that undercutting on price and
recruiting a syndicate is not profitable—i.e., that the binding constraint on the highest
sustainable price remains the profits available from price-deviating followed by lone production.
The restriction on δ̂(κ; δ) is analogous to the 1

2 threshold for δ when firms are symmetric.2828

6.2 Effects of Heterogeneity

Using Theorem 33, we can now characterize the effects of a small degree of heterogeneity.
28The expression for δ̂ does not immediately reduce to 1

2 in the case of symmetric firms, as the expression
is derived allowing for the possibility that there is at least one firm obtaining no surplus.
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Figure 5: The highest sustainable price p̂?(κ̄; δ) as a function of the degree of heterogeneity ε.
Here, c(s,m) = s2

m
, δ = 3

4 , and there are 12 firms; half of the firms have productive capacity
1
12 + ε, and half of the firms have productive capacity 1

12 − ε.

Proposition 4. If syndication offers specify both production shares and fees, κ is given by
κf = (ϕk)f∈F for some k, δ > δ̂(κ; δ), and p̂?(κ; δ) < v, then there exists an ε > 0 such that,
for every distribution of productive capacities κ̄ 6= κ such that |κ̄f − κf | < ε for all f ∈ F , we
have that

p̂?(κ̄; δ) > p̂?(κ; δ).

To provide intuition for Proposition 44, consider the example illustrated in Figure 55.
When the 12 firms are nearly homogenous, each firm is a collusion beneficiary, so that
F̂ (κ̄; δ) = F . Accordingly, by Theorem 33, the highest sustainable price is linearly increasing
in the average cost of lone production across all firms, ϕ∑f∈F c

(
1, κ̄f

)
. Moreover, since the

cost of lone production by a firm is convex in that firm’s productive capacity, this sum is
increasing in the degree of heterogeneity—the larger firms’ production cost savings are smaller
than the increased costs for the smaller firms, raising the average cost of lone production.
However, when some firms are very small, their costs of lone production rise above the highest
sustainable price. Hence, these firms are no longer a threat to price-deviate and engage in lone
production, so they are allocated no surplus; they are no longer collusion beneficiaries and F
no longer equals F̂ (κ̄; δ). The six larger firms now comprise the set of collusion beneficiaries
F̂ (κ̄; δ). Thus, in Figure 55, the relevant average becomes the average cost of lone production
across the six large firms. This average is decreasing in the degree of heterogeneity in this
example, as additional heterogeneity increases each large firm’s productive capacity. Thus, as
the degree of heterogeneity increases above a certain point (ε ≈ 1

24), the highest sustainable
price is decreasing in the degree of heterogeneity.
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6.3 Market Entry

We now consider the effect of entry by a small firm on the highest sustainable price. When a
firm enters the market, there are three possible effects: First, it may become easier for a price
deviator to form a syndicate, making collusion more difficult. However, when the discount
factor is high enough, a price-deviator will find forming a syndicate more costly than engaging
in lone production, so this effect does not affect the highest sustainable price. Second, the
new entrant may itself price-deviate and engage in lone production; this may make collusion
more difficult. But, for a small enough entrant, the cost of lone production is higher than
the highest sustainable price when the entrant is not present,2929 and so the entrant will not
price-deviate and engage in lone production. Third, the additional productive capacity of the
entrant reduces the cost of joint production, which makes collusion at the current price more
profitable. This last effect always has bite, and so entry by a small enough entrant raises the
highest sustainable price.

Proposition 5. If syndication offers specify both production shares and fees, δ > δ̂(κ; δ),
p̂?(κ; δ) < v, and limm→0 c(s,m) =∞ for all s > 0, then there exists an ε > 0 such that entry
by a firm f with productive capacity κf < ε will increase the highest sustainable price, i.e.,

p̂?((κ, κf ); δ) > p̂?(κ; δ).

Figure 66 depicts the highest sustainable price for a simple economy as a function of the
size of the entrant. When no entrant is present, the highest sustainable price is 15; however,
for small entrants, the highest sustainable price is (slightly) higher than 15. This happens
because an entrant of sufficiently small capacity does not have the productive capacity to
profitably undercut the collusive price and engage in lone production. Moreover, the entrant’s
capacity makes collusion more profitable for the incumbent firms, as it decreases the cost
of joint production. This makes collusion relatively more attractive to the incumbent firms,
compared to price-deviating and engaging in lone production. Thus, entry by a sufficiently
small firm will facilitate collusion as opposed to hampering it.

