
SPRING 2018 

NEW YORK UNIVERSITY 

SCHOOL OF LAW 

 

 

 

 

 

 

“How Do Distributions from Retirement Accounts 

Respond to Early Withdrawal Penalties?  

Evidence from Administrative Tax Returns” 

Damon Jones 

University of Chicago Harris School of Public Policy 

 

 

 

 

 

 

 
 

 

 

 

 

March 27, 2018 

Vanderbilt Hall – 208 

Time:  4:00 – 5:50 p.m. 

Week 9 

 

 



 

SCHEDULE FOR 2018 NYU TAX POLICY COLLOQUIUM 
(All sessions meet from 4:00-5:50 pm in Vanderbilt 208, NYU Law School) 

 

1.  Tuesday, January 16 – Greg Leiserson. Washington Center for Equitable Growth. “Removing 

the Free Lunch from Dynamic Scores: Reconciling the Scoring Perspective with the Optimal Tax 

Perspective.” 

2.  Tuesday, January 23 – Peter Dietsch, University of Montreal Philosophy Department.  “Tax 

Competition and Global Background Justice.” 

3.  Tuesday, January 30 – Andrew Hayashi, University of Virginia Law School. “Countercyclical 

Tax Bases.” 

4.  Tuesday, February 6 – Gerald Auten, U.S. Treasury Department.  “Income Inequality in the 

United States: Using Tax Data to Measure Long-Term Trends.” 

5.  Tuesday, February 13 – Vanessa Williamson, Brookings Institution. “How the Taxpaying 

Experience Obscures Low-Income Taxpayers and Shapes Attitudes about Progressivity” 

6.  Tuesday, February 27 – Jacob Goldin, Stanford Law School. “Tax Benefit Complexity and 

Take-up: Lessons from the Earned Income Tax Credit” 

7.  Tuesday, March 6 – Lisa Philipps, Osgoode Hall Law School.  “Gendering the Analysis of 

Tax Expenditures.” 

8.  Tuesday, March 20 – Lisa De Simone, Stanford Graduate School of Business. “Repatriation 

Taxes and Foreign Cash Holdings: The Impact of Anticipated Tax Reform” 

9.  Tuesday, March 27 – Damon Jones, University of Chicago Harris School of Public Policy. 

“How Do Distributions from Retirement Accounts Respond to Early Withdrawal Penalties? Evidence 

from Administrative Tax Returns.”  

10.  Tuesday, April 3 – Ajay Mehrotra, American Bar Foundation and Northwestern University 

School of Law. “T.S. Adams and the Beginning of the Value-Added Tax.” 

11.  Tuesday, April 10 – Jason Furman, Harvard Kennedy School. “Should Policymakers Care 

Whether Inequality Is Helpful or Harmful For Growth?” 

12.  Tuesday, April 17 – Emily Satterthwaite, University of Toronto Law School. “Electing into a 

Value-Added Tax: Survey Evidence from Ontario Micro-Entrepreneurs.” 

13.  Tuesday, April 24 – Wolfgang Schon, Max Planck Institute. “Taxation and Democracy.” 

14.  Tuesday, May 1 – Mitchell Kane, NYU Law School. "Collecting the Rent: The Global Battle 

to Capture MNE Profits" 



How Do Distributions from Retirement Accounts
Respond to Early Withdrawal Penalties? Evidence from

Administrative Tax Returns∗

Gopi Shah Goda
Stanford University

and NBER

Damon Jones
University of Chicago

and NBER

Shanthi Ramnath
U.S. Treasury

March 2018

Abstract

The design of retirement savings accounts must balance the long-term goal of retire-
ment wealth accrual with the potential need for liquidity. Penalties (and exceptions)
on pre-retirement withdrawals provide a possible lever for striking this balance. In
the United States, penalties amount to 10 percent of withdrawn funds and several
exceptions are available, including partial or full exemptions for the unemployed, dis-
abled, or those incurring unreimbursed medical expenses. In this paper, we investigate
how individuals respond to the removal of the 10 percent penalty imposed on Individ-
ual Retirement Account (IRA) withdrawals prior to the account holder turning 591

2 .
Our analysis employs rich tax records from the Internal Revenue Service (IRS) and
develops new empirical techniques which allow us to use annual data to better under-
stand patterns at higher levels of frequency. We find a large increase in withdrawals
upon reaching age 591

2 , implying an 80 percent increase in annual withdrawals on av-
erage among our population. We also show that lower-income quartiles, the recently
unemployed, and those who have experienced large unreimbursed medical expenses
experience larger increases, suggesting larger constraints prior to age 591

2 , while those
who are disabled are better able to use their account balances to smooth their con-
sumption due to a more expansive exemption from the penalty.
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1 Introduction

In the United States, Americans have an estimated $14.4 trillion invested in employer-

sponsored defined contribution plans and individual retirement accounts (Investment Com-

pany Institute, 2015). These funds typically receive preferential tax treatment, which allows

households to accumulate retirement savings at a faster rate than in normal savings vehi-

cles. In exchange for this preferential tax treatment, the accounts are relatively illiquid, as

a penalty is typically imposed for withdrawals occurring before the account holder turns

591
2
. This penalty is designed to dissuade people from accessing these funds prior to retire-

ment, but there are several avenues to partially or completely liquidate funds in tax-preferred

retirement savings accounts prior to retirement.1

The degree of illiquidity in retirement savings accounts, as determined by the rate of the

penalty, the age threshold where the penalty is lifted, and the exceptions to the penalty that

are granted, has implications for the accumulation of assets for retirement. First, it may

affect the amount that is withdrawn from accounts prior to retirement, known as “leakage.”

Recent evidence suggest that leakage is substantial, amounting to approximately $0.40 of

every $1 contributed into the account prior to the age of 55 (Bryant, Holden and Sabelhaus,

2010; Argento, Bryant and Sabelhaus, 2015). Leakage reduces wealth available for retirement

substantially, and the potential to access retirement funds prior to retirement could lead

present-biased individuals to accumulate lower levels of retirement wealth (Beshears et al.,

2014, 2015a; Goda et al., 2015). This evidence suggests that increasing the illiquidity in

retirement accounts could increase the amount of wealth accumulated for retirement by

making the account a more effective commitment device.

Second, the degree of illiquidity affects the ability of individuals to smooth consump-

1First, many accounts grant exceptions from the penalty for several reasons including death or disability,
education expenses, first-time home purchases, and unreimbursed medical expenses. In addition, job transi-
tions can provide opportunities to liquidate tax-preferred retirement savings accounts with funds less than a
specified threshold, and some accounts allow loans which may become withdrawals if not paid back upon job
separation. For instance, the IRS waives any penalties for workers aged 55 and older after a job termination.
Finally, many accounts allow withdrawals to be taken for any reason subject to a penalty being paid.
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tion by self-insuring against negative shocks. Wealth accumulated in retirement savings

accounts can provide an important form of insurance. Indeed, previous studies find that

early withdrawals are strongly correlated with shocks to income or marital status or rep-

resent consumption-smoothing behavior by liquidity-constrained households who experience

financial shocks (Amromin and Smith, 2003; Argento, Bryant and Sabelhaus, 2015). If retire-

ment savings accounts facilitate insurance against negative income shocks, then some level

of liquidity prior to retirement may be optimal. Finally, the degree of liquidity in retirement

saving accounts changes the attractiveness of saving in those accounts relative to accounts

where pre-retirement withdrawals are forbidden.

The potential consumption-smoothing benefits retirement savings accounts can provide

may be at odds with the goals of retirement wealth accumulation. As a result, there has been

recent discussion regarding adjusting the age threshold for penalty-free withdrawals (Munnell

and Webb, 2015) or changing the amount of the penalty (Beshears et al., 2014). Moreover,

several other developed countries, which generally lack options for early withdrawal, are in

the process of discussing providing early access to retirement savings (Beshears et al., 2015a;

Agarwal, Pan and Qian, 2016). Despite these active policy debates, there is not a large

amount of literature seeking to understand the implications of these potential policies.

In this paper, we examine the withdrawal behavior of individuals as they cross the age

591
2

threshold in retirement savings accounts when the penalty for early withdrawals is

removed. We assess the ability of savers to take advantage of penalty exceptions and smooth

consumption in response to negative shocks by analyzing the heterogeneity in the response

to the penalty across characteristics associated with shocks faced near the age threshold. If

the exceptions to the penalty fully insure people from these shocks, we would expect to see

higher rates of penalty-free withdrawals prior to 591
2

and smaller increases at 591
2
.

