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Abstract

We study conditions under which optimal policy experimentation can be imple-

mented by a legislature. We consider a dynamic legislative bargaining game in which,

each period, legislators choose to implement a risky reform or maintain a known policy.

We first show that when no redistribution is allowed the unique equilibrium outcome

is generically inefficient. When legislators are allowed to redistribute resources (even

a small amount) and can amend the status quo sufficiently frequently, there always

exists an equilibrium that supports optimal experimentation for any non-unanimity

voting rule. We show that with unanimity, optimal policy experimentation is possible

only with a sufficient amount of redistribution. In this sense, non-unanimity rules

dominate unanimity rule.
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1 Introduction

One objective of a well-functioning government is to embark on a reform if the expected

aggregate benefit exceeds the aggregate cost, and, conversely, quit an existing reform pro-

gram when the likelihood that promised benefits will materialize becomes sufficiently small.

Yet examples abound where reforms expected to yield net benefits are not undertaken (for

example labor market reforms, or trade reforms), and numerous reform programs con-

tinue well beyond the point where they are generally accepted as “failed” (as in the case

of import-substituting policies in many developing countries). In many democracies, the

decision to begin or end a reform program is made by legislatures acting in the interest

of their constituents. Thus, in spite of the promise of aggregate benefits, if a sufficient

number of legislative districts do not directly gain, reforms may fail to be implemented.

Similarly, if a sufficiently large coalition of vested interests support a failed reform, it may

persist at the the expense of everyone else. To avoid such issues, it might be expected that

the gains to winners should be redistributed in such a way that losers are fully compen-

sated and the right level of reform experimentation occurs, but such redistribution does

not occur in practice. In fact, as Acemoglu et al., 2015 points out, there can be a number

of (exogenous) direct constraints on redistribution. Even if some redistribution is allowed,

legislatures may still face another constraint: potential winners from a reform may not be

able to commit to redistribute future benefits in order to compensate losers. This paper

asks if (in the absence of commitment) socially efficient reform experimentation can be

implemented by legislatures if benefits can be redistributed. If yes, is there some minimal

level of redistribution necessary for this to happen and how do these answers depend on

voting rules?

To answer these questions, we present a dynamic legislative bargaining model that

combines policy experimentation and redistribution. A legislature meets each period to

decide policy. Policy has three components – the choice to implement a risky reform or

revert to a safe (known) policy, a tax rate, and the choice of how to distribute available

resources. Available resources are determined by an exogenous constraint on redistribution.

This exogenous constraint may be thought of as a tax rate that is chosen separately from
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the choice of reforms and redistribution.1 Other possible interpretations are constitutional

constraints, or the threat of capital flight (see Acemoglu et al., 2015). Policies are assumed

to continue unless changed by the legislature, and, in this sense, exhibits an endogenous

status quo feature.2 Bargaining follows the protocol developed in Diermeier et al. (2017) .

The choice between a risky reform and a safe policy is modeled as a bandit problem

in the spirit of Keller, Rady and Cripps (2005), but with heterogeneous payoffs across

legislators. The safe policy generates a certain benefit if selected, and these benefits are

heterogeneous across legislative districts. If the reform is good, then it generates benefits

stochastically. These benefits are also heterogeneous across legislative districts. If the

reform is not good, it never generates benefits. There is a prior belief that the reform is

good that is common to all legislators. With each failed attempt at reform, all legislators

update their belief about whether the reform is good or not according to Bayes’ rule.

Thus, with each failed reform attempt, the belief that the reform is good decreases, and

the expected payoff from the reform also decreases. In the absence of legislative bargaining,

a utilitarian social planner follows a stopping rule in which the reform is attempted until

the belief that it is good reaches the optimal cutoff. We call this the optimal stopping rule.

We first find that when no redistribution is allowed, the legislature, in general, does

not implement the optimal stopping rule. We show that with no redistribution the same

outcome is implemented in any equilibrium. Either experimentation never occurs, or ex-

perimentation continues until right pivot wishes to stop. Experimentation only begins if

the left pivot is in agreement.3 Thus, if experimentation begins, it ends when the posterior

belief that the reform is good is at the right pivot’s ideal cutoff belief. Thus the optimal
1For example, U.S. tax legislation is primarily driven by the U.S. Treasury and the office of the President,

whereas other policies related to reforms and redistribution may come from the House of Representatives

or the Senate.
2This endogenous status quo feature of dynamic policymaking as been used in a number of recent

papers and in a variety of policy settings. These include Kalandrakis (2004) (pure redistribution), Bowen,

Eraslan and Chen (2014) (entitlement programs), Piguillem and Riboni (2015) (public spending), Dzuida

and Loeper (2015) (unidimensional policy).
3We use terminology developed in Dzuida and Loeper (2017) applied to our setting. For any q-majority

rule, the right pivot is legislator q, and the left pivot is legislator n− q + 1.
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stopping rule is only implemented if the right pivot’s ideal coincides with the optimal cut-

off. In some cases experimentation with reform may not begin even though all legislators

wish to experiment to some degree.

In contrast, we show that when redistribution is allowed, the legislature may implement

the optimal stopping rule depending on the voting rule, and how much redistribution is

allowed. With a nonunanimity voting rule, socially efficient experimentation is attainable

as long as the exogenous constraint on redistribution is relaxed (even marginally). With

unanimity, a minimum level of redistribution must be permitted to sustain the optimal

stopping rule. Non-unanimity voting rules thus permit socially efficient redistribution

for a larger set of parameters than does unanimity, and thus non-unanimity dominates

unanimity in the sense of Bouton, Llorente-Saguer and Malherbe (forthcoming).

Related literature This project is most closely related to the literature on collective

experimentation and voting rules, including Strulovici (2010), and Messner and Polborn

(2012). Like us, these papers study how various voting rules affect incentives to experiment

in committees. In particular, Strulovici (2010) shows that efficient policy experimentation

cannot be sustained with voting. This occurs as voters learn whether or not the policy

will be beneficial to them. In contrast to Strulovici (2010), we assume that agents know

their potential future benefit form experimentation, but there is a common uncertainty

about whether the reform is good. In this sense, a conflict exists between voters prior to

beginning experimentation. We show that this conflict can be mitigated with a sufficient

level of redistribution. Strulovici (2010) does not consider redistribution. Other papers

considering policy experimentation and politics include Majumdar and Mukand (2004),

Volden et al. (2008), Cai and Treisman (2009), Callander (2011), and Callander and

Hummel (2014). These papers do not consider dynamic legislative bargaining and policy

experimentation.

We consider that policies, once implemented, can only be changed with a new round of

voting, and hence what we do relates to the literature on bargaining with an endogenous

status quo. This literature was pioneered by Baron (1996). A degenerate version of our
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model, in which policy is purely private, extends the divide-the-dollar framework studied in

Kalandrakis (2004, 2010), Battaglini and Palfrey (2012), Bowen and Zahran (2012), Bowen

and Baron (2014), Nunnari (2014), Richter (2014), and Anesi and Seidmann (2015).

This paper is related to the substantial body of political economy research studying

political failures, which was first articulated by Besley and Coate (1998). More closely

related are papers by Fernandez and Rodrik (1991) and Dziuda and Loeper (2016). Both

these papers explore inefficient policy persistence, but do not consider how this might be

affected by the ability of a legislature to distribute resources. Dewatripont and Roland

(1992) examined gradualism in reforms, however, did not consider how this is affected by

redistribution.4

The remainder of the paper is organized as follows. In Section 2 we present our model of

dynamic policy making in a legislature. In Section 3 we analyze two important benchmarks

- the optimal stopping rule and the equilibria in the case of no redistribution. In Section 4

we consider that redistribution is allowed and consider non-unanimity and unanimity rules

separately. We conclude with a discussion of the results in Section 5.