However, for a sufficiently large entrant, collusion will become more difficult. An entrant
with enough productive capacity can profitably undercut the collusive price by price-deviating
and engaging in lone production; this occurs when κf becomes approximately 1

16 in Figure 66.
Thus, when the entrant has sufficient production capacity, some industry profits must be
allocated to the entrant in order to make colluding a more rewarding option for the entrant
than price-deviating and engaging in lone production. Allocating some profits to the entrant

29Similarly, if entrants are unable to bid but instead can only participate in the syndicate, the highest
sustainable price will increase after entry.
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Figure 6: The highest sustainable price p̂?((κ, κf); δ) as a function of entrant size κf . Here,
c(s,m) = s2

m
, δ = 3

4 , and there are 8 incumbent firms each with productive capacity 1
8 . The

dashed line denotes the highest sustainable price without entry.

leaves fewer industry profits for the other firms, making collusion relatively less attractive to
them. This makes collusion more difficult, reducing the highest sustainable price.

7 Conclusion

Our results show that, in markets with syndication, classical industrial organization intuitions
are not always valid: Decreasing market concentration can raise prices, as it strengthens
firms’ ability to punish a deviator in-period by refusing offers of syndication.3030 Moreover,
entry can also raise prices; a small entrant cannot credibly threaten to disrupt the collusive
equilibrium, but does make collusion more profitable (and thus more attractive) to incumbent
firms. Thus, our analysis suggests that some standard antitrust remedies—such as breaking
up firms or facilitating entry—are of questionable use in thwarting collusion in markets with
syndication.

Our analysis also adds to the ongoing scholarly debate on whether the IPO underwriting
market is collusive and, if so, how collusion persists despite low market concentration in
the industry. Our results offer potential insight into other features of the financial industry
as well: For example, regulatory barriers routinely restrict participation in certain types of
investments to investors that meet net worth or financial sophistication requirements. One

30Although here we work in a complete information environment, in ongoing work, we show that our
conclusions are largely robust to relaxing our assumption that syndication offers are public.
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might predict that the industry would oppose such restrictions, on the grounds that higher
capacity (i.e., more investors) reduces the total cost of production. However, our work shows
that increased capacity may reduce industry profits by making collusion more difficult. Our
analysis thus suggests that the financial sector may actively support such restrictions, as they
can facilitate collusion.

Finally, our work also highlights the importance of considering the full extensive form
of firm interactions in industrial organization settings. Many industries are characterized
by repeated, complex interactions that are best modeled as repeated extensive form games,
such as IPO underwriting, debt origination, municipal auctions followed by horizontal
subcontracting between bidders, and real estate transactions with agent selection. Further
exploring repeated extensive form games is thus crucial to understanding subtle but important
strategic interactions in these, and many other, markets.
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Appendix – For Online Publication

A Data

The data on IPOs used in Figures 11 and 22 comes from the Securities Data Company (SDC)
database. Data are from 1976–2013. We make the usual exclusions, dropping real estate
investment trusts (REITs), American depositary receipts (ADRs), and unit offerings, as in the
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work of Chen and RitterChen and Ritter (20002000) and Kang and LoweryKang and Lowery (20142014). For Figure 11, we additionally
drop any observation that is missing data for the “price at close of offer/1st trade” for all
IPOs from December 1985 forward. Prior to December 1985, such data are not recorded,
while after this date, IPOs with this field missing appear to frequently be duplicate entries or
non-standard deals; this filter eliminates 1930 out of 11982 IPOs.

B Proofs

B.1 Proof of Proposition 22

We construct a subgame-perfect Nash equilibrium where every firm offers the monopoly price
as follows:

• There are two phases of equilibrium play:

1. In the cooperation phase:

– Every firm submits the same bid p = v,
– The buyer accepts the lowest price offer so long as one such offer is less than

or equal to v. If there are multiple such offers, the buyer accepts each such
offer with equal probability. If there are no such offers, the buyer rejects all
the offers.

– Every firm, if it becomes the syndicate leader, offers every other firm c(ϕ, ϕ)
to join the syndicate, and

– Every other firm accepts this offer.