Our analysis uses tax records from the full sample of individuals born between July 1,

1941 and July 1, 1951 from tax years 1999 through 2013 which contain information regarding

individuals’ retirement accounts, contributions, withdrawals, as well as one’s filing status,
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adjusted gross income, wages, and other items collected by tax forms. While these data

have several advantages, the fact that they can only obtained on an annual basis rather than

higher levels of frequency presents difficulties in distinguishing between general increases in

retirement withdrawals as individuals age from increases occurring as a result of the removal

of the penalty at age 591
2
.

In order to identify the response in retirement account withdrawals, we exploit differences

in exposure to penalty-free withdrawal within a calendar year stemming from variation in

one’s date of birth. For instance, someone whose birthday is July 1, 1949 attains 591
2

on

January 1, 2009 and thus has a full year of exposure to penalty-free withdrawals in 2009.

By contrast, an individual born on June 30, 1950 attains age 591
2

at the end of the year on

December 30, 2009 and only experiences one day of penalty-free withdrawal in 2009. Building

on that intuition, we introduce a novel method for using annual data to parametrically recover

an event study at age 591
2
.

Our findings indicate that retirement saving illiquidity affects financial decisions. We find

that increases in annual withdrawals in the calendar year one turns 591
2
, relative to the pre-

vious calendar year, are larger for individuals who attain age 591
2

early in the year relative to

those who attain age 591
2

late in the year. Moreover, we estimate a significant increase in pre-

retirement withdrawals upon reaching age 591
2

that implies an approximately $1,600 increase

in annual withdrawals from Individual Retirement Accounts (IRAs), on average. Our results

suggest that this increase is largely due to additional people taking withdrawals after the

penalty is lifted rather than higher withdrawals among those who were withdrawing prior to

age 591
2
. This higher rate of withdrawals after 591

2
persists beyond this threshold, suggesting

that the increase does not merely represent a retiming of withdrawals and that increasing

liquidity by either lowering the age threshold or reducing the penalty would potentially lead

to more leakage.

We also examine the heterogeneity in the response to lifting the penalty on withdrawals.

Our analysis shows that individuals in higher income quartiles experience smaller increases
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in withdrawals at the 591
2

threshold, suggesting that the penalty creates more constraints

for lower-income quartiles. We separately analyze outcomes for those who experience un-

employment, disability and medical shocks and find that disability appears to be insured

to a greater extent than unemployment or the risk of large unreimbursed medical expenses,

as those who were recently disabled do not increase their withdrawals as much at the 591
2

threshold. This may be unsurprising given the fact that there are a broad set of exceptions to

the penalty in the case of disability, while exceptions during unemployment only cover health

insurance premium payments and exceptions for medical expenses only cover the amount of

unreimbursed medical expenses above a threshold.

Our paper builds on related literature that examines how withdrawals from retirement

savings accounts change over the lifecycle and in response to various provisions. Perhaps

most relevant, recent work by Agarwal, Pan and Qian (2016) examines how withdrawals

from pension savings in Singapore responds to a sharp change in the ability to cash out

savings at age 55. Using data from a large bank, the authors construct a monthly event

study surrounding age 55 and show that account balances and credit card spending increase

upon turning 55, while credit card debt decreases. Prior work using U.S. data show increases

in withdrawals by age (e.g., Sabelhaus (2000)), but does not allow for higher-frequency event

studies to uncover the relationship between withdrawal penalties and withdrawal amounts.

Recent studies examine withdrawals behavior surrounding the age threshold for required

minimum distributions. Poterba, Venti and Wise (2013) find that withdrawal behavior in-

creases sharply after age 701
2

using data from the SIPP, suggesting that households tend

to preserve retirement assets to self-insure against large and uncertain late-life expenses.

Brown, Poterba and Richardson (2014) examine how the 2009 one-time suspension of the

rules associated with required minimum distributions affected withdrawals for TIAA-CREF

participants and find that one third of those affected by the rules discontinued their with-

drawals when the rules were suspended. Using administrative tax data, Mortenson, Schramm

and Whitten (2016) similarly find that required minimum distributions cause funds to be
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drawn down more quickly than otherwise, and, additionally, that some accounts are closed

in response to the policy.

We make several contributions to this literature. First, we provide, to our knowledge, the

first causal estimates of the effect of removing the 10 percent penalty from pre-retirement

withdrawals on withdrawal behavior in the U.S. Under the assumption that other charac-

teristics that affect distribution behavior vary smoothly across the age 591
2

threshold, our

estimates can be interpreted as the result of the change in penalty rather than other fac-

tors. We also evaluate the role of exceptions as a form of targeted liquidity in providing

consumption-smoothing benefits after negative shocks.

Second, we use a novel, comprehensive data source that provides high-quality data on

withdrawals from information returns provided by the IRS. Given the relatively small num-

bers of individuals taking withdrawals from retirement savings accounts near the age 591
2

threshold, household surveys are unlikely to uncover any changes occurring precisely at age

591
2
. In addition, household surveys may underreport withdrawals from retirement savings

accounts, as even withdrawals recorded on Form 1040 are approximately 20 percent lower

than implied by information returns (Argento, Bryant and Sabelhaus, 2015).

Finally, we develop empirical techniques to convert data at a lower frequency into a

higher frequency event study by exploiting variation by date of birth. These techniques

are similar to, but distinct from, techniques that exploit differences in the distribution of

temperature each year to identify the effect of particular daily temperatures on outcomes

in the climate change literature (Deschênes and Greenstone, 2011; Deryugina and Hsiang,

2014). Our method can potentially be used in a variety of different settings, including, for

example, understanding the effect of sharp changes in eligibility for Social Security on related

outcomes.

The remainder of the paper proceeds as follows. Section 5 describes institutional features

and the data we use for the study, and Section 4 lays out our empirical strategy. We discuss

results in Section 6 and conclude in Section 7.
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2 Background: Retirement Liquidity in the U.S.

A large component of retirement savings in the U.S. is in tax-preferred savings accounts,

including both employer-sponsored defined contribution plans (e.g., 401(k)s) and Individual

Retirement Accounts (IRAs). These accounts allow individuals to contribute funds annually,

up to a set maximum. Contributions are either made with pre-tax assets and taxed when

withdrawn, as in the case of Traditional IRAs or 401(k)s, or made with after-tax assets and

exempt from taxes when withdrawn, as in the case of Roth IRAs or Roth 401(k)s.

In order to encourage individuals to use the proceeds from these accounts for retirement,

the government imposes various restrictions or penalties against withdrawing funds for other

purposes. The restriction depends on precisely which type of account is being withdrawn

from. Typically, traditional IRAs allow early withdrawals for any reason, but these early

withdrawals are subject to a 10 percent penalty. Exceptions to the penalty are made in the

event of death or disability, for first-time homebuyers, education expenses, health insurance

premiums while unemployed, and unreimbursed medical expenses. Since Roth IRA contri-

butions are made on an after-tax basis, withdrawing the basis – and not the earnings – can

be done without penalty.

Pre-retirement withdrawals from 401(k) plans can be made only in the event of a hardship,

or an immediate and heavy financial need. Certain expenses are deemed to be immediate and

heavy, including certain medical expenses, the purchase or repair of a principal residence,

and burial or funeral expenses. These early withdrawals are subject to a 10 percent penalty,

with some exceptions (e.g., upon the death or disability of the account holder).

All penalties and restrictions are lifted once an individual turns 591
2
. The IRS calculates

age 591
2

by determining the month and year in which an individual turns 59, moving six

months forward, and then choosing the day in that month that corresponds to the day of

birth. While in most cases this is straightforward, there are some cases where special rules

apply. For instance, if someone is born on August 31, 1970 the above rules would specify

February 31, 2030 as the day they turn 591
2
. Since this day does not exist, the rules indicate
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that one should calculate the residual days left over at the end of the month (three in this

case, since February ends on February 28) and advance that many days forward (March 3,

2030 in this example). Individuals born on leap days turn 591
2

on September 1 in the year

in which they turn 59. In other words, the IRS considers them age 591
2

on the same day as

someone born on March 1 in the same year.