2 Model

Players, policies and preferences. We present a stylized model of dynamic policy

making by a legislature, which consists of n ≥ 3 legislators: N ≡ {1, . . . , n}. Time is

divided into discrete periods of length ∆ > 0, with the legislature meeting again at the

beginning of each period. We will subsequently focus on the limiting case as ∆ becomes

arbitrarily short.5

4Tornell (1998) also provides a theory of reform, but does not focus on the impact of legislative redis-

tribution.
5This approach to “discretizing” dynamic games is commonly used in the experimentation literature,

including for example Murto and Välimäki (2011) and Hörner and Samuelson (2013). It permits, in

particular, to analyze how heterogeneous agents collectively trade off exploration and exploitation in ex-

perimentation, while avoiding the standard difficulties inherent in formulating continuous-time games with

history-dependent behavior - for example, strategies may not be well-defined (e.g., Bergin and MacLeod,

1993). The main results of the paper hold with standard discrete time, however, the experimentation-
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In each period t the legislature has to choose a policy pt that has three components.

The first component of the policy at is a choice to engage in a risky reform R or implement a

known safe policy S. The reform R is either good or bad. There are two possible outcomes

if it is implemented, success or failure. The probability of success is γ∆ if the reform is

good and the probability of success is 0 if it is bad. Legislator i values a success at ri > 0

and a failure at 0. If implemented, the safe alternative S gives legislator i a per-period

benefit of ∆si > 0 with probability one. Let r̄ ≡
∑

i∈N ri and s̄ ≡
∑

i∈N si, and assume

that γr̄ > s̄ > 0, so that the reform, if good, is better than the safe policy in expectation.

The second component of pt is a tax rate on individual benefits τ t. We assume that there

is an exogenous upper bound τmax ∈ [0, 1] on τ t, so that τ t ∈ [0, τmax]. This upper bound

τmax represents an exogenous constraint on redistribution. The third component of pt,

denoted xt, is a choice of how to redistribute the tax revenues raised in period t and hence

xt ∈ X ≡
{

(x1, . . . , xn) ∈ [0, 1]n :
∑

i∈N xi = 1
}
.

If policy pt = (at, τ t, xt) is implemented at the start of period t and legislator i believes

that the reform is good with probability α, then her (per-period) expected payoff is given

by

wi(a
t, τ t, xt | α) ≡

 αγ∆
[
(1− τ t)ri + τ txtir̄

]
if at = R ,

∆
[
(1− τ t)si + τ txtis̄

]
if at = S .

Legislators discount at the continuously compounded rate ρ— so that the common discount

factor is δ = e−ρ∆ — and seek to maximize their average discounted sums of payoffs.

Policy making. Wemodel policy-making using a dynamic bargaining framework with an

endogenous status quo. Each period t begins with a status quo policy pt−1, inherited from

the previous period. An order of proposers (π1, . . . , πn) is randomly selected from the set Π

of all permutations of N , with each permutation in Π having a positive probability of being

selected.6 Proposer π1 then makes the first proposal p = (a, τ, x) ∈ {R,S}× [0, τmax]×X;

once the proposal is made legislators vote sequentially (in an arbitrary order) over whether

exploitation trade-off with the reform is not present with discrete time, implying that legislator’s choices

only depend on whether they benefit from the reform or not, and not the degree to which they benefit.
6We maintain this assumption throughout the text for greater clarity, but could obtain similar results

using more general protocols. In particular, our results remain intact if, as do Diermeier et al. (forthcom-
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to accept it.7 If the proposal is accepted by q legislators, q ∈
{ ⌈

n+1
2

⌉
, . . . , n

}
, it is

implemented, payoffs accrue and the game transitions to the next period, where the new

status quo is pt = p. Otherwise, proposer π2 is call upon to make a proposal and the same

process is repeated. If the n proposers all make unsuccessful proposals, then the status

quo pt−1 is implemented and remains the status quo in period t+ 1. Each of the proposal

rounds takes a negligible amount of time.

The game begins with the exogenously given status quo p0 ≡ (a0, τ0, x0), where a0 ≡ S,

τ0 ≡ 0 and x0
i ≡ si/s̄ for all i ∈ N . That is, the initial status quo consists of the safe

alternative and no redistribution of individual benefits.

Learning. The initial probability that the risky reform R is good is given by α0 ∈ (0, 1).

Legislators update their (common) belief about R’s type through the sequence of policy

choices using Bayes’ rule. The first successful trial of R reveals to all legislators that it is

good. In the event that k ∈ N trials are unsuccessful, the belief is

αk ≡
α0(1− γ∆)k

α0(1− γ∆)k + 1− α0
.

Let A ≡
{
αk : k = 0, 1, 2, . . .

}
∪ {1} be the set of possible values for the belief.

Equilibrium. As stated, our objective is to explore the institutional mechanisms that

support socially efficient experimentation. To do so, we follow closely the approach taken

by Acemoglu et al. (2008), studying conditions under which efficient experimentation can

be sustained by renegotiation-proof (pure strategy) perfect Bayesian equilibria (PBEs).

Note that, in a PBE of this game, legislators’ beliefs are necessarily given by Bayes’ rule.

A PBE is said to be renegotiation-proof if, after any public history, there does not exist

another PBE that can make all players weakly better off (and some strictly better off).8

ing), we allow Nature to select any finite list of players (π1, . . . , πm) (possibly with repetition) such that

the members of this list form a blocking coalition. Our main results also remain intact with an individual

random proposer as is common in the legislative bargaining literature with an endogenous status quo.
7Sequential voting is the standard approach with non-Markovian equilibrium concepts — e.g., Cho and

Duggan (JET 2009). This ensures that agents always vote as if pivotal.
8Though the game has imperfect information, all players are symmetrically informed at every history

and, therefore, the usual interpretation of renegotiation-proofness applies.
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However, we will not impose any refinement of PBE when stating our negative results

(those claiming that efficient policies cannot be sustained) in order to make them stronger.

In order to limit the number of possible cases (without affecting the paper’s conclusions),

we will also assume that in case of a tie, a player will prefer to continue rather than to stop

experimenting. Henceforth we will refer to a PBE with this tie-breaking rule as simply an

equilibrium, and we will refer to a renegotiation-proof PBE with this tie-breaking rule as

a renegotiation-proof equilibrium.

3 Benchmarks

To highlight the normative implications of redistribution on experimentation outcomes, we

employ two benchmarks to which later results can be compared: in the first, we characterize

the policy sequence set by a utilitarian social planner; in the second, we characterize equi-

librium outcomes for the legislative bargaining game when there is no redistribution (i.e.,

τmax = 0). Comparison of these benchmarks reveals that in the absence of redistribution,

socially efficient experimentation typically cannot be sustained in equilibrium.

3.1 The Optimal Stopping Rule

Consider the problem of a social planner whose objective is to maximize aggregate payoffs.

This is a standard Markov decision problem with the planner’s belief as a state variable.

When the belief is αk and the planner implements the risky reform R she obtains, in

addition to the expected aggregate revenue αkγ∆r̄, some information that she uses to

update her beliefs. When she implements the safe alternative, S, she only obtains the

aggregate revenue s̄∆ and her belief remains unchanged. Therefore, if the optimal solution

requires that S be implemented in a given period t, then the belief will remain the same

and S will also be implemented in all future periods. As is standard in the literature on

experimentation, it follows that the optimal solution is a stopping rule: there exists a k∗ ∈

N such that, after k∗ unsuccessful trials of R, the belief is so low that the planner suspends

experimentation and implements the safe alternative only. Formally, let V ∗(α) be the
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planner’s average discounted value from a period that begins with a belief α. That is, if the

planner applies the optimal stopping rule, then V ∗(α) is the expected sum of the legislators’

average discounted payoffs from the resulting outcome path. As γr̄ > s̄, we evidently have

V ∗(1) = γ∆r̄. If the social planner chooses to continue experimenting when the belief is

αk, then her expected payoff is equal to
[
1 − δ(1 − γ∆)

]
αkγ∆r̄ + δ(1 − αkγ∆)V ∗(αk+1).

If she chooses to stop, then her payoff is s̄∆. Hence,

V ∗(αk) = max
{[

1− δ(1− γ∆)
]
αkγ∆r̄ + δ(1− αkγ∆)V ∗(αk+1), s̄∆

}
.

Denote α∗ as the optimal cutoff. Recall that periods are discrete and thus α∗ must

be an element of the set of feasible beliefs A. The optimal cutoff α∗ may thus be strictly

smaller than the belief that makes the social planner indifferent between continuing with

the reform for one more period and switching to the safe alternative. Noting that if

αk = α∗, then V ∗(αk+1) = s̄∆, we obtain

α∗ ≡ min

{
α0,max

{
α ∈ A : α <

(1− δ)
γ
[
(1− δ(1− γ∆))(r̄/s̄)− δ∆

]}} .