2. In the Bertrand reversion phase, agents play the Bertrand reversion Nash equilib-
rium.

• Under equilibrium play, play continues in the same phase. If, in the cooperation phase,
any firm f deviates in the first step or deviates with respect to the prescribed set
of offers, then play proceeds to the Bertrand reversion phase. Moreover, if any firm
accepts or rejects a syndication offer contrary to the prescribed play, we proceed to the
Bertrand reversion phase.

It is immediate that along prescribed path of play every firm offers v for all t.
It is also immediate that play in the Bertrand reversion phase is subgame-perfect, as play

is a subgame-perfect Nash equilibrium of the stage game (Proposition 11).
In the cooperation phase, an argument analogous to that used to prove Proposition 11

shows that offering c(ϕ, ϕ) to each other firm minimizes the syndicate leader’s production
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costs; moreover, only by offering c(ϕ, ϕ) to each other firm can the syndicate leader possibly
obtain positive profits in the future. Thus, offering c(ϕ, ϕ) to each other firm is the optimal
action by the syndicate leader during the cooperation phase.

It is immediate that the buyer is acting optimally given the price offers.
Finally, we consider whether any firm will wish to be a price deviator. The expected

profits from the equilibrium strategy are given by

1
1− δϕ(v − c(1, 1)).

Again using an argument analogous to that used to prove Proposition 11, we have that
offering c(ϕ, ϕ) to each other firm minimizes the syndicate leader’s production costs; thus, a
price deviator’s production costs are given by c(1, 1). Moreover, as we revert to Bertrand
competition after a price deviation, profits in all future periods will be 0. Thus, the profits
from deviating on price are bounded by

v − c(1, 1).

Thus, so long as δ ≥ 1− ϕ, the strategies described here constitute a subgame-perfect Nash
equilibrium.

B.2 Proof of Proposition 33

We first show that industry profits in the optimal collusion equilibrium are decreasing in k.
It is easy to verify that price is now given by:

p? = (1− δ)c(1, kϕ)− ϕc(1, k)
1− δ − ϕ .

Industry profits per period are thus

Π ≡ (1− δ)c(1, kϕ)− ϕc(1, k)
1− δ − ϕ − c(1, k) = 1− δ

1− δ − ϕk
(
c
(1
k
, ϕ
)
− c

(1
k
, 1
))
.

where the equality follows from the fact that the cost function is homogeneous of degree 1.
Differentiating profits with respect to k, and then multiplying by 1−δ−ϕ

1−δ gives

1− δ − ϕ
1− δ

∂Π
∂k

=
(
c
(1
k
, ϕ
)
− c

(1
k
, 1
))
− 1
k

(
cs

(1
k
, ϕ
)
− cs

(1
k
, 1
))
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Letting g(x) = c(x, ϕ)− c(x, 1) and x = 1
k
, we have that

1− δ − ϕ
1− δ

∂Π
∂k

= g(x)− xg′(x)

= g(x)− g(0)− (x− 0)g′(x)

< 0,

where the second equality follows from the from the fact that c(0, y) = 0 for all y ≥ 0, and
the inequality follows from the convexity assumption of the theorem.

Since both the cost of efficient joint production and industry profits in the optimal
collusion equilibrium are decreasing in k, the highest sustainable price must be decreasing in
k.

B.3 Proof of Theorem 22

To show that p? is the highest sustainable price, we construct an equilibrium of the following
form:3131

• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p?,
– the short-lived buyer accepts one such offer of p?, choosing each offer with

equal probability,
– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕk) to every

non-leading firm g ∈ F r {`} for agreeing to perform ϕ of production, and
– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

2. In the collusive punishment phase with continuation values ψ,

– every firm submits the same bid q = min{c(1, ϕk), v},
– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,
– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕk) + ψg to

every non-leading firm g ∈ F r {`} for agreeing to perform ϕ of production,
and

31It is immediate that, when ϕ ∈ [1− δ, 1], we can sustain collusion exactly as in the proof of Theorem 11.
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– every non-leading firm accepts the offer by the syndicate leader ` to join the
syndicate.