While not the focus of this paper, there is also a sharp change in rules regarding with-

drawals when an individual turns 701
2

and is subject to required minimum distributions

(RMDs). RMDs apply to all employer-sponsored retirement plans and traditional IRAs and

specify minimum amounts that an account owner must withdraw annually starting the year

he or she attains age 701
2
.2 These rules are designed to limit the amount of tax deferral

provided to retirement savings accounts.3

It is worth noting that the liquidity in retirement savings accounts in the U.S. is generally

higher than other developed countries. Beshears et al. (2015b) compare the liquidity in

retirement savings systems across six developed countries and show that the U.S. has a

much more liquid system with relatively low penalties for early withdrawals, and several

exceptions for penalty-free withdrawals.

3 A Model of IRA Withdrawals

In this section, we present model designed to capture some key features of the decisionmaking

environment in our setting. We begin with a simple model of IRA withdrawals and introduce

a number of extensions that result in a set of stylized patterns. These basic patterns will

eventually be compared to what we can estimate in the day, potentially shedding light on the

key parameters of the model. We conclude with a discussion of how a more general model

with richer structure might alter the predictions.

2For employer-sponsored retirement plans, individuals are exempt from RMDs if they are not retired.
3Note that Roth IRAs do not require minimum distributions until after the death of the account holder.
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3.1 Baseline Setup

We model a finite-horizon, discrete time, life-cycle model of consumption and savings. For our

purposes, it will be sufficient to restrict attention to agents’ decisions in the neighborhood

surrounding the time t∗, which is analogous to the date on which one reaches age 591
2
.

Furthermore, we abstract from earnings decisions and income shocks by assuming that agents

only have an initial IRA savings account balance three years prior to time t∗, i.e. at∗−3. In

this sense, we are focusing on agents who are making withdrawals from the IRA, i.e. those

for whom time t∗ represents a meaningful shift in incentives.

Agents have additively separable utility over consumption in each period u (ct | θt), with

u′ (· | θt) > 0 and u′′ (· | θt) < 0. The parameter θt ∈ {0, 1} is an indicator for receiving a

shock to marginal utility in period t. We assume u′ (c | 1) > u′ (c | 0) ,∀c. For now, we also

assume that the value of this “shock” is known in advance. Agents earn a gross return of R

each period on savings in the IRA account and there is no borrowing. Withdrawals from the

IRA are potentially penalized at the rate πt, which takes on a value π > 0 prior to period t∗

and zero thereafter. Each period, the agent solves the following:

max
{ct}

T−t∑
j=0

βju (ct+j | θt)

s.t. (1 + πt) ct + at+1 = Rat ∀t

at+1 ≥ 0 ∀t

at > 0 (given)

(1)

3.2 Model with no Shocks

We begin by analyzing behavior when the value of the parameter θt is fixed over time.

The basic patterns of consumption, and by extension withdrawals, are plotted in Figure

1. In Figure 2(a) we plot consumption in the absence of the early withdrawal penalty.

For simplicity, we assume that R and β are such that the agent prefers a constant level of

consumption. In Figure 2(b) we introduce the early withdrawal penaly, which generates a
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lower level of consumption prior to period t∗ relative to after. To see this, note the Euler

equation between periods t∗ − 1 and t∗ is:

u′ (ct∗−1 | 0) = (1 + π) βRu′ (ct∗ | 0) (2)

Since we have effectively assumed that β/R = 1, then the condition implies that ct∗ >

ct∗−1. This generally applies to all comparisons between pre- and post-t∗ consumption. Thus,

the difference in levels on average before and after t∗ are related to π. It follows that for

agents we should expect variation in this difference based on the extent to which exceptions

to the penalty are available. Finally, Figure 2(c) shows the general pattern, averaged over

those who face the penalty and those who do not.

3.3 Model with Transitory Shocks

We now introduce a one-period shock to marginal utility during which θt = 1. Relative to

the prior model, consumption in a period in which a shock occurs will be relatively higher,

both in levels and compared to neighboring time periods. In Figure 2(d) we show a shock

in period t∗ − 1 and relatively higher consumption in that same period. We can show this

result by inspecting the Euler equation between period t∗ − 2 and t∗ − 1 with and without

the shock:

u′ (ct∗−2 | 0) = βRu′ (ct∗−1 | 0) (no shock)

u′ (ct∗−2 | 0) = βRu′ (ct∗−1 | 1) (shock)
(3)

Given, our assumptions, we can see that the ratio of consumption in period t∗− 1 to that of

period t∗−2 is greater when a shock occurs in period t∗−1. Since marginal utility is higher,

consumption must be adjusted upward in order to keep the condition satisfied. Note that π

does not appear in these equations, since both periods are equally penalized. In Figure 2(e),

we demonstrate a similar effect on consumption when the shock occurs in period t∗ + 1. If

we assume that the shocks are distributed i.i.d., then on average what we observe is still the
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difference in consumption driven by the penalty π. This is illustrated in Figure 2(f).

3.4 Model with Serial Correlated Shocks

We finally extend the model by allowing the shock to persist, now for two periods. Thus,

when the shock occurs in period t it also remains in period t + 1. In this sense, the shocks

become less transitory. In Figure 2(g) we see relatively higher consumption in the periods

over which the shocks occur, due to the same reasoning as before. However, we see a slightly

different pattern when the shocks span period t∗ in Figure 2(h). In this case, consumption

is adjusted up in both periods, but there is a relatively smaller increase in consumption in

period t∗ − 1 than in the case where the shock only lasts one period. There is also now a

relatively greater increase in consumption in period t∗ than in the case where the shock only

lasts one period. Intuitively, resources are substituted to the two period with a shock, away

from other periods, as in Figure 2(g), driven by θ. In addition, within these two periods,

consumption is substituted away from period t∗ − 1 to period t∗, which is driven by π.

Moreover, when the two period shock occurs during periods t∗ and t∗ + 1, the increase in

consumption in period t∗ will be smaller, because there is no longer a wedge between the

two periods created by π. It follows that if we average across individuals in this setting, we

will observe the pattern in Figure 2(i). Here, we see that the serial correlation now creates

a “dip” in average consumption just before period t∗ and a relative “spike” in period t∗.

3.5 Discussion

4 Empirical Method

While we observe the average amount of pre-retirement withdrawals and the share taking

withdrawals from IRA accounts at an annual frequency, we would like to understand how

these outcomes evolve at a more granular level and, in particular, in a neighborhood near

age 591
2
. Our empirical strategy leverages variation in exposure to pre-retirement withdrawal
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penalties driven by date of birth to recover patterns at a subannual frequency. For example,

take two individuals, one born on June 30, 1950 and another born on July 1, 1950. According

to IRS rules, the former turns 591
2

on December 30th, 2009, while the latter turns 591
2

on

January 1st, 2010. Differences in their annual pre-retirement withdrawals and the share

taking withdrawals in 2009 can be related to the fact that one person has experienced two

days of penalty free withdrawals while the other faced the penalty the entire year. We

generalize this notion below. First, we present a method, relying on strong parametric

assumptions, that uses annual patterns in year-to-year withdrawal levels and withdrawal

rates to test for a discontinuous effect of the age 591
2

threshold. Second, we provide a

less restrictive approach that allows us to estimate event studies at age 591
2
, at subannual

frequencies: i.e. quarterly, monthly, weekly, and daily.

We motivate our empirical approach with a model of average daily pre-retirement with-

drawals. We assume that average pre-retirement withdrawals would evolve in a continuous

and gradual fashion from day-to-day in the absence of sharp changes in withdrawal penalties.

Suppose the daily pattern of withdrawals can be characterized as follows:

ybd = α̃ + λ̃d + f (d− b− a∗) +D · 1 {d− b ≥ a∗}+ εbd, (4)

where ybd is the average daily withdrawal on day d among individuals born on day b, λ̃d

is a calendar day fixed effect, a∗ is the number of days it takes to reach age 591
2
, and εbd

is a mean-zero error term. The function f (·) governs the age pattern of pre-retirement

withdrawals, and its argument is measured relative to age 591
2
. The function 1{·} is an

indicator function, and, thus, the parameter D represents an additively separable shift in

average pre-retirement withdrawals upon reaching age 591
2
.
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4.1 Annual Patterns

As a first step toward testing for a discontinuous change in behavior upon turning age 591
2
,

we show what can be inferred from annual patterns of pre-retirement withdrawals and the

share making withdrawals. We make the extreme assumption that, aside from the possible

discontinuity at age 591
2
, pre-retirement withdrawals are locally linear in age, i.e. f (j) ≡ c·j.