We will say that an equilibrium sustains the optimal stopping rule if the legislature applies

the optimal stopping rule on the equilibrium path.

To make things interesting, we wish to study situations where social optimality dictates

to experiment for at least one period, and thus α∗ < α0, for ∆ very small. Note that, as

∆→ 0, the social planner’s ideal cutoff converges to

min

{
α0,

ρ

γ
[
(ρ+ γ)(r̄/s̄)− 1

]} .

Imposing α0 > ρ/(γ
[
(ρ+ γ)(r̄/s̄)− 1

]
) guarantees that there is a ∆̂ > 0 such that, for all

∆ < ∆̂, we have α∗ < α0. Throughout, we maintain this assumption.

Assumption A1. α0 > ρ/(γ
[
(ρ+ γ)(r̄/s̄)− 1

]
).

3.2 Policy Experimentation without Redistribution

We now return to the analysis of the bargaining game introduced in Section 2. Throughout

this section, we assume that no redistribution is permitted, i.e., τmax = 0.
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To begin we must establish some notation. By the same logic as above, each legislator

i’s ideal experimentation plan is a stopping rule with cutoff

α̂i ≡ min

{
α0,max

{
α ∈ A : α <

(1− δ)
γ
[
(1− δ(1− γ∆))(ri/si)− δ∆

]}} .

This is the rule that legislator i would implement if she were the sole decision maker.

Note that α̂i is (weakly) decreasing in the ratio ri/si. That is, each legislator’s incentive

to experiment increases with the extent to which she values the reform over the safe

alternative. Henceforth, without loss of generality, we order legislators such that ri/si ≤

ri+1/si+1 and thus legislator 1 wishes to cease experimenting first. Moreover, we refer to

α̂i as legislator i’s ideal cutoff, and to ri/si as her benefit ratio.

Next, let V i(αk) be the dynamic payoff to legislator i at the start of the game induced

by a stopping rule with cutoff αk ∈ A \ {1}. When the cutoff is αk, in each of the first

k periods, player i receives (1 − δ)ri if the risky alternative is good and successful. This

occurs with probability α0γ∆. Starting from period k+1 onward there are two possibilities.

Either R succeeded in at least one of the first k periods, and it is implemented from period

k+ 1 on. This occurs with probability α0[1− (1− γ∆)k] and yields a per-period expected

payoff of (1 − δ)γ∆ri. Or, instead, each of the first k trials is unsuccessful, and the safe

alternative S is implemented from period k + 1 on. This occurs with the complementary

probability [1 − α0

(
1 − (1 − γ∆)k

)
] and yields a per-period payoff of (1 − δ)∆si. Thus

legislator i’s dynamic payoff for cutoff αk is given by

V i(αk) ≡
(
1− δk

)
α0γ∆ri + δk

[
α0

[
1− (1− γ∆)k

]
γ∆ri +

[
1− α0

(
1− (1− γ∆)k

)]
∆si

]
=

[
1− δk(1− γ∆)k

]
α0γ∆ri + δk

[
1− α0

(
1− (1− γ∆)k

)]
∆si .

Our first result gives a complete characterization of the equilibria for the bargaining

game in terms of the voting rule and the distribution of ideal cutoffs:

Proposition 1. Suppose τmax = 0. There is a unique PBE outcome that takes the form

of a stopping rule with cutoff:

ᾱ =

 α̂q if Un−q+1

(
α̂q
)
≥ sn−q+1∆ ,

α0 otherwise.
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An immediate consequence of Proposition 1 is that if the voting rule is simple majority

q = (n+ 1)/2, then the stopping rule with median legislator’s ideal cutoff is implemented.

This is reminiscent of the well-known median voter theory, where an odd number of voters

with static, single-peaked preferences must collectively choose a policy from a unidimen-

sional choice space. However, the logic behind Proposition 1 is more subtle, not only

because this is a dynamic setting with evolving status quo and beliefs, but mainly because

policy preferences in each period are endogenously determined by equilibrium behavior in

future periods. To see this, we discuss the intuition for the proof below.

Although equilibrium continuation values in a PBE could intricately depend on the

previous history of play, we first show that if the belief becomes smaller than or equal to

legislator n’s ideal cutoff, α̂n, the safe alternative must be implemented in every period of

every continuation game. Therefore, when the belief is αk with αk+1 = α̂n, the members of

the winning coalition {1, . . . , q} can play in accordance with their own preferences without

risking to trigger adverse decisions in future periods: they will always agree to switch from

R to S if R is the status quo, and will always reject any proposal to change S to R if S is

the status quo.

Applying the same logic recursively, we obtain that whenever the belief αk is smaller

than α̂q, the equilibrium outcome of every continuation game is unique and has to be a

stopping rule with cutoff αk. Now consider any belief αk ≥ α̂q. All agents that wish to

experiment more prefer to do so right away rather than wait to experiment because by

waiting, expected future benefits are further discounted, thus turning the dynamic bar-

gaining problem into the choice between two options: implementing the stopping rule with

cutoff α̂q, or maintaining the safe alternative. If Un−q+1

(
α̂q
)
≥ sn−q+1∆ = Un−q+1(α0),

then legislator n− q + 1 and, by single-peakedness, all the other members of the winning

coalition {n− q + 1, . . . , n} prefer the first option. The stopping rule with cutoff α̂q must

therefore be the unique equilibrium outcome. If instead Un−q+1

(
α̂q
)
< sn−q+1∆, then

legislator n− q + 1 and all the other members of the blocking coalition {1, . . . , n− q + 1}

prefer to maintain the initial status quo S and, consequently, experimentation never occurs

— i.e., the unique equilibrium cutoff is α0.
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An immediate consequence of Proposition 1 is that, with simple majority voting, the

legislature always over-experiments if α̂q < α∗, and always under-experiments if α̂q > α∗.

With any super-majoritarian voting rule, it over-experiments if α̂q < α∗ and Un−q+1

(
α̂q
)
≥

sn−q+1∆, and it under-experiments either if α̂q > α∗ and Un−q+1

(
α̂q
)
≥ sn−q+1∆, or if

Un−q+1

(
α̂q
)
< sn−q+1∆. Since lim∆→0 α̂q 6= α∗ whenever rq/sq 6= r̄/s̄, this implies the

following:

Corollary 1. Suppose τmax = 0. If rq/sq 6= r̄/s̄, then there exists ∆0 > 0 such that,

whenever ∆ < ∆0, all equilibria fail to sustain the optimal stopping rule.

Corollary 1 states that, in the absence of redistribution, every equilibrium fails to sus-

tain the optimal stopping rule (in the limit as ∆→ 0) whenever legislator q’s benefit ratio

differs from r̄/s̄, which is generically the case. We conclude that efficient experimentation

is typically impossible without redistribution.

We conclude this section with a remark on Pareto inefficiency. Proposition 1 and the

subsequent corollary show how under-experimentation may happen under any voting rule,

yielding socially inefficient outcomes in equilibrium (in a Utilitarian sense). But such

equilibrium outcomes may even be Pareto dominated. This is illustrated by the following

example. Suppose q > (n + 1)/2 (so that n − q + 1 < q), ρ = γ = α0 = 2/3, ri = 2

for all i, si = 1 for all i < q, and si = ε for all i ≥ q, where ε > 0 is arbitrarily small.

It is readily checked that, under these assumptions, lim∆→0 α̂i = 3/5 < α0 for all i < q,

and lim∆→0 α̂i = 3ε/(8 − 3ε) for all i ≥ q. Hence, for arbitrarily small ∆ > 0, legislator

q’s optimal stopping rule converges to perpetual experimentation, so that Un−q+1(α̂q) →

α0γ∆rn−q+1 = 8∆/9 < ∆ = sn−q+1∆, as ε → 0. It therefore follows from Proposition 1

that, for sufficiently small ε (and sufficiently small ∆ > 0), the reform is never implemented

in equilibrium, although all legislators would be better off experimenting for a positive

number of periods. The reason this happens is that, while legislators in the blocking

coalition {1, . . . , n− q + 1} would like to experiment (since α̂i < α0 for all i < q), because

of the endogeneity of the status quo, they fear that experimentation will go on for too long,

and so they prefer not to begin experimenting at all.
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4 Policy Experimentation and Redistribution

We saw in the previous section that the optimal stopping rule is typically not sustainable in

equilibrium without redistribution. In this section, we ask whether this is still true when it

is possible to redistribute the revenues from experimentation among legislators and, if the

answer is negative, how much redistribution is needed to attain efficient experimentation.