3. In the Bertrand reversion phase, agents play the Bertrand reversion Nash equilib-
rium.3232

• Under equilibrium play, play continues in the same phase. In the cooperation phase
or a collusive punishment phase, some firm f may price-deviate in the first step, in
which case the buyer accepts this offer, or deviate with respect to the prescribed set of
syndication offers. If so, future play depends on the sum over the non-leading firms
of the (positive) difference between the syndication fee wg offered to each firm g and
the cost to that firm of doing sg of the project, ∑g∈Fr{f}(wg − c(sg, ϕk))+. Based on
this sum, we categorize the set of offers made by a deviating firm f into three cases:
uniformly low offers, insufficient offers, and sufficient offers. Future play in each case
is as follows:

Uniformly Low Offers: ∑g∈Fr{f}(wg − c(sg, ϕk))+ = 0. In this case, rejecting the
syndication offer is a best response for each non-leading firm, as the fee offered
is weakly less than each non-leading firm’s cost of production. Thus, every firm
rejects the offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
g∈Fr{f}(wg − c(sg, ϕ))+ ≤ δ

1−δ (c(1, ϕk)− c(1, k)). In this case,
absent dynamic rewards and punishments, some non-leading firms may be tempted
to accept their syndication offers. All non-leading firms do reject their syndication
offers and play proceeds going forward in a collusive punishment phase with

ψh =


(wh−c(sh,ϕk))+∑

g∈Fr{f}(wg−c(sg ,ϕk))+ (c(1, ϕk)− c(1, k)) h 6= f

0 h = f.

Sufficient Offers: ∑g∈Fr{f}(wg − c(sg, ϕk))+ > δ
1−δ (c(1, ϕk)− c(1, k)). In this case,

play enters the Bertrand reversion phase in the next period; in period, each firm h

accepts if and only if wh ≥ c(sg, ϕk).

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,
we proceed to the Bertrand reversion phase.

The proof that this strategy profile is a subgame-perfect Nash equilibrium and that it
32Here, in the Bertrand reversion Nash equilibrium, the syndicate leader offers every other firm c(ϕ,ϕk)

for agreeing to perform ϕ of the production.
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attain the highest sustainable price of any subgame-perfect Nash equilibrium then follows as
in the discussion following Theorem 11.

B.4 Proof of Theorem 33

To find p̂?(κ; δ), we solve the problem

max
p,r
{p} (3)

subject to the constraints

1
1− δ r

f (p− c(1, k)) ≥ p− c
(
1, κf

)
for all f ∈ F

rf ≥ 0 for all f ∈ F∑
f∈F

rf = 1.

We transform this problem by letting πf = rf (p− c(1, k)) be the continuation value for
f from adhering to the equilibrium strategy in the cooperation phase, and so obtain the
problem

max
π

∑
f∈F

πf


subject to the constraints

1
1− δπ

f ≥
∑
g∈F

πg + c(1, k)− c
(
1, κf

)
for all f ∈ F

πf ≥ 0 for all f ∈ F .

The first constraint is the no lone deviation constraint. This is a convex optimization problem,
and moreover it is immediate that it satisfies Slater’s condition. Thus, by Theorem 7.16 of
SundaramSundaram (19961996), there exists a vector of continuation payoffs π and Lagrangian multipliers
λ and µ that satisfy the Kuhn-Tucker conditions, i.e., for all f ∈ F ,

1 + δ

1− δλ
f −

∑
g∈F

λg + µf = 0

λf ≥ 0 and λf
 1

1− δπ
f −

∑
g∈F

πg − c(1, k) + c
(
1, κf

) = 0

µf ≥ 0 and µfπf = 0.
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Let the set of firms for which λf 6= 0 be denoted F̂ (κ; δ); thus, for each f ∈ F̂ (κ; δ), we have
that

1
1− δπ

f −
∑
g∈F

πg − c(1, k) + c
(
1, κf

)
= 0.

Summing over firms in F̂ (κ; δ), we obtain

1
1− δ

∑
f∈F̂ (κ;δ)

πf =
∑

f∈F̂ (κ;δ)

∑
g∈F

πg + c(1, k)− c
(
1, κf

)
1

1− δ (p− c(1, k)) =
∑

f∈F̂ (κ;δ)

(
p− c(1, k) + c(1, k)− c

(
1, κf

))
p− c(1, k) = (1− δ)|F̂ |p−

∑
f∈F̂ (κ;δ)

c
(
1, κf

)

p =
(1− δ)ϕ̂(κ; δ)∑f∈F̂ (κ;δ) c

(
1, κf

)
− ϕ̂(κ; δ)c(1, k)

1− δ − ϕ̂(κ; δ)

where ϕ̂(κ; δ) = 1
|F̂ (κ;δ)| . Note that if λf 6= 0, then we can rewrite 1

1−δπ
f −∑g∈F π

g − c(1, k) +
c
(
1, κf

)
= 0 as 1

1−δπ
f = p− c

(
1, κf

)
; thus, F̂ (κ; δ) =

{
f ∈ F : p ≥ c

(
1, κf

)}
.