For ease of illustration, we further assume for the moment that λ̃d = 0.4 Let e measure event

time in years. That is, e = 0 in the year in which one reaches age 591
2
, e = −1 in the year in

which one turns 581
2
, and so forth. We define the average annual withdrawals during event

year e, for individuals born on day b, as ybe ≡
∑
ybd.

Now, suppose we group individuals into cells based on the quarter in which age 591
2

is

reached and event year. Within each cell, we will calculate average annual withdrawals,

denoted yqe ≡
∑

b:q(b)=q (Nb · ybe)
/∑

b:q(b)=qNb, where Nb is the number of individuals born

on day b and the mapping q (b) ∈ {1, 2, 3, 4} returns the quarter in which someone born on

day b reaches age 591
2
. Finally, let the change in this average from event year e− 1 to e be

denoted as 4yqe ≡ yqe − yqe−1. Using equation (4), we can show the following:5

4yq,−1 −4yq′,−1 ≈ 0

4yq,0 −4yq′,0 ≈ [q′ − q] · (365/4) ·D

4yq,1 −4yq′,1 ≈ − [q′ − q] · (365/4) ·D. (5)

In words, we first measure the change in pre-retirement withdrawals from the year in

which one turns 571
2

to the year in which one turns 581
2
. The difference in this change

across different quarters of reaching age 591
2

is approximately zero. Second, we measure

the change in withdrawals from the year in which one turns 581
2

to the year in which one

4It is straightforward to relax this assumption by including calendar year fixed effects in the regressions
below in equations (6) and (8).

5The expressions are only approximate for two reasons. First, the error terms do not average to zero in
finite samples. Second, the differences are off by as much as 2α if any of the years involved are a leap year.
The former issue vanishes asymptotically, while the latter can be handled by including calendar year fixed
effects in the regressions below in quations (6) and (8).
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turns 591
2
. The difference in this change across different quarters of reaching age 591

2
is

approximately proportional to the difference in quarters. Finally, when comparing the change

in withdrawals from the year in which one turns 591
2

to the year in which one turns 601
2
, the

difference in average annual pre-retirement withdrawals decreases approximately linearly in

the difference in quarters of reaching 591
2
. We can test these predictions by estimating the

following regression for different values of e:

4yqe = α +De · (−365/4) q + εqe, (6)

where e ∈ {−1, 0, 1}. Under the linearity assumption, we expect D̂−1 = 0 and D̂0 = −D̂1.

Likewise, if we group individuals into cells by month of reaching age 591
2

and event year,

and calculate the change in average annual pre-retirement withdrawals, similarly denoted

4yme, we have:

4ym,−1 −4ym′,−1 ≈ 0

4ym,0 −4ym′,0 ≈ [m′ −m] · (365/12) ·D

4ym,1 −4ym′,1 ≈ − [m′ −m] · (365/12) ·D. (7)

These admit a similar regression using data grouped by month of birth:

4yme = α +De · (−365/12)m+ εme, (8)

with similar predictions for D̂e as in the case of quarterly averages. The above can easily be

reframed to estimate the effect on the probability of making a positive withdrawal.

Figure 2 illustrates the intuition behind these results. Panel A demonstrates the pattern

of pre-retirement withdrawals that would arise in the case where D = 0 in equation (4).

The horizontal axis measures age, and the calendar years in which one turns 581
2

and 591
2

are highlighted. The vertical axis measures the average daily withdrawal. The drawing on
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the left depicts an “older” agent, who turns 591
2

relatively early in the year. Note, at age

591
2

there is no discrete jump in withdrawals. The area under the curve aggregates daily

withdrawals into annual amounts, and the area shaded in light red measures the change in

average annual withdrawals from the year in which one reaches 581
2

to the year in which

one reaches 591
2
, i.e. 4yb,0. Similarly, the drawing on the left depicts the same patterns for

a younger agent, who reaches 591
2

later in the calendar year. Although the level of annual

withdrawals differs between the two, the change in annual withdrawals is the same.

Alternatively, Panel B of Figure 2 presents the pattern of pre-retirement withdrawals in

the case where D > 0. Here, we see that at age 591
2
, there is an upward shift in the average

daily withdrawals. Furthermore, when comparing the change in withdrawals, we now see

that the ”older” agent, who experiences a longer time without early withdrawal penalties,

exhibits a larger change withdrawals from year to year.

Although these results rely on strong functional form assumptions, they deliver sharp

predictions regarding year-to-year changes in annual withdrawals across different quarters

and months of reaching 591
2
. In particular, the above results imply that increases in annual

withdrawals are roughly constant across quarter and/or month of reaching 591
2

between event

years -2 and -1, are monotonically increasing in quarter and month of reaching 591
2

between

event years -1 and 0, and are monotonically decreasing between event years 0 and 1. In the

next section, we develop a more flexible approach, allowing nonlinearity in the function f (·)

and arbitrary values for the λ̃d.

We can extend this approach to look at a measure of the extensive margin of withdrawals

as well. We can instead use as an outcome the share of individuals in a cell making any

withdrawal during the year. In this case, we can use annual patterns to learn about higher

frequency patterns in the share making their first withdrawal of the year on a given day. Note

that this is subtly different than the share of individuals making any nonzero withdrawals

on a given day. Because we are limited to observing whether any withdrawals were made

within a year, our method is only able to recover transitions from making no withdrawals in
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a year to making at least one, i.e. we cannot further identify incremental increases to say two

or three withdrawals. Identifying the share of all individuals making a nonzero withdrawal

on a given day would require data on the number of total number of withdrawals in a year,

which we cannot observe.

4.2 Estimated Daily Event Study

Building upon the intuition in the previous section, we now relax the assumptions made about

the functional form of f (·) and instead estimate this function using a flexible polynomial. To

better parallel the structure of our tax data, we will shift time relative to age a∗ and collapse

data to an annual level. Let j measure age in event time, i.e. age relative to the date on which

one turns 591
2
. Formally, let j ≡ d− b− a∗. Let the mapping t (b, e) be the calendar year in

which someone born on day b reaches event year e. For example, t (b = 10June1950, e = 0) =

2009. Likewise, the mappings d (b, e) and d (b, e) are the calendar dates for January 1 and

December 31 in the year t (b, e).

We can now express annual pre-retirement withdrawals as follows:

ybe ≡
d(b,e)∑

d=d(b,e)

ybd

=

d(b,e)∑
d=d(b,e)

α̃ +

d(b,e)∑
d=d(b,e)

λ̃d +

d(b,e)−b−a∗∑
j=d(b,e)−b−a∗

f (j) +

d(b,e)−b−a∗∑
j=d(b,e)−b−a∗

D · 1 {j ≥ 0}+

d(b,e)∑
d=d(b,e)

εbd

= α + λt(b,e) +

d(b,e)−b−a∗∑
j=d(b,e)−b−a∗

[f (j) +D · 1 {j ≥ 0}] + εbe, (9)

where α ≡ 365 · α̃ is a constant, λt ≡ Lt · α̃+
∑31Dec,t

d=1Jan,t λ̃d is a calendar year fixed effect, Lt

is an indicator for a leap year, and εbe is a mean-zero error term. We fit f (·) with a flexible

polynomial, using the specification in equation (9). In particular, we use polynomials of

order one through five, and additionally allow the coefficients to differ on either side of age

591
2
. Our key parameter of interest is D, which captures any sharp change in pre-retirement

15



withdrawals (or the share making the first withdrawal of the year) upon turning age 591
2
.

The method can also be adapted to model average withdrawals at lower frequencies, i.e.

weekly, monthly, or quarterly.

4.3 Simulations

In Appendix A we illustrate identification with our method using simulated data of pre-

retirement withdrawals. We simulate 10 cohorts of individuals, each with five years of daily

withdrawals, drawn to match key moments from the actual annual retirement withdrawals

in our data. Figure A.1 shows the simulated pattern of daily withdrawals two years before,

and two years following age 591
2
. We model a discrete jump in daily withdrawals of $10 once

an individual no longer faces early withdrawal penalties. We also introduce a limited amount

of curvature away from the threshold. We then collapse the data to annual frequencies, as

is observed in our tax data.