The answer critically turns on the voting rule. We first consider non-unanimity voting

rules and then unanimity rule.

4.1 Non-unanimity Voting Rules

In stark contrast to the case of no redistribution, our next proposition states that with non-

unanimity voting rules the optimal stopping rule can be sustained by a renegotiation-proof

equilibrium for any level of redistribution. In fact, something stronger is true: although

stationary Markov strategies sharply constrain the ability to punish and reward legislators

for past behavior, the renegotiation-proof equilibrium that sustains the optimal stopping

rule can be taken to be stationary Markov.9 In addition, if there are no limits to redistribu-

tion, then all renegotiation-proof equilibrium outcomes are arbitrarily close to the optimal

stopping rule in terms of the payoff vectors they generate. We conclude that, without

bounds on redistribution, collective experimentation must yield efficient, or nearly efficient

outcomes. To state this formally, let Ui(σ) denote legislator i’s average discounted payoff

at the beginning of the game under any strategy profile σ.

Proposition 2. Suppose q < n. Then:

(i) For every upper bound τmax > 0, there exists ∆ > 0 such that, for all ∆ < ∆, the optimal

stopping rule is sustained by a (stationary Markov) renegotiation-proof equilibrium; and

(ii) if τmax = 1 then, for all ε > 0, there exists ∆̃ > 0 such that the following holds for all

∆ < ∆̃:
∑n

i=1 Ui(σ) > V ∗(α0)− ε for every renegotiation-proof equilibrium σ.
9Of course, renegotiation-proofness already constitutes an obstacle to the construction of efficient equi-

libria, as it may reduce the severity of the off-path “punishments” available to support the appropriate

incentives (which must themselves be renegotiation-proof).
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The first part of Proposition 2 shows that if the voting rule is less than unanimity,

then efficient experimentation can be supported within a legislature without resorting to

punishment strategies that condition on individual behavior. The proof is constructive; we

exploit the approach of Anesi and Seidmann (2015) and Baron and Bowen (2015) but push

this further to obtain an efficient Markovian equilibrium in a non-stationary environment

where the legislators’ policy preferences evolve with the endogenous belief. The idea of

the construction is simple: it is built around a collection of (n − 1)-member coalitions —

the potential “governing coalitions.” These governing coalitions have the property that

each legislator belongs to at least one of these coalitions but not to all of them. The same

inevitably happens from any history (both on and off the path): the optimal stopping

rule is implemented and, in every period, the members of a given governing coalition

equally share the sum of the expected aggregate revenues that can be redistributed, i.e.,

τmaxαkγ∆r̄ > 0 if the belief αk exceeds α∗, and τmaxs̄∆ > 0 otherwise. At the start of

every period, the status quo policy and the current belief — which are payoff relevant

— reveal to the legislature whether play in the previous period was consistent with the

optimal stopping rule, and whether a governing coalition formed (i.e., equally shared the

entire transferable benefits among its members). If this is the case, then the same governing

coalition forms again and continues to implement the optimal stopping rule; otherwise, the

(randomly selected) first proposer successfully offers to form a ruling coalition and to follow

the optimal stopping rule. Given the inevitability of this process, the best possible scenario

for any legislator is to form or be a member of the governing coalition that will share the

transferable revenues from experimentation in every future period. For any member i of

such a coalition, the potential benefits of a one-period deviation vanish as the period length

∆ becomes arbitrarily small, whereas the long-run cost does not: a deviation would trigger

the formation of a new governing coalition in the next period, which legislator i might not

be a member of. Though this would have no impact on the proportion (1 − τmax) of her

future payoffs that cannot be redistributed (since the optimal stopping rule is implemented

in any case), she would potentially lose a proportion τmax > 0 of her share of future

aggregate revenues as a member of the governing coalition. As no member of a governing
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coalition is prepared to run such a risk and governing coalitions are winning (q < n),

profitable deviations from the prescribed path are impossible. Moreover, this equilibrium

is renegotiation-proof since it generates payoff vectors in the Pareto frontier both on and

off the path.

To see the main idea behind the second part of Proposition 2, observe that the intuition

above remains intact if we use any sharing rule that gives every legislator a higher share

of aggregate revenues when she is a member of the governing coalition than when she is

not. Varying sharing rules thus allows us to slide along the relative interior of the Pareto

frontier so as to generate efficient equilibria that Pareto dominate those equilibria that are

too far away from the Pareto frontier. By the renegotiation-proofness criterion, the latter

equilibria can be eliminated.

4.2 Unanimity Voting Rule

Given the result obtained for non-unanimity voting rules in the previous subsection, it

is natural to ask whether the optimal stopping rule is also sustainable with any level of

redistribution under unanimity rule. A little reflection suggests the answer is no. Indeed,

efficient experimentation notably requires two sets of incentive constraints to be met. The

first set ensures that the legislators unanimously agree to change the initial status quo

policy to some (R, τ, x), x ∈ X and τ ∈ [0, τmax]; the second ensures that if the belief

becomes equal to α∗, then they unanimously agree to stop experimenting and implement

some policy (S, τ ′, y), y ∈ X and τ ′ ∈ [0, τmax]. Formally, the first constraint requires that

each legislator i’s equilibrium continuation value from implementing (R, τ, x) in the first

period is greater than or equal to her payoff from maintaining the initial status quo in all

future periods. In the benchmark case where τmax = 0, this is equivalent to U i(α∗) ≥ ∆si

for all i ∈ N (where U i(·) is defined as in Section 4). Rearranging terms and taking the

limit as ∆ goes to zero, an application of l’Hôpital’s rule gives

[
1− eψ(1+ργ)

]
α0γri + eψργ(1− α0 + eψα0)si ≥ si ,
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where ψ ≡ log
[

ρs̄
(ρ+γ)(γr̄−s̄)

]
< 0. Therefore, if legislator 1’s benefit ratio satisfies

r1

s1
<

1− eψργ(1− α0 + eψα0)[
1− eψ(1+ργ)

]
α0γ

, (1)

then there exists T > 0 such that, for every τmax ∈ [0, T ), her incentive constraint is

always violated for arbitrarily small ∆’s. Intuitively, when τmax < T , the permitted level of

redistribution is not sufficiently large to compensate legislator 1’s loss from experimenting

and, consequently, the optimal stopping rule is not sustainable in equilibrium.

The second key incentive constraint in the construction of efficient equilibria for-

mally requires that if the belief becomes equal to α∗, then each legislator i’s payoff from

implementing policy (S, τ ′, y),
[
(1 − τ ′)si + τ ′yis̄

]
∆, exceeds her equilibrium continua-

tion value from rejecting it.10 For every status quo policy (R, τ ′′, z), the latter value

is bounded below by α∗γ∆
[
(1 − τ ′′)ri + τ ′′zir̄

]
. Hence, an obvious necessary condi-

tion for the existence of an equilibrium that supports the optimal stopping rule is that

(1− τ ′)si + τ ′yis̄ ≥ α∗γ
[
(1− τ ′′)ri + τ ′′zir̄

]
for some (τ ′, y), (τ ′′, z) ∈ [0, τmax]×X and all

i ∈ N . Setting τmax = 0 and letting ∆ go to zero, we can rewrite it as

si ≥
ρris̄

(ρ+ γ)r̄ − s̄
,

for all i ∈ N . Thus, if legislator n’s benefit ratio is large relative to the social planner’s,

i.e., if

(ρ+ γ)
r̄

s̄
< 1 + ρ

rn
sn

, (2)

then there exists T > 0 such that, for every τmax ∈ [0, T ) and arbitrarily small ∆, legis-

lator n’s incentive constraint cannot hold. Because of the legislature’s imperfect ability to

redistribute the benefits from ending experimentation towards legislator n, the latter must

reject any proposal to stop experimenting when the belief is α∗ in equilibrium.

The discussion above is summarized in the following proposition.