To show that p̂?(κ; δ) is the highest sustainable price, we construct an equilibrium as
follows:3333

• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p̂?(κ; δ),
– the short-lived buyer accepts one such offer of p̂?(κ; δ), choosing each offer

with equal probability,
– every firm, if it becomes the syndicate leader `, offers a fee c(ϕg, κg) + πg

to each non-leading firm ` for agreeing to perform ϕg of production, where
ϕg ≡ κg

k
, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the
syndicate.

2. In the collusive punishment phase with continuation values ψ,

– every firm submits the same bid q = min{c(1, κmax), p̂?(κ; δ)},
– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,
33It is immediate that, when ϕ ∈ [1− δ, 1], we can sustain collusion exactly as in the proof of Theorem 11.
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– every firm, if it becomes the syndicate leader `, offers a fee c(ϕg, κg) + ψg to
every non-leading firm g ∈ F r {`} to join the syndicate, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the
syndicate.

3. In the Bertrand reversion phase, agents play the Bertrand reversion Nash equilib-
rium.3434

• Under equilibrium play, play continues in the same phase. In the cooperation phase
or a collusive punishment phase, some firm f may price-deviate in the first step, in
which case the buyer accepts this offer, or deviate with respect to the prescribed set of
syndication offers. If so, future play depends on the sum over the non-leading firms
of the (positive) difference between the syndication fee wg offered to each firm g and
the cost to that firm of doing sg of the project, ∑g∈Fr{f}(wg − c(sg, κg))+.3535 Based on
this sum, we categorize the set of offers made by a deviating firm f into three cases:
uniformly low offers, insufficient offers, and sufficient offers. Future play in each case
is as follows:

Uniformly Low Offers: ∑g∈Fr{f}(wg − c(sg, κg))+ = 0. In this case, rejecting the
syndication offer is a best response for each non-leading firm, as the fee offered
is weakly less than each non-leading firm’s cost of production. Thus, every firm
rejects the offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
g∈Fr{f}(wg − c(sg, κg))+ ≤ δ

1−δ (q − c(1, k)). In this case, ab-
sent dynamic rewards and punishments, some non-leading firms may be tempted
to accept their syndication offers. All non-leading firms do reject their syndication
offers and play proceeds going forward in a collusive punishment phase with

ψh =


(wh−c(sh,κh))+∑

g∈Fr{f}(wg−c(sg ,κg))+ (q − c(1, k)) h 6= f

0 h = f.

Sufficient Offers: ∑g∈Fr{f}(wg − c(sg, κg))+ > δ
1−δ (q − c(1, k)). In this case, play en-

ters the Bertrand reversion phase in the next period; in period, each firm h accepts
if and only if wh ≥ c

(
sh, κh

)
.

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,
we proceed to the Bertrand reversion phase.

34Here, in the Bertrand reversion Nash equilibrium, the syndicate leader offers every other firm c(ϕg, κg)
for agreeing to perform ϕg of the production.

35Here, (x)+ ≡ max{0, x}.
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It is immediate that the conjectured equilibrium delivers a price of p̂?(κ; δ) in each period.
We now verify that the prescribed strategies constitute a subgame-perfect Nash equilibrium.

Responding to Syndication Offers

We first show that the prescribed actions regarding accepting or rejecting syndication offers
are best responses. It is immediate that, after equilibrium play in either the cooperation
phase or a collusive punishment phase, it is a best response for each non-leading firm to
accept its syndication offer.3636 It is also immediate that, in the case of uniformly low offers,
it is a best response for each non-leading firm to reject its syndication offer.3737 Finally, it is
immediate that, in the case of sufficient offers, each non-leading firm plays a best response;
each non-leading firm only accepts its syndication offer if accepting provides a non-negative
payoff in this period, and play continues to the Bertrand reversion phase regardless of the
firm’s actions.