We show in Figure A.2 patterns in annual pre-retirement withdrawals by quarter and

month of birth. As can be seen, the predictions in Section 4.1 are largely reflected in the

simulated data. The increase in withdrawals from year to year is related the difference

in exposure to penalty-free withdrawal opportunities. Next, in Figure A.3, we apply our

parametric estimator of the event study. We are able to closely recreate the true, underlying

pattern for daily withdrawals. In Table A.1 we report the results from the regressions in

equations (6) and (8). The estimates of D using either D0 or D1 at the quarterly or monthly

frequency are very close to the true value of $10. The parameter D−1 does not exactly equal

zero, owing to the fact that we do not use a linear functional form for f (·) in our simulations.

However, it’s value is economically insignificant and an order of magnitude smaller than the

other estimates. Table A.2 shows that when we use our more generalized approach, our point

estimates of the jump in withdrawals at age 591
2

closely match the true value used in the

simulates, $10, albeit with some attenuation for the most coarse specification of quarterly

aggregation. This is not surprising, as individuals are on average only exposed to penalty-free
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withdrawal for half of the quarter in which they turn 591
2
.

5 Data

Our data come from the population of tax and information returns collected by the Internal

Revenue Service (IRS). We use supplementary information provided by the Social Security

Administration (SSA) on date of birth, gender, and date of death to restrict our sample to

individuals born between July 1, 1941 and July 1, 1951 for tax years 1999 through 2013 who

are alive in the year they turn 571
2
. This sample restriction ensures that our data contain tax

years two years before and after each individual turns 591
2
. Our dataset contains information

on household income (Form 1040), wage earnings and employee contributions to employer-

sponsored retirement plans (Form W2), withdrawals from IRAs and employer-sponsored

retirement plans (Form 1099R), contributions to and account balances of IRAs (Form 5498),

and tax amounts on early withdrawals (Form 5329). Because the data are unedited, we make

a number of restrictions in an effort to remove observations with erroneous information. We

drop roughly 1.5 million observations due to death and birthdates that do not exist (e.g.

September 31).

Our analysis focuses on withdrawals from IRAs due to some important data limitations.

First, unlike Form 5498 which provides the fair market value of an IRA annually, there is no

tax form at the individual level that reports account balances for defined contribution plans

such as a 401(k). This makes it difficult to select a sample of individuals who are at risk

of withdrawing funds from these accounts.6 Second, while withdrawals from defined contri-

bution plans are reported on 1099-R forms, they are undistinguishable from defined benefit

payments. By contrast, IRA withdrawals can be separately identified due to a checkbox on

the 1099-R tax form. As described in the previous section, the penalties differ somewhat for

401(k)s and IRAs, as 401(k) plans only allow hardship withdrawals prior to age 591
2
, while

6The tax data do contain an indicator of whether one’s current employer offers a defined contribution plan,
and data on contributions made to defined contribution plans; however, both of these are noisy indicators
of individuals with a positive balance.
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IRAs allow withdrawals for any reason. Therefore, generalizing our results to other types

of accounts should be done with caution. However, IRAs may be more typical, particularly

at ages close to 591
2
, since many individuals roll over their employer-sponsored retirement

accounts into IRAs prior to retirement.

Our main analysis sample contains individuals who have a positive fair market value in

at least one IRA as reported on Form 5498 in the year they turn 571
2
. While our data are at

the individual level, we collapse the data by individual date of birth to perform our analysis,

which exploits variation in exposure to the penalty-free withdrawal period using variation

in date of birth. Therefore, our total number of observations is 14,608 date-of-birth-by-year

cells, representing 12,445,087 individuals or 36% percent of the population who attains age

571
2

in our analysis period.

Table 1 contains descriptive statistics on our sample. The data represent information

from tax years in which the half-age in the column heading is attained. Just under half of

our sample is male and almost three quarters file a joint return. The average adjusted gross

income in our sample is $134,841. This value is relatively high both because we focus on those

with assets in IRA accounts and those of older age. The fraction of our sample that takes

withdrawals from their Traditional IRA is 7 or 8 percent prior to the tax year in which the

individual turns age 591
2
, then increases to the 16 and 17 percent in two years following the

tax year when they turn 591
2
. The amount withdrawn conditional on taking a distribution is

approximately $24,000 annually. The fact that this amount does not vary markedly around

the age 591
2

threshold suggests that any increase in average withdrawals occurring at the age

591
2

threshold may be more likely to be on the extensive margin. Importantly, these simple

comparisons of annual withdrawals across ages do not allow identification of responses to the

sharp reduction in the penalty occurring when one attains age 591
2
, as these increases could

simply represent gradually increasing withdrawals from retirement saving accounts. The

table also shows the proportion of our sample that pays a penalty on their IRA withdrawals

and the average penalty amount. Approximately 5 percent of the sample incurs a penalty
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during the tax year in which they turn 571
2
, but this declines to 1 percent at older ages.7

6 Results

6.1 Annual Patterns

We first investigate how annual withdrawals vary in calendar years in which individuals

attain ages 571
2
, 581

2
, 591

2
, 601

2
and 611

2
based on the exposure to penalty-free withdrawals.

This exposure depends on one’s quarter or month of birth, as discussed in Section 4.1. Figure

3 shows annual withdrawals from IRAs in different calendar years by exposure to penalty-

free withdrawals. The top panel groups individuals by birth quarter, while the bottom panel

organizes the sample by month of birth. Individuals represented by the line corresponding

to 4 months of penalty-free withdrawal, for example, include those who turn 591
2

between

August 1 and September 1 (i.e., birthdays in February).

As shown in Panel (a) of Figure 3, the level and change in annual withdrawals between

the years in which age 571
2

and age 581
2

occur are the same across different quarters of

birth. However, the change in annual withdrawals begins to diverge in the year individuals

turn 591
2
. In particular, those who have more months of penalty-free withdrawal in the

calendar year in which they turn 591
2

also have larger increases in their annual withdrawals

in that calendar year. Likewise, those with the least amount of exposure to penalty-free

withdrawals in the 591
2

year experience the greatest increase in exposure when moving to

the year in which age 601
2

is reached. Accordingly, these groups now experience the greatest

growth in annual withdrawals. By the time age 611
2

is reached, the gap between the groups

has shrunk considerably, but not completely, suggesting that higher withdrawals for those

who turned 591
2

earlier persist to some extent two years after the penalty is lifted. In Panel

(b) of Figure 3, this exact result continues to hold if we group individuals by month of birth

7The penalty represents the additional tax as reported on the 1040 which is on a household basis, and
thus may include penalties incurred by a younger spouse who has not attained age 59 1

2 .
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instead. The overall pattern is largely consistent with the predictions of Panel (b) of Figure

2.

Figure 4 shows a similar pattern when we change the outcome to the share of the sample

taking any nonzero pre-retirement IRA withdrawals. The rate of withdrawals is very similar

across months and quarters of penalty-free withdrawal during the tax years when people

attain age 571
2

and 581
2
. However, the rates change differentially based on the change in

exposure to penalty free withdrawals between in the years when age 591
2

and age 601
2

are

attained. Those with more exposure to penalty-free withdrawals are more likely to make

a withdrawal than those with less exposure. Some of these differences persist in the years

following the 591
2

tax year, but to a lesser extent than when we consider the average pre-

retirement withdrawal in Figure 3.

These figures strongly suggest that the removal of the penalty at age 591
2

is driving the

patterns seen in the data and largely track the predictions made in Section 4.1, where we

assume a linear relationship between withdrawals and age. In particular, the increase in

withdrawals when moving from age 581
2

to 591
2

is robustly monotonic in quarters or months

of exposure to penalty-free withdrawals, as is predicted in the approximations in (5) and

(7). To see what magnitude of increase in withdrawals at age 591
2

is implied by the figure,

we estimate equations (6) and (8) in Table 2 and Table 3. Assuming a linear functional

form for f (·), we estimate a sharp increase at age 591
2

of between $6 and $7 in average daily

withdrawals and 0.02 basis points in the rate at which the first withdrawal of the year is

made. We fail to reject the hypotheses that D0 = −D1 and D−1 = 0, both of which are

predictions of the simple linear model. Overall, the patterns here are largely consistent with

a discontinuous increase in withdrawals upon reaching age 591
2
.