10As the payoff vector ∆
(
(1 − τ ′)si + τiyis̄

)
i∈N belongs to the Pareto frontier when the belief is α∗

(and each legislator can reject all future proposals to amend (S, τ ′, y) once it has been implemented),[
(1−τ ′)si+τ ′yis̄

]
∆ must be each legislator i’s equilibrium continuation value from implementing (S, τ ′, y).
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Proposition 3. Suppose q = n. If either condition (1) or (2) is satisfied, then there

exists T > 0 such that the following holds for all τmax ∈ [0, T ): there is ∆̂ > 0 such that,

whenever ∆ < ∆̂, every equilibrium fails to sustain the optimal stopping rule.

This proposition shows that institutional details matter: in contrast to any quota rule

short of unanimity, efficient experimentation may not be attainable under unanimity rule

if not enough redistribution is permitted. Under the premises of the proposition, even

unrefined equilibria all fail to support the optimal stopping rule.

Explicit analytical results characterizing the exact minimum value of τmax needed to

avoid this negative conclusion for every parametric configuration of the model are hard to

come by: a general characterization of the set of (renegotiation-proof) equilibria, though

possible,11 would provide relatively little if any analytical purchase on the problem at

hand. Instead, we establish that sufficiently high levels of redistribution permit efficient

experimentation under unanimity rule, irrespective of the details of the underlying policy

preferences and information structure.

To gain some intuition on how redistribution allows the legislature to appropriately

adjust benefit ratios, consider again the two key incentive constraints discussed above:

One must first ensure that all players (including those who prefer the safe alternative to a

good reform) optimally agree to implement the risky reform R at the start of the game,

and second that they all agree to revert to the safe alternative if the belief attains the

optimal cutoff α∗. If the legislators can credibly commit in equilibrium to redistribute

revenues in such a way that their benefit ratios all coincide with the social planner’s, r̄/s̄,

then the second requirement will be met. More precisely, suppose a legislator proposes to

change the status quo (R, τ, x) to some policy (S, τ ′, y) when the belief becomes equal to
11It is possible to show that, in continuation games with arbitrarily small beliefs, the set of renegotiation-

proof equilibrium payoff vectors (for small enough ∆) is the simplex
{

(w1, . . . , wn) ∈
∏n

i=1

[
(1 −

τmax)∆si, s̄∆
]
:
∑n

i=1 wi = s̄∆
}

if the initial status quo is of the form (R, τ, x), and the singleton{[
(1 − τ)si + τxis̄

]
∆
}
i∈N if the status quo is of the form (S, τ, x). A backward-induction argument

then gives the sets of equilibrium payoff vectors for higher beliefs.
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α∗. Then, as long as
(1− τ)ri + τxir̄

(1− τ ′)si + τ ′yis̄
=
r̄

s̄
,

all legislators are better off accepting the proposal. This condition is trivially satisfied if

τ = τ ′ = 1 and x = y. The requirement that all legislators agree to change the initial

status quo (S, 0, x0) to (R, τ, x) = (R, 1, x) in the first period can then be written as[
1− δk∗−1(1− γ∆)k

∗−1
]
α0γxir̄ + δk

∗−1
[
1− α0 + (1− γ∆)k

∗−1α0

]
xis̄ ≥ xis̄

or, equivalently, V ∗(α∗) ≥ s̄∆, which holds for sufficiently small ∆ by assumption. Thus,

full redistribution ensures that the two key incentive constraints are satisfied if legislators

can commit to use the appropriate redistributive policies in equilibrium. Though legisla-

tors face an infinite number of additional incentive constraints, full redistribution allows

great flexibility in creating “rewards” and “punishments” that can support the incentives

to implement such policies.

Proposition 4. Suppose q = n and τmax = 1. Then, there exists ∆̂ > 0 such that, for

all ∆ < ∆̂, renegotiation-proof equilibria exist and all of them sustain the optimal stopping

rule.

5 Discussion

We analyze a model of policy making in which the benefits of reform may or may not be

redistributed. We show that, except for nongeneric cases, socially efficient experimentation

necessitates redistribution. That is, when no redistribution is possible, the optimal stop-

ping rule is achieved if and only if the median gain from reform is equal to the average gain

from reform. We show that arbitrarily small amounts of redistribution suffice to support

socially efficient experimentation under non-unanimity voting rules. We further show that

with unanimity, the optimal stopping rule can be sustained with a sufficient amount of

redistribution. Since non-unanimity supports efficient experimentation for a larger set of

parameters than unanimity, we say that non-unanimity rules dominate unanimity.

In future work we ask how the “progressiveness” of redistribution may affect the abil-

ity to sustain the optimal stopping rule in experimentation. That is, we consider what
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levels of taxation and redistribution will be endogenously chosen by legislatures, for some

exogenously specified division of resources.

The redistributive tool we have used to support efficient policy experimentation in the

case of non-unanimity voting rules can be used in other settings. In the case of non-

unanimity we have supported efficient experimentation by linking the equilibrium of the

experimentation game to an equilibrium of the redistribution game with a structure of

dynamic coalitions (as in Anesi and Seidman (2015) and Baron and Bowen (2015)). Such

“linking” of policies can be used in other settings to support efficient policymaking. We

also explore this in future work.
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Appendix

A Proof of Proposition 1

We assume throughout this section that τmax = 0, so that distributions have no impact

on players’ payoffs. To lighten the notation, we simply represent policies as elements

of {R,S}, omitting the irrelevant sharing-rule component. To prove Proposition 1, it is

useful to consider a class of games
{

Γ(a, α) : a ∈ {R,S} & α ∈ A
}
, where Γ(a, α) is the

same game as that described in Section 2, except that it begins with an initial status quo

alternative a (possibly equal to R) and a probability α (possibly different from α0) that

Alternative R is good.

It is useful to define the set of losers from the reform as L ≡ {i ∈ N : γri < si} and the

set of winners as W ≡ {i ∈ N : γri ≥ si}.

Lemma A1. Suppose τmax = 0. Then,

(i) Γ(R, 1) has a unique equilibrium outcome: Alternative R is implemented in every period

if
∣∣L∣∣ < q, and alternative S is implemented in every period otherwise;

(ii) for all a ∈ {R,S} and αk ≤ α̂n, Γ(a, αk) has a unique equilibrium outcome: Alternative

S is implemented in every period.

Proof. (i) To see that there exists an equilibrium with the proposed outcome, consider the

following (stationary Markov) strategy profile:

- Whenever the status quo is R, all proposers pass (i.e., propose R), and each voter i

accepts proposal S if and only if i ∈ L ;

- whenever the status quo is S, each proposer i proposes R if i /∈ L and passes other-

wise, and each voter i accepts proposal R if and only if i /∈ L.

It is easy to check that this strategy profile constitutes an equilibrium. (In particular,

proposers who prefer S to R do not deviate and propose to amend status quo R because

they anticipate that such a proposal would be rejected.)
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Next we show that this is the unique equilibrium outcome. Our proof shares some

of the intuitions of Shaked and Sutton’s (1984) proof of equilibrium uniqueness in the

Rubinstein model. Let the set of PBEs of Γ(R, 1) be denoted by E(R, 1). In Γ(R, 1),

legislator i’s expected payoff in every period t is a convex combination of γ∆ri and ∆si.

Therefore, for every strategy profile σ her average discounted payoff is of the form Vi(σ) ≡

β(σ)γ∆ri +
[
1 − β(σ)

]
∆si, with β(σ) ∈ [0, 1]. This implies that, for any two strategy

profiles σ and σ′, and any legislator i ∈ {i ∈ N : γri > si}, we have Vi(σ) ≥ Vi(σ
′) if and

only if β(σ) ≥ β(σ′).

Suppose first that
∣∣L∣∣ < q. Let {σm} be a sequence in E(R, 1) that satisfies limm→∞ β(σm) =

infσ∈E(R,1) β(σ), so that limm→∞ Vi(σ
m) = infσ∈E(R,1) Vi(σ) for all i ∈W ≡ {i ∈ N : γri ≥

si}. Fix m ∈ N. Every proposal that may successfully be made by the last proposer in

the first period under σm (both on and off the path) must be accepted by some decisive

player i in W . That is, i’s continuation payoff from accepting the proposal, say Uai , must

be at least as large as her payoff from rejecting it; i.e., Uai ≥ (1− δ)γ∆ri + δVi(σ
r), where

σr ∈ E(R, 1) is the equilibrium of Γ(R, 1) that is played from the next period on if i rejects

the proposal in the first period. From the argument in the previous paragraph, we thus

have Uaj ≥ (1−δ)γ∆rj+δVj(σ
r) for all j ∈W . Similarly, every proposal that may success-

fully be made by the penultimate proposer in the first period under σm (both on and off the

path) must also be accepted by some member i of W . Her payoff (and therefore the payoff

of all members of W ) from accepting must be at least as large as the payoff from rejecting

which, as previously shown, must be at least (1 − δ)γ∆ri + δ inf
{
Vi(σ) : σ ∈ E(R, 1)

}
.