To show that, in the case of insufficient offers, it is a best response for each non-leading
firm to reject the offer of syndication, we calculate the total payoff for h from accepting the
offer as

wh − c
(
sh, κh

)
,

as play reverts to the Bertrand reversion phase if h accepts the offer (even if other firms
reject their syndication offers). Meanwhile, the total payoff for h in the continuation game
from rejecting the offer is

δ

1− δψ
h = δ

1− δ


(
wh − c

(
sh, κh

))+

∑
g∈Fr{f}(wg − c(ϕ, ϕ))+ (q − c(1, k))


≥ wh − c

(
sh, κh

)
,

where the inequality follows from the fact that ∑g∈Fr{f}(wg − c(sg, κg))+ ≤ δ
1−δ (q − c(1, k)),

as we are in the insufficient offers case. Thus, it is a best response for every non-leading firm
to rejects its syndication offer in the insufficient offers case.

Responding to Price Offers

It is immediate that each short-lived buyer bt is acting optimally as bt always chooses one of
the lowest price offers less than or equal to its reservation price v.

36This follows as each syndication offer provides the firm with non-negative surplus and, if the firm rejects
the syndication offer, play continues to the Bertrand reversion phase, in which the firm’s future payoffs are 0.

37This follows as each syndication offer provides the firm with non-positive surplus and play continues to
the Bertrand reversion phase regardless of the firm’s actions.
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Deviating on Price or Syndication Offers in the Collusive Punishment Phase

We begin by verifying that, during a collusive punishment phase, no firm has an incentive
to price-deviate or, if selected as the syndicate leader, not make the prescribed syndication
offers. First, consider the payoff to a deviating firm f that is selected as syndicate leader and
then makes uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f
will receive a payment of at most q from the buyer. Thus, firm f ’s profit in-period is at most
q − c

(
1, κf

)
≤ c(1, κmax)− c

(
1, κf

)
≤ 0 as q = min{v, c(1, κmax)}. Moreover, firm f ’s profits

in every future period will be 0. Therefore, firm f ’s total profits from making uniformly
low or insufficient offers are at most 0. On the other hand, firm f enjoys a continuation
value ψf ≥ 0 by not deviating; consequently, it is not profitable for f to deviate and make
uniformly low or insufficient offers.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and
then makes sufficient offers during a collusive punishment phase. Recall that sufficient offers
require that the price deviator provide the non-leading firms with dynamic compensation
totaling at least δ

1−δ (q − c(1, k)) above their costs of production. Thus, the in-period payoff
to the deviating firm f is at most

q︸︷︷︸
Price

− c(1, k)︸ ︷︷ ︸
Cost of production

when all firms participate

− δ

1− δ (q − c(1, k))︸ ︷︷ ︸
Dynamic compensation

to other firms

=
(

1− δ

1− δ

)
(q − c(1, k)) ≤ 0,

where the last inequality follows as δ ≥ 1
2 . In future periods, play reverts to the Bertrand

reversion Nash equilibrium, and so firm f ’s future payoffs will be 0. Thus, f ’s total payoff
from deviating is less than or equal to 0. By contrast, if firm f continues with equilibrium
play, it receives a non-negative payoff. Thus, not deviating is a best response for firm f .

Deviating on Price or Syndication Offers in the Cooperation Phase

Finally, we verify that, during the cooperation phase, no firm has an incentive to price-deviate
or, if selected as the syndicate leader, not make the prescribed syndication offers. First,
consider the payoff to a deviating firm f that is selected as syndicate leader and then makes
uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f will receive
a payment of at most p̂?(κ; δ) from the buyer. Thus, firm f ’s profit in-period is at most
p̂?(κ; δ)− c

(
1, κf

)
. Moreover, firm f ’s profits in every future period will be 0. Therefore, firm

f ’s total profits from making uniformly low or insufficient offers are at most p̂?(κ; δ)−c
(
1, κf

)
.