6.2 Estimated Event Study

Next we perform an event study analysis in order to trace out daily withdrawal patterns

before and after individuals turn 591
2
. In particular, we implement our fully-parametric
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approach based on equation (9), where f (·) is modeled using a linear, cubic, or quintic

polynomial.8 We present estimates of the daily pattern of average withdrawals in Figure

5. The vertical axes represent average daily withdrawal amounts. We show both the point

estimates and 95 percent confidence intervals. All of the fully-parametric specifications show

evidence of a break at event time 0, which represents the day that individuals attain age 591
2

and can begin making withdrawals from their IRA without any penalty. The higher-order

polynomials reveal some of the underlying features of the data to a richer extent than the

linear functional form. For instance, daily average withdrawals appear to be largely flat

prior to age 591
2
. Thereafter, the figures show what appears to be a spike in withdrawals at

age 591
2
, followed by a decrease in withdrawals to a new level higher than that of prior ages.

Overall, the patterns in average daily withdrawal appear to be relatively stable across choice

of polynomial.9

Table 4 reports the results from regressions that correspond to the event study analysis

using different levels of aggregation and functional form assumptions. In this table, the

dependent variable captures average daily withdrawals from IRA accounts. The regression

equation, in the case of a daily frequency, is shown in equation (9) and includes calendar

year fixed effects. The quarterly, monthly, and weekly frequencies are estimated from parallel

specifications. The coefficient that is reported corresponds to the parameter D, and repre-

sents the sharp increase in daily withdrawals occurring when crossing the age 591
2

threshold.

Robust standard errors are reported below the estimated coefficient.

Using a daily level of aggregation and a linear functional form, we estimate that lifting

the 10 percent penalty on withdrawals leads to an increase in the average daily withdrawal of

$4.31, which implies an annual increase of $1,573.15. This coefficient is precisely estimated

and statistically different from zero. The other reported coefficients in the table similarly

8In the interest of space, we omit a quadratic or quartic specification in the main text. The results are
very similar when using even numbered polynomials and results from those specifications are available upon
request

9In Appendix B, we include similar figures using different levels of aggregation — i.e. weekly, monthly,
and quarterly — that show similar patterns.
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show strong evidence that the removal of the penalty significantly increases withdrawals

from IRAs, ranging from $4.31 to $9.68. As we allow for more flexibility in the polynomial,

we estimate a larger jump, owing to the greater ability of the higher-order specifications to

capture the spike following age 591
2
.

In Figure 4 we conduct similar analysis using the annual pre-retirement withdrawal rate.

Recall that in this case, our model should be interpreted as recovering the daily rate at

which individuals make their first withdrawal of the year. There appears to be an increasing

likelihood of making the first withdrawal as one approaches the age 591
2

threshold and then

a flattening out of this pattern thereafter. The discrete increase in the likelihood of the

fifth order polynomial shows very little evidence for a sharp increase at age 591
2
. Overall,

the patterns for the withdrawal rate are not as robustly estimated as in the case of average

withdrawals. One challenge is that the annual rates of withdrawals (≈ 7 percent) translate

into near zero daily rates of making the first withdrawal. Our functional form may have

difficulty near this boundary and, indeed, we sometimes extrapolate to negative rates, which

are theoretically impossible.

Table 5 is similar in format to Table 4, but shows regression results summarizing the

estimated increase in the rate at which initial withdrawals for the year are made at age

591
2
. We report the results in basis points to aid in interpretation. The estimated increase

in withdrawals using the daily level of aggregation and a linear assumption suggests that

approximately 2.5 out of every 10,000 individuals with IRA accounts begin withdrawing from

their IRA accounts immediately after attaining age 591
2
. Here, while the results are generally

statistically significant, the magnitudes vary considerably across different functional form

assumptions.

In Table 1, we report an unconditional average annual withdrawal amount of $1,967.41

in the calendar year individuals turn 581
2
. The implied increase of $1,573.15 per year once

one reaches age 591
2

that we estimate represents roughly an 80 percent increase from this

base. The increase in the average withdrawals could arise either from the extensive margin,

22



if a larger share of individuals are taking withdrawals, the intensive margin, if the share

of individuals accessing their IRAs does not change but the average amount conditional on

taking withdrawals increases, or a combination of both. In Table 5, the estimated increase

in the likelihood of making the first withdrawal of the year when using a linear assumption

implies a 108 percent increase in the share withdrawing relative to the average rate during

the tax year when individuals turn 581
2
, suggesting that the unconditional increase in average

withdrawals is largely due to extensive margin responses. However, the fraction that is a

result of increases in the share withdrawing is sensitive to the precise functional form assumed

for the relationship between age and the probability of taking the first withdrawal.

There is some evidence from the higher order polynomials that the increase in withdrawals

represents a shift in timing from periods immediately prior to the 591
2

threshold to periods

immediately afterwards. However, for up to two years after this spike, a higher level of

withdrawals persists. This result suggests that increasing the liquidity of retirement saving

accounts by either lowering the age threshold or reducing the penalty would potentially lead

to a larger amount of money withdrawn during the years that were previously covered by the

early withdrawal penalty. In the next section, we investigate a different lever that changes

the liquidity of retirement saving accounts, namely the exceptions provided that allow people

to make withdrawals without incurring a penalty.

6.3 Heterogeneity and Penalty Exceptions

We first examine heterogeneity in the increase in average daily withdrawals at age 591
2

by

quartile of adjusted gross income (AGI) and fair market value (FMV) of the IRA as reported

by Form 5498 in Table 6. We report means in the tax year a person attains 581
2

of the IRA

withdrawal amount (converted to a daily rate), the annual penalty paid on withdrawals,

and the share of individuals who take a withdrawal for each quartile. We also report the

estimated daily withdrawal amount at event time -1, just before the penalty is lifted (e.g.

the day before the 591
2

birthday), and the estimated increase in daily IRA withdrawals using

23



a cubic functional form assumption and a daily level of aggregation.

Our results suggest that both relative to the 581
2

mean and the estimated value at event

time -1, the increase at 591
2

declines for those in higher income quartiles. This decline

is primarily driven by smaller estimated increases at age 591
2

rather than higher levels of

withdrawals under the penalty. Interestingly, those with lower levels of income are more

likely to take withdrawals prior to age 591
2
, but many of these early withdrawals may be

exceptions to the 10 percent penalty or smaller in value, as the average penalty amount is

lower for these groups. These relatively large increase in withdrawals at age 591
2

suggests

that the penalty creates more constraints for those in lower-income quartiles.

The pre-withdrawal amount and rate increases dramatically by the fair market value of

the accounts, as would be expected given the higher ability of larger accounts to support

withdrawals. The estimated increase at 591
2

is also increasing by FMV, with the highest

percentage increases occurring for the middle two quartiles. The patterns rule out the

possibility that the increase in withdrawals at age 591
2

is primarily driven by the liquidation

of small accounts, we observe signiifcant increases at all quartiles.

In Table 7, we examine the increases at 591
2

across different characteristics associated

with negative shocks other key factors that may be related to withdrawal behavior. The tax

records allow us to identify those receiving unemployment insurance, disability insurance,

taking a medical deduction. We also examine differences by macroeconomic conditions by

splitting our sample among those who turned 591
2

in a period of recession, where recession

is defined to be between March and November 2001 or December 2007 and June 2009. In

addition to these potentially negative shocks, we include a measure for having a mortgage,

taking mortgage deductions, as this consumption commitment may exacerbate the effects of

other negative shocks.

Many of these negative shocks trigger exceptions to the 10 percent penalty incurred on

early withdrawals to different degrees. For instance, any early withdrawals that are made on

account of disability are exempt from the penalty, while upon unemployment, only amounts
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paid for medical insurance for the account owner and his/her family members are exempt.

Furthermore, those with unreimbursed medical expenses above 10 percent of AGI may make

penalty-free IRA withdrawals to pay these expenses. There are generally no exceptions made

to those who pay mortgage interest nor those who turn 591
2

in recession years.

As shown in Table 7, unemployment and high medical expenses are associated with

higher-than-average withdrawals prior to 591
2

and higher-than-average penalties prior to age

591
2
. By contrast, while disability is associated with slightly higher withdrawals prior to 591

2
,

the average penalties are actually lower than average. At the 591
2

threshold, people with

recent unemployment spells or high medical expenses experience larger absolute increases,

suggesting that they are constrained by the penalty. However, those who are disabled ex-

perience similar increases at 591
2

to those who are not disabled. Together, these findings

suggest that the more comprehensive exemption to the penalty provided to those who are

disabled allow affected individuals the ability to smooth consumption to a greater extent

than those who experience unemployment or large medical expenses. We do not find strong

evidence that those with mortgage interest deductions or those who turn 591
2

in recession

years differ greatly in their behavior at the 591
2

threshold.