Applying the same argument recursively, we obtain that the acceptance of any proposal in

the first period must give a payoff of at least (1− δ)γ∆ri + δ inf
{
Vi(σ) : σ ∈ E(R, 1)

}
for

all i ∈W . Hence,

Vi(σ
m) ≥ (1− δ)γ∆ri + δ inf

{
Vi(σ) : σ ∈ E(R, 1)

}
,

for all i ∈W . Taking the limit as m→∞ and recalling the definition of {σm}, we obtain

γ∆ri = inf
{
Vi(σ) : σ ∈ E(R, 1)

}
(since γ∆ri is maximum feasible payoff for a player i ∈W

when R is good with probability one). This in turn implies that R must be implemented

with probability one in every period of every equilibrium of Γ(R, 1).
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The argument for the case where
∣∣L∣∣ ≥ q is analogous.

(ii) To prove the second part of the lemma, we proceed in three steps: first, we show

that the infimum of every player i’s equilibrium payoff in Γ(S, αk) converges to ∆si as

k →∞; then, we show that for sufficiently large k, alternative S is implemented in every

period of Γ(S, αk); finally, we use the previous result to complete the proof of the lemma.

Let αk ∈ A \ {1}; and let E(S, αk) be the set of PBEs of Γ(S, αk). Every period of

Γ(S, αk) begins with a belief α that alternative R is good; then, either S is implemented,

in which case legislator i receives a payoff of ∆si; or R is implemented, in which case i’s

expected payoff is αγ∆ri. Therefore, every strategy profile σ yields an expected payoff of

the form

V k
i (σ) ≡ ∆

[
βks (σ)si + βk1 (σ)γri +

∞∑
`=k

βk` (σ)α`γri

]
to player i in Γ(S, αk), where βks (σ) + βk1 (σ) +

∑∞
`=k β

k
` (σ) = 1 and βks (σ), βk1 (σ), βk` (σ) ∈

[0, 1] for each ` = k, k+1, . . .. Moreover, as Rmust have been successfully tried at least once

to be known to be good, βk1 (·) is bounded above by αkγ. Coupled with the fact that α` ≤ αk
for all ` ≥ k, this implies that limk→∞M

k
i ≡ supσ∈E(S,αk)

[
βk1 (σ) +

∑∞
`=k β

k
` (σ)α`

]
γri for

each i ∈ N . This in turn implies that there is a null sequence {εk} in R+ such that, for all

σ ∈ E(S, αk), we have

max
i∈N

∣∣V k
i (σ)− βks (σ)si∆

∣∣ ≤ ∆ max
i∈N

Mk
i < εk ,

for every k ∈ N. Now for each k ∈ N, let {σk,m} be a sequence in E(S, αk) such that

limm→∞ β
k
s (σk,m) = infσ∈E(S,αk) β

k
s (σ). As σk,m is an equilibrium of Γ(S, αk), there must

be at least one legislator, say ik, such that

V k
ik

(σk,m) ≥ (1− δ)∆sik + δ inf
σ∈E(S,αk)

V k
ik

(σ) ;

otherwise some player would have a profitable deviation in the first period of Γ(S, αk). It

follows that

βks (σk,m)∆sik + εk ≥ (1− δ)∆sik + δ
[

inf
σ∈E(S,αk)

βks (σ)∆sik − ε
k
]
.

Taking the limit as m → ∞, we obtain infσ∈E(S,αk) β
k
s (σ) ≥ 1 − 2(εk/∆sik). This implies

that infσ∈E(S,αk) β
k
s (σ) converges to one as k →∞ and, therefore, that there exists a null
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sequence {ηk} such that limk→∞maxi∈N

∣∣∣ infσ∈E(S,αk) V
k
i (σ) − ∆si

∣∣∣ < ηk, for all k ∈ N,

thus completing the first step of the argument.

We now turn to the second step of the proof. Observe first that, as (1 − δ)(si −

αkγri)∆− δηk converges to (1− δ)∆si > 0 as k →∞, there is a sufficiently large K ∈ N

such that (1 − δ)(si − αkγri)∆ − δηk > 0, for all k ≥ K. Let k ≥ K, and suppose

that Γ(S, αk) has an equilibrium in which alternative R is implemented with positive

probability. Consider the first period of Γ(S, αk) in which R may be implemented. Every

decisive voter i’s benefit from rejecting any proposal to change S to R is bounded below

by (1−δ)(si−αkγri)∆+δ
[
(∆si−ηk)−∆si

]
> 0, where the bracketed term represents the

difference between the lower and upper bounds on i’s continuation payoffs from rejecting

R and accepting it, respectively. (Recall that each legislator i’s maximum payoff is ∆si

when the belief is smaller than or equal to α̂n.) Hence, then every proposal to amend S

to R is rejected in any equilibrium of Γ(S, αk). We thus have V k
i (σ) = ∆si, for all i ∈ N

and all σ ∈ E(S, αk).

If αK > α̂n, then Lemma 1(ii) follows immediately from the previous paragraph; so

suppose that αK ≤ α̂n. To complete the proof of the result, consider the first period of

Γ(S, αK). If alternative R is implemented, then the expected payoff to each legislator i is[
1−δ(1−γ∆)

]
αKγ∆ri+δ(1−αKγ∆)∆si < ∆si, where the inequality follows from αK ≤ α̂n

and the definition of the legislators’ optimal cutoffs in Subsection 3.2; if alternative S is

instead implemented, then her expected payoff will be a convex combination of
[
1− δ(1−

γ∆)
]
αKγ∆ri+ δ(1−αKγ∆)∆si (if R is implemented with positive probability in a future

period) and ∆si, with a positive coefficient on the latter. Therefore, all legislators are

strictly better off implementing R: they all reject proposals to amend S to R (when

decisive). Hence, V k
i (σ) = ∆si, for all i ∈ N , k ≥ K and σ ∈ E(S, αk). Applying the

same argument recursively from belief αK−1 to belief α̂n we obtain that, for all αk ≤ α̂n,

Γ(S, αk) has a unique equilibrium outcome: Alternative S is implemented in every period.

By the same logic, the same is also true in game Γ(S, αk), αk ≤ α̂n. In such a game, every

decisive voter receives her largest possible payoff ∆si if she accepts a proposal to change

the status quo R to S, since the latter will then never be amended. Any such a proposal
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must therefore be successful and, as S is the ideal policy of all players, some proposer must

successfully propose it in equilibrium.

Finally, S being the ideal alternative of all the players, it is easy to construct an equi-

librium in which all players always propose alternative S (conditional on being recognized

to propose), accept any proposal to change status quo R to alternative S, and reject any

proposal to amend status quo S.

We now return to the proof of the main proposition. Suppose first that
∣∣L∣∣ < q. Having

characterized the unique PBE outcome of Γ(a, 1) and Γ(a, αk), for all a ∈ {R,S} and all

αk ≤ α̂n, we begin with an inductive argument. Take any k ∈ N such that (i) for each

a ∈ {R,S}, alternative S is implemented in every period in any PBE of Γ(a, αk+1), and (ii)

αk ≤ α̂q. (From Lemma A1(ii), we already know that this is the case if αk ≤ α̂n.) In the

first period of Γ(S, αk), the expected payoff to legislator i in any PBE must be a convex

combination of fi(αk) ≡
[
1 − δ(1 − γ∆)

]
αkγ∆ri + δ(1 − αkγ∆)si∆ and si∆. It follows

from the definition of α̂i, si∆ > fi(αk) if and only if αk ≤ α̂i. By the same logic as in the

proof of Lemma A1(i), this implies that any proposal to change status quo S to the risky

alternative R must be rejected by the members of the winning coalition {1, . . . , q}. Hence,

si∆ is legislator i’s unique equilibrium payoff in Γ(S, αk). It follows that legislator i’s payoff

in the continuation game Γ(R,αk) is fi(αk) if R is implemented in the first period, and

∆si otherwise. This implies that every member of the winning coalition {1, . . . , q} must

accept any proposal to amend R to S (when decisive) and, therefore, at least one proposer

must successfully propose S in the first period in equilibrium. We have thus established

that for all αk ≤ α̂q, S is implemented in every period of Γ(R,αk) in any PBE. The unique

equilibrium outcome of Γ(R, α̂q) is therefore the stoppling rule with cutoff α̂q.