On the other hand, firm f enjoys profits each period of rf (p̂?(κ; δ)− c(1, k)) by not deviating.
Consequently, it is not profitable for f to deviate and make uniformly low or insufficient
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offers so long as
1

1− δ r
f (p̂?(κ; δ)− c(1, k)) ≥ p? − c

(
1, κf

)
;

but this constraint is satisfied by the construction of p̂?(κ; δ)—see (33).
Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during the cooperation phase. Recall that sufficient offers require
that the price deviator provide the non-leading firms with dynamic compensation totaling
at least δ

1−δ (q − c(1, k)) above their costs of production. Thus, the in-period payoff to the
deviating firm f is at most

p?︸︷︷︸
Price

− c(1, k)︸ ︷︷ ︸
Cost of production

when all firms participate

− δ

1− δ (q − c(1, k))︸ ︷︷ ︸
Dynamic compensation

to other firms

. (4)

In future periods, play reverts to the Bertrand reversion Nash equilibrium, and so firm f ’s
future payoffs will be 0. Thus, f ’s total payoff from deviating is less than or equal to that
given by (44). By contrast, if firm f continues with equilibrium play, firm f enjoys profits
each period of rf(p̂?(κ; δ)− c(1, 1)). Consequently, it is not profitable for f to deviate and
make sufficient offers so long as

1
1− δϕ(p̂?(κ; δ)− c(1, 1)) ≥ p? − c(1, 1)− δ

1− δ (q − c(1, 1)).

Note that, for a small enough firm f , we could have rf = 0. Thus, we must have δ large
enough to that

0 ≥ p̂?(κ; δ)− c(1, k)− δ

1− δ (q − c(1, k)).

Thus, solving for δ, we have

δ ≥ p̂?(κ; δ)− c(1, k)
(p̂?(κ; δ)− c(1, k)) + (q − c(1, k)) ,

which will be satisfied since q = min{c(1, κmax, p̂?)}.
Thus, for δ ≥ δ̂(κ; δ), p̂?(κ; δ) can be sustained.

Maximality of p̂?(κ; δ)

It now remains to show that no price higher than p̂?(κ; δ) can be sustained. There are two
cases to consider, depending on whether p̂?(κ; δ) = v or p̂?(κ; δ) < v: In the former case, no
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price greater than p̂?(κ; δ) = v can be sustained as no buyer will accept an offer higher than
v.

It is also immediate that we can not construct an equilibrium with a price higher than
p̂?(κ; δ) =

(1−δ)ϕ̂(κ;δ)
∑

f∈F̂ (κ;δ) c(1,κf)−ϕ̂(κ;δ)c(1,k)
1−δ−ϕ̂(κ;δ) , since, by construction, under any such price

some firm will have an incentive to slightly underprice and engage in lone production.

B.5 Proof of Proposition 44

First, note that F̂ (κ; δ) = F for all κ when ε is sufficiently small. Moreover, δ(κ; δ) is
continuous in κ, and so, for ε sufficiently small, we have that δ > δ(κ; δ) since δ > δ((ϕk)f∈F ; δ).
If p̂?(κ; δ) = v, we are done, since p̂?((ϕk)f∈F ; δ) < v by assumption. Thus, when p̂?(κ; δ) < v,
we can write

p̂?(κ; δ)− p̂?((ϕk)f∈F ; δ) = (1− δ)ϕ̂(κ; δ)
∑
f∈F̂ c

(
1, κf

)
−∑f∈F̂ c(1, ϕk)

1− δ − ϕ̂(κ; δ) > 0

where the inequality follows from the strict convexity of c(s,m) with respect to m.

B.6 Proof of Proposition 55

Let ε be small enough so that c(1, ε) > v. Note that such an ε must exist, as c(1, ε)→∞ as
ε→ 0. Solving for the highest sustainable price when f is present, i.e., solving the problem
given in (33), we obtain

p̂?((κ, κf ); δ) = min

(1− δ)ϕ̂(κ; δ)∑f∈F̂ c
(
1, κf

)
− ϕ̂(κ; δ)c

(
1, k + κf

)
1− δ − ϕ̂(κ; δ) , v

.
Note that ε has been chosen to ensure that f /∈ F̂ . Thus,

p̂?((κ, κf ); δ)− p̂?(κ; δ) = min

ϕ̂(κ; δ)
c(1, k)− c

(
1, k + κf

)
1− δ − ϕ̂(κ; δ) , v − p̂?(κ; δ)

 > 0.

Finally, note that δ̂((κ, κf ); δ) ≥ δ̂(κ; δ) as p̂?((κ, κf ); δ) > p̂?(κ; δ).
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