6.4 Placebo Checks

Finally, we examine whether the patterns we detect are merely mechanical artifacts of our

empirical techniques by estimating placebo discontinuities at age 581
2

and 601
2

in Tables 8

and 9. The tables are in the same format as Table 4 and only include observations on either

the left or the right side of the 591
2

threshold. As can be seen in these tables, only two out of

the 24 estimated coefficients are statistically significant and the coefficients occasionally flip

sign, while our main estimates for the 591
2

threshold show consistent evidence of an increase

in withdrawals.
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7 Conclusion

Despite active research that documents pre-retirement withdrawals from retirement savings

accounts, there has not been much prior work that investigates the relationship between

pre-retirement withdrawal penalties and withdrawals from retirement accounts. One signif-

icant barrier to understanding the effects of these penalties on withdrawals from retirement

accounts has been data limitations, as household surveys have limited sample size and poten-

tially underreported withdrawal activity and administrative data is often collected at longer

frequencies, making it difficult to uncover event studies at shorter frequencies.

This study attempts to overcome several of these shortcomings in the data by develop-

ing new empirical techniques that allow us to analyze withdrawal activity when the penalty

for pre-retirement withdrawals is lifted with high-quality data from the IRS. By exploit-

ing variation in date of birth, which leads to natural variation in exposure to penalty-free

withdrawals over calendar years, we can estimate event studies that show how withdrawal

behavior changes on either side of the age 591
2

threshold.

Our results indicate large changes in withdrawal behavior as a result of crossing age 591
2
.

In particular, we find that the average daily withdrawal increases by approximately $4.40,

implying a $1,600 increase in annual withdrawals from IRAs, or an increase of approximately

80 percent relative to annual withdrawals prior to age 591
2
. Our data suggest that this

increase is largely driven by additional individuals with IRA accounts accessing their funds

rather than an increase in the average withdrawal conditional on taking withdrawals. These

findings suggest that the removal of the 10 percent penalty for early withdrawals at age 591
2

does influence withdrawal behavior among individuals with IRAs.

We also investigate the heterogeneity in the response to the early withdrawal penalty

and find that lower-income quartiles experience larger increases at the age 591
2

threshold in

both relative and absolute terms, despite having smaller account balances on average. This

finding suggests that lower-income groups within our sample are more constrained by the

penalty. Finally, we show that exceptions to the penalty can allow people to insure against
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negative shocks, but that the ability to smooth consumption is largely affected by the scope

of the penalty exemption. For instance, those who are disabled receive an exemption from

penalties for any withdrawal on account of their disability, while those who are unemployed

can only take withdrawals penalty-free to pay for health insurance premiums. As a result,

if policymakers seek to improve wealth accumulation while still providing insurance value

in the event of negative shocks, expanding the scope of penalty-free withdrawals prior to

retirement may be one avenue.
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Figure 1: Stylized Pattern of Withdrawals
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Figure 2: Stylized Pattern of Withdrawals
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Figure 3: Mean Annual IRA Withdrawal by Exposure to Penalty-Free Withdrawal
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Figure 4: Mean Annual IRA Withdrawal Rate by Exposure to Penalty-Free Withdrawal
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Figure 5: Average Daily IRA Withdrawals
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Figure 6: Average Daily IRA Withdrawal Rate (in basis points)
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Table 1: Descriptive Statistics

(1) (2) (3) (4) (5)

Half-age attained during the calendar year

57.5 58.5 59.5 60.5 61.5

Fraction Male 0.49 0.49 0.49 0.49 0.49
Fraction Married 0.74 0.73 0.73 0.72 0.71
Traditional IRA Distribution 1827.22 1967.41 3188.56 3903.07 4081.25
Traditional Non-IRA Distribution 3892.61 4248.61 4955.11 5769.58 6207.55
Mortgage Interest (All) 5912.92 5609.80 5307.47 5324.13 4553.24
Mortgage Interest (Filers) 5048.16 4947.93 4773.65 4528.20 4259.10
Wages 47868.50 45186.34 42777.00 39808.78 37227.63
Adjusted Gross Income 134841.80 128522.28 124190.44 120452.14 117819.01
Additional Tax on IRAs 73.67 74.32 34.12 9.78 8.04
Fair Market Value of IRA 96802.69 101035.20 108727.61 112359.30 120447.29
Takes Traditional IRA Distribution 0.07 0.08 0.13 0.16 0.17
Takes Traditional Non-IRA Distribution 0.17 0.19 0.22 0.25 0.27
Has Mortgage Interest (All) 0.53 0.51 0.49 0.46 0.44
Has Mortgage Interest (Filers) 0.44 0.43 0.43 0.41 0.40
Has Wages 0.73 0.71 0.68 0.65 0.62
Has Non-Zero Adjusted Gross Income 0.96 0.95 0.94 0.93 0.92
Pays Additional Tax on IRAs 0.05 0.05 0.03 0.01 0.01
Has Non-Zero FMV on IRA 1.00 0.97 0.94 0.91 0.89
Traditional IRA Distribution (Non-Zero) 25263.76 23552.38 23555.08 23933.24 23898.01
Traditional Non-IRA Distribution (Non-Zero) 22258.54 22690.66 22683.38 22916.61 22603.59
Fair Market Value of IRA (Non-Zero) 96877.34 104078.93 115078.17 122254.66 134126.28
Number of Observations 12445149.00 12445149.00 12445149.00 12445149.00 12445149.00

Note: Individuals born between July 1, 1941 and July 1, 1951, who have a positive fair market value of a traditional IRA account in the year they
turn 57.5. Data are for the years in which an individual turns 57.5, 58.5, 59.5 and 60.5 in 1999 through 2013 tax years.
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Table 2: Estimated Increase in Daily Traditional IRA Withdrawals at Age 591
2

Threshold
Using Annual Patterns

(1) (2)

Level of Aggregation

Quarterly Monthly

D−1 −0.25 −0.25∗

(0.22) (0.12)

D0 6.95∗∗∗ 6.99∗∗∗

(0.09) (0.20)

−D1 6.18∗∗∗ 6.31∗∗∗

(0.19) (0.29)

Note: Each estimate represents the results from regressions specified according to
equations (6) and (8). Under a model where daily retirement withdrawals increase linearly
in age, we predict D̂−1 = 0 and D̂0 = −D̂1.
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Table 3: Estimated Increase in Daily Traditional IRA Withdrawal Rate (in basis points) at
Age 591

2
Threshold Using Annual Patterns

(1) (2)

Level of Aggregation

Quarterly Monthly

D−1 0.0002 0.0002
(0.0001) (0.0002)

D0 0.0208∗∗∗ 0.0209∗∗∗

(0.0014) (0.0010)

−D1 0.0184∗ 0.0185∗∗∗

(0.0019) (0.0015)

Note: Each estimate represents the results from regressions specified according to
equations (6) and (8). Under a model where daily retirement withdrawals increase linearly
in age, we predict D̂−1 = 0 and D̂0 = −D̂1.
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Table 4: Increase in Daily Traditional IRA Withdrawals at Age 591
2

Threshold by Order of
Polynomial and Level of Aggregation

(1) (2) (3) (4)

Time Period

Quarterly Monthly Weekly Daily

Order 1 4.36 4.37 4.32 4.31
(0.04) (0.04) (0.04) (0.04)

Order 3 5.29 6.19 6.14 6.13
(0.13) (0.18) (0.20) (0.21)

Order 5 4.81 8.48 9.68 9.60
(0.26) (0.58) (0.76) (0.81)

Note: Each estimate represents the results from a separate regression with the level of
aggregation given by the column header and the polynomial order given in the row. The
reported estimate is the coefficient on event time 0, which represents the period in which
individuals turn age 591

2
. The dependent variable in each regression is average Traditional

IRA withdrawals, and the sample includes those with a positive fair market value in their
IRA in the year they turn age 571

2
.
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Table 5: Increase in Daily Traditional IRA Withdrawal Rate (in basis points) at Age 591
2