In Section 3, we defined V i(αk) as the expected payoff to legislator i induced by the

stopping rule with cutoff αk in Γ(S, α0). For every 0 ≤ ` ≤ k, we can similarly define the

expected payoff to legislator i induced by this stopping rule in Γ(S, α`) as

U i(αk | α`) ≡
[
1− δk−`(1− γ∆)k−`

]
α`γ∆ri + δk−`

[
1− α` + (1− γ∆)k−`α`

]
si∆ .

Differentiating the right side of the above equation with respect to k reveals that U i(αk|α`)
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is single-peaked in k and, therefore, in the cutoff αk: it decreases with αk if αk < α̂i, and

increases with αk if αk > α̂i. Now take any belief α` > α̂q such that the unique equilibrium

outcome of Γ(R,α`+1) is the stoppling rule with cutoff α̂q. (From the previous paragraph,

this is the case if α`+1 = α̂q.) The expected payoff to legislator i in any PBE of Γ(R,α`) is

a convex combination between U i(α̂q | α`) and si∆. Moreover, it follows from the single-

peakedness of U i(· | α`) that U i(α̂q | α`) > si∆ = U i(α` | α`), for all i ≥ q — recall that

α̂i ≤ α̂q < α` for all i ≥ q. Every member of the blocking coalition {q, . . . , n} therefore

rejects any proposal to amend the status quo R to S in the first period of Γ(R,α`). This

shows in particular that the unique PBE outcome of Γ(R,α1) is the stopping rule with

cutoff α̂q.

Finally, consider the first period of the game — i.e., the first period of Γ(S, α0). It

follows from the previous paragraph that, in any equilibrium, legislator i’s payoff must be

a convex combination between U i(α̂q) = U i(α̂q | α0) and si∆ = U i(α0 | α0). Suppose first

that Un−q+1(α̂q) < sn−q+1∆, so that U i(α̂q) < si∆ for every member i of the blocking

coalition {1, . . . , n − q + 1}. Every member of this coalition must therefore reject any

proposal to amend the status quo S to R in the first period. This in turn implies that the

stopping rule with cutoff α0 is the unique PBE outcome. Suppose now that Un−q+1(α̂q) ≥

sn−q+1∆. Denoting the supremum of the PBE payoffs of each legislator i by U sup
i , we

thus have U i(α̂q) ≥ U sup
i ≥ si∆ for every member i of the winning coalition C ≡ {n− q+

1, . . . , n}. This implies that, in any PBE, the payoff of each legislator i ∈ C from accepting

a proposal to amend status quo S to R (when decisive) in the first period of the game —

i.e. U i(α̂q) — must therefore exceed her payoff from rejecting it — (1 − δ)∆si + δU sup
i .

Hence, at least one member of the legislature must successfully propose alternative R in

the first period. This in turn implies that the stopping rule with cutoff α̂q is the unique

PBE outcome, completing the proof of Proposition 1.
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B Proof of Proposition 2

B.1 Proof of Part (i) of Proposition 2

Fix τmax > 0. To prove the first part of Proposition 2, we will first define the threshold

∆ (Subsection B.1.1). Then, for every ∆ < ∆, we will construct a stationary Markov

strategy profile σ∆ that supports the optimal stopping rule (Subsection B.1.2). Finally, we

will demonstrate that, for all ∆ < ∆, σ∆ is a renegotiation-proof equilibrium (Subsection

B.1.3).

B.1.1 Definition of ∆

To begin we must establish some notation. For each i ∈ N , let coalition Ci be defined by

Ci = N \ {n} if i = 1, and Ci = N \ {i− 1} otherwise. Note that, as q < n, each coalition

Ci is winning. Let xi ∈ X be defined by

xij ≡

 1/(n− 1) if j ∈ Ci ,

0 otherwise,

and let

x̄i ≡
1

n− 1

∑
j : Cj3i

pj ,

where pj ∈ (0, 1) is the probability (induced by the protocol) that legislator j proposes

first in any period. To shorten the notation slightly we will henceforth refer to the upper

bound on the tax rate τmax more concisely as τ̂ . Next, let k∗ ∈ N be implicitly defined by

αk∗ ≡ α∗ and, for every i, j ∈ N , let the function W j
i : A→ R+ be defined by

W j
i (α) ≡



wi(R, τ̂ , x
j | 1) if α = 1,

wi(S, τ̂ , x
j | α) if α = αk with k ≥ k∗,

[
1− δk∗−k(1− γ∆)k

∗−k]wi(R, τ̂ , xj | α) if α = αk with k < k∗,

+δk
∗−k[1− αk + (1− γ∆)k

∗−kαk
]
wi(S, τ̂ , x

j | α)
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for all α ∈ A. In words: for every α, W j
i (α) is legislator i’s average discounted payoff

is implemented along with (constant) redistributive policy (τ̂ , xj) when the belief is α.

Finally, let W 0
i : A → R+ be defined by W 0

i (α) ≡
∑

j∈N pjW
j
i (α), for all α ∈ A. The

interpretation of W 0
i (α) is analogous to W j

i (α)’s, but each redistributive policy (τ̂ , xj) is

implemented with probability pj . Observe that, for all α ∈ A and j ∈ N , the payoff vectors(
W j
i (α)

)
i∈N and

(
W 0
i (α)

)
i∈N belong to the Pareto frontier. This observation will play an

important role in the equilibrium construction below.

The definition of the threshold ∆ hinges on the following lemma:

Lemma B1. Suppose τmax > 0 and, for all i, j ∈ N , let W j
i and W 0

i be defined as above.

There exists ∆ > 0 such that the following inequalities hold for all ∆ < ∆, all i, j ∈ N

with i ∈ Cj, and all k ∈ N:

W j
i (1) > (1− δ)γ∆r̄ + δW 0

i (1) ,

W j
i (αk) > (1− δ)s̄∆ + δW 0

i (αk) , and

W j
i (αk) > (1− δ)αkγ∆r̄ + δαkγ∆W 0

i (1) + δ(1− αkγ∆)W 0
i (αk+1) .

Proof. Let i, j ∈ N with i ∈ Cj , and all k ∈ N. By definition of Wi, we have

W j
i (1)− (1− δ)γ∆r̄ − δW 0

i (1)

∆
= (1− δ)γ(1− τ̂)(ri − r̄)

+ γτ̂ r̄
[
δ(xji − x̄i)− (1− δ)(1− xji )

]
.

As xji − x̄i > 0, there exists ∆̂1
i,j > 0 such that W j

i (1)− (1− δ)γr̄− δW 0
i (1) > 0 whenever

∆ < ∆̂1
i,j . By the same logic, if k ≥ k∗, then there exists ∆̂2

i,j > 0 such that W j
i (αk) −

(1 − δ)s̄∆ − δW 0
i (αk) = s̄∆

[
δ(xji − x̄i) − (1 − δ)(1 − xji )

]
> 0 whenever ∆ < ∆̂2

i,j . Now

suppose that k < k∗. Observe that

W j
i (αk)−W 0

i (αk)

∆
=
{[

1− δk∗−k(1− γ∆)k
∗−k]αkγr̄ + δk

∗−k[1− αk + (1− γ∆)k
∗−kαk

]
s̄
}

× (xji − x̄i) ,

where the first bracketed term on the right-hand side represents the expected social welfare

(divided by ∆) under the optimal stopping rule. As αk > α∗, this term is greater than or
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equal to s̄. Hence, W j
i (αk)−W 0

i (αk) ≥ s̄∆(xji − x̄i) > 0, and

W j
i (αk)− (1− δ)s̄∆− δW 0

i (αk)

∆
≥ 1− δ

∆
W j
i (αk)− (1− δ)s̄+

δ

∆
s̄τ̂(xji − x̄i) .