Threshold by Order of Polynomial and Level of Aggregation

(1) (2) (3) (4)

Time Period

Quarterly Monthly Weekly Daily

Order 1 0.0358 0.0289 0.0257 0.0248
(0.0004) (0.0004) (0.0004) (0.0004)

Order 3 0.1379 0.1824 0.1941 0.1977
(0.0012) (0.0016) (0.0019) (0.0019)

Order 5 0.0801 0.0524 0.0067 -0.0097
(0.0018) (0.0040) (0.0055) (0.0058)

Note: Each estimate represents the results from a separate regression with the level of
aggregation given by the column header and the polynomial order given in the row. The
reported estimate is the coefficient on event time 0, which represents the period in which
individuals turn age 591

2
. The dependent variable in each regression is the proportion of

each date of birth cell who makes Traditional IRA withdrawals, and the sample includes
those with a positive fair market value in their IRA in the year they turn age 571

2
.
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Table 6: Heterogeneity in Increase in Average Withdrawals at 591
2

by Income and Account Value

(1) (2) (3) (4) (5) (6) (7)

Means at 58.5 Percent Increase
IRA

Distribution
(Daily)

Penalty
(Annual)

Takes IRA
Withdrawal

Estimated
Mean at T-1

Increase at
59.5

Relative
to 58.5
Mean

Relative
to T-1
Mean

Full Sample 5.39 74.32 0.08 5.77 6.13 113.7% 106.2%
(0.11) (0.21)

By Adjusted Gross Income

First Quartile 5.05 67.90 0.12 4.44 7.6 150.6% 171.2%
(0.16) (0.30)

Second Quartile 5.18 68.64 0.09 5.27 6.04 116.6% 114.6%
(0.14) (0.26)

Third Quartile 5.51 74.07 0.08 6.05 5.72 103.9% 94.5%
(0.18) (0.31)

Fourth Quartile 5.83 86.66 0.05 8.35 4.97 85.3% 59.5%
(0.36) (0.64)

By Fair Market Value

First Quartile 0.78 38.56 0.06 1.52 0.68 86.9% 44.7%
(0.08) (0.13)

Second Quartile 1.67 46.50 0.06 1.37 3.93 235.4% 286.9%
(0.08) (0.17)

Third Quartile 3.39 67.08 0.07 2.32 7.18 211.9% 309.5%
(0.13) (0.24)

Fourth Quartile 15.71 145.11 0.15 18.82 14.24 90.6% 75.7%
(0.46) (0.84)
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Table 7: Heterogeneity in Increase at 591
2

by Negative Shocks

(1) (2) (3) (4) (5) (6) (7) (8)

Means at 58.5 Percent Increase

Share
IRA

Distribution
(Daily)

Penalty
(Annual)

Takes IRA
Withdrawal

Estimated
Mean at T-1

Increase at
59.5

Relative
to 58.5
Mean

Relative
to T-1
Mean

Full Sample 5.39 74.32 0.08 5.77 6.13 113.7% 106.2%
(0.11) (0.21)

By Receipt of UI at 57.5

Received UI at 57.5 0.05 8.04 139.38 0.15 5.55 11.93 148.3% 215.0%
(0.45) (0.77)

Did not receive UI at 57.5 0.95 5.26 71.14 0.08 5.79 5.84 111.0% 100.9%
(0.12) (0.22)

By Receipt of DI at 57.5

Received DI at 57.5 0.03 6.56 47.63 0.14 6.17 5.78 88.1% 93.7%
(0.83) (0.96)

Did not receive DI at 57.5 0.97 5.35 75.26 0.08 5.75 6.14 114.8% 106.8%
(0.12) (0.21)

By Medical Deduction at 57.5

Took deduction 0.07 9.56 121.48 0.13 9.26 8.12 84.9% 87.7%
(0.48) (0.82)

Did not take deduction 0.93 5.07 70.66 0.08 5.55 6.01 118.6% 108.3%
(0.12) (0.21)

By Mortgage Interest at 57.5

Took deduction 0.63 6.22 92.79 0.09 6.96 6.9 110.9% 99.1%
(0.16) (0.28)

Did not take deduction 0.37 3.98 43.00 0.08 4.14 4.65 116.7% 112.3%
(0.15) (0.29)

By Turns 59.5 in Recession Year

Non-recession year 0.76 5.37 72.45 0.08 5.74 6.02 112.2% 104.9%
(0.15) (0.24)

Recession year 0.24 5.46 80.39 0.08 5.84 6.65 121.7% 113.9%
(0.27) (0.5)
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Table 8: Placebo: Increase in Daily Traditional IRA Withdrawals at Age 581
2

Threshold by
Order of Polynomial and Level of Aggregation

Time Period

Quarterly Monthly Weekly Daily

Order 1 0.34 0.26 0.23 0.22
(0.10) (0.13) (0.14) (0.14)

Order 3 0.33 0.78 0.29 0.21
(0.29) (0.63) (0.81) (0.87)

Order 5 0.28 1.75 1.13 0.56
(0.32) (1.01) (2.16) (2.59)

Note: Each estimate represents the results from a separate regression with the level of
aggregation given by the column header and the polynomial order given in the row. The
reported estimate is the coefficient on event time 0, which represents the period in which
individuals turn age 581

2
. The dependent variable in each regression is average Traditional

IRA withdrawals, and the sample includes those with a positive fair market value in their
IRA in the year they turn age 571

2
.
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Table 9: Placebo: Increase in Daily Traditional IRA Withdrawals at Age 601
2

Threshold by
Order of Polynomial and Level of Aggregation

Time Period

Quarterly Monthly Weekly Daily

Order 1 0.36 -0.18 -0.40 -0.47
(0.18) (0.20) (0.22) (0.22)

Order 3 3.02 1.32 -0.06 -0.68
(0.42) (0.95) (1.36) (1.46)

Order 5 3.02 1.14 -0.63 -1.81
(0.52) (1.47) (3.54) (4.25)

Note: Each estimate represents the results from a separate regression with the level of
aggregation given by the column header and the polynomial order given in the row. The
reported estimate is the coefficient on event time 0, which represents the period in which
individuals turn age 601

2
. The dependent variable in each regression is average Traditional

IRA withdrawals, and the sample includes those with a positive fair market value in their
IRA in the year they turn age 571

2
.
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Appendix A: Simulation

Figure A.1: Simulated Daily Retirement Withdrawals
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Figure A.2: Mean Annual IRA Withdrawal by Exposure to Penalty-Free Withdrawal: Sim-
ulated Data
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Figure A.3: Event Studies Using Simulated Annual Data
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Table A.1: Estimated Increase in Daily Traditional IRA Withdrawals at Age 591
2

Threshold
Using Annual Patterns

Level of Aggregation

Quarterly Monthly

D−1 0.47∗∗∗ 0.47∗∗∗

(0.01) (0.01)

D0 10.20∗∗∗ 10.22∗∗∗

(0.07) (0.04)

−D1 10.2∗∗∗ 10.22∗∗∗

(0.01) (0.02)

Note: Each estimate represents the results from regressions specified according to equations
6 and 8. Under a model where daily retirement distributions increase linearly in age, we
predict D̂−1 = 0and D̂0 = −D̂1.
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Table A.2: Increase in Daily Traditional IRA Withdrawals at Age 591
2

Threshold by Order
of Polynomial and Level of Aggregation: Simulated Data

Time Period

Quarterly Monthly Weekly Daily

Order 1 10.22 10.58 10.61 10.62
(0.03) (0.01) (0.00) (0.00)

Order 3 8.15 9.69 9.88 9.95
(0.10) (0.04) (0.01) (0.00)

Order 5 4.21 8.03 9.90 10.00
(0.57) (0.15) (0.04) (0.00)

Note: Each estimate represents the results from a separate regression with the level of
aggregation given by the column header and the polynomial order given in the row. The
reported estimate is the coefficient on event time 0, which represents the period in which
individuals turn age 591

2
. The dependent variable in each regression is average Traditional

IRA withdrawals, and the sample includes those with a positive fair market value in their
IRA in the year they turn age 571

2
.
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Appendix B: Event Studies for Alternative Frequencies
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Figure B.1: Event Studies for Alternative Frequencies and Functional Forms: Daily IRA
Withdrawals
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Figure B.2: Event Studies for Alternative Frequencies and Functional Forms: Daily IRA
Withdrawal Rate
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