An application of l’Hôpital’s rule shows that (1 − δ)/∆ → ρ as ∆ → 0. As W j
i (·) and

W 0
i (·) are bounded, there exists ∆̂3

i,j > 0 such that W j
i (αk) > (1 − δ)s̄∆ − δW 0

i (αk) > 0

whenever ∆ < ∆̂3
i,j .

Consider now the last inequality in the lemma. Let Ψ(αk) ≡W j
i (αk)− (1−δ)αkγ∆r̄−

δαkγ∆W 0
i (1) − δ(1 − αkγ∆)W 0

i (αk+1). Suppose first that k ≥ k∗. It is readily checked

that

lim
∆→0

Ψ(αk)

∆
= (1− τ̂)si + τ̂xji s̄−

[
(1− τ̂)si + τ̂ x̄is̄

]
= τ̂(xji − x̄i)s̄ > 0 .

Therefore, there exists ∆̂4
i,j > 0 such that W j

i (αk) > (1− δ)αkγr̄ + δαkγ∆W 0
i (1) + δ(1−

αkγ∆)W 0
i (αk+1) whenever ∆ < ∆̂4

i,j . Finally, suppose that k < k∗. By definition of W j
i ,

we have

Ψ(αk) = −(1− δ)αkγ∆r̄(1− xji ) + δαkγ∆
[
W j
i (1)−W 0

i (1)
]

+ δ(1− αkγ∆)
[
W j
i (αk+1)−W 0

i (αk+1)
]

≥ −(1− δ)αkγ∆τ̂(1− xji )r̄ + δ(xji − x̄i) [αkγ∆τ̂ r̄ + (1− αkγ∆)τ̂ s̄]

> −(1− δ)αkγ∆τ̂(1− xji )r̄ + δτ̂(xji − x̄i)s̄ ,

where the first inequality follows fromW j
i (αk+1)−W 0

i (αk+1) ≥ s̄τ̂(xji − x̄i) (as established

above), and the second follows from our assumption that γr̄ > s̄. Therefore, there exists

∆̂5
i,j > 0 such that W j

i (αk) > (1 − δ)αkγ∆r̄ + δαkγ∆W 0
i (1) + δ(1 − αkγ∆)W 0

i (αk+1)

whenever ∆ < ∆̂5
i,j . Setting ∆̄ ≡ min{∆̂`

i,j : i, j ∈ N & ` = 1, . . . , 5}, we obtain the

lemma.

Let ∆ be defined as in the above lemma. Henceforth, we assume that ∆ < ∆̄.

B.1.2 Definition of Stationary Markov Strategy Profile σ∆

This subsection describes the behavior prescribed by strategy profile σ∆ to each legislator

i ∈ N , for all ∆ < ∆̄. Observe that, in each proposal stage, i’s behavior only depends

28



on the current status quo and belief and, in each voting stage, her behavior only depends

on the current status quo, the belief, and the list of remaining proposers in the current

period. Hence, σ∆ is stationary Markov.

• Proposal stages. Consider first proposer i’s behavior in a period where the order of

proposers is π = (π1, . . . , πn) with π` = i for some `; and the first ` − 1 proposers have

failed to amend the status quo. There are three cases:

Case P1: The belief is αk, where k < k∗.

Proposer i offers (R, τ̂ , xi) (which, in cases where the status quo is (R, τ̂ , xi) means

that she passes).

Case P2: The belief is αk, where k > k∗.

Proposer i offers (S, τ̂ , xi) (which, in cases where the status quo is (S, τ̂ , xi) means

that she passes).

Case P3: The belief is α∗.

Case 3.1: If the status quo is a policy (a, τ, x) 6= (R, τ̂ , xj) for all j ∈ N , then proposer i

offers (S, τ̂ , xi).

Case 3.2: If the status quo is (R, τ̂ , xj) for some j ∈ N , then proposer i offers (S, τ̂ , xj) if

i ∈ Cj , and (S, τ̂ , xi) otherwise.

• Voting stages. Consider now voter i’s behavior in a period where the order of pro-

posers is π = (π1, . . . , πn). There are several cases:

Case V1: The status quo is (R, τ̂ , xj) for some j ∈ N ; the belief is αk, where k < k∗; and a

proposer π` has just proposed policy (a, τ, y) 6= (R, τ̂ , xj).

If voter i is a member of Cj , then she rejects the proposal; otherwise, she accepts

the proposal if and only if

W j
i (αk) > (1−δ)wi(a, τ, y | αk)+δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if a = R,

W 0
i (αk) if a = S.
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Case V2: The status quo is (a, τ, x), where (a, τ, x) 6= (R, τ̂ , xj) for all j ∈ N ; the belief is αk,

where k < k∗.

Case V2.1: Proposer πn has just proposed policy (R, τ̂ , xj) for some j ∈ N .

If voter i is a member of Cj , then she accepts the proposal; otherwise, she

accepts the proposal if and only if

W j
i (αk) > (1−δ)wi(a, τ, x | αk)+δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if a = R,

W 0
i (αk) if a = S.

Case V2.2: Proposer πn has just proposed policy (b, τ ′, y), where (b, τ ′, y) 6= (R, τ̂ , xj) for

all j ∈ N .

Voter i accepts the proposal if and only if

(1− δ)wi(a, τ, x | αk) + δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if a = R,

W 0
i (αk) if a = S.

< (1− δ)wi(b, τ ′, y | αk) + δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if b = R,

W 0
i (αk) if b = S.

Case V2.3: Proposer π`, ` < m, has just proposed policy (R, τ̂ , xj) for some j ∈ N .

If voter i is a member of Cj , then she accepts the proposal; otherwise, she

accepts the proposal if and only if W j
i (αk) ≥W

π`+1

i (αk).

Case V2.4: Proposer π`, ` < m, has just proposed policy (b, τ ′, y), where (b, τ ′, y) 6=

(R, τ̂ , xj) for all j ∈ N .

Voter i accepts the proposal if and only if

W
π`+1

i (αk) < (1−δ)wi(b, τ ′, y | αk)+δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if b = R,

W 0
i (αk) if b = S.

Case V3: The status quo is (S, τ̂ , xj) for some j ∈ N ; the belief is αk, where k > k∗; and a

proposer π` has just proposed policy (a, τ, y) 6= (S, τ̂ , xj).
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If voter i is a member of Cj , then she rejects the proposal; otherwise, she accepts

the proposal if and only if

W j
i (αk) > (1−δ)wi(a, τ, y | αk)+δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if a = R,

W 0
i (αk) if a = S.

Case V4: The status quo is (a, τ, x), where (a, τ, x) 6= (S, τ̂ , xj) for all j ∈ N ; and the belief is

αk, where k > k∗.

Case V4.1: Proposer πn has just proposed policy (S, τ̂ , xj) for some j ∈ N .

If voter i is a member of Cj , then she accepts the proposal; otherwise, she

accepts the proposal if and only if

W j
i (αk) ≥ (1−δ)wi(a, τ, x | αk)+δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if a = R,

W 0
i (αk) if a = S.

Case V4.2: Proposer πn has just proposed policy (b, τ ′, y), where (b, τ ′, y) 6= (S, τ̂ , xj) for

all j ∈ N .

Voter i accepts the proposal if and only if

(1− δ)wi(a, τ, x | αk) + δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if a = R,

W 0
i (αk) if a = S.

≤ (1− δ)wi(b, τ ′, y | αk) + δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if b = R,

W 0
i (αk) if b = S.

Case V4.3: Proposer π`, ` < m, has just proposed policy (S, τ̂ , xj) for some j ∈ N .

If voter i is a member of Cj , then she accepts the proposal; otherwise, she

accepts the proposal if and only if W j
i (αk) ≥W

π`+1

i (αk).

Case V4.4: Proposer π`, ` < m, has just proposed policy (b, τ ′, y), where (b, τ ′, y) 6=

(S, τ̂ , xj) for all j ∈ N .

Voter i accepts the proposal if and only if

W
π`+1

i (αk) < (1−δ)wi(b, τ ′, y | αk)+δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if b = R,

W 0
i (αk) if b = S.
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Case V5: The status quo is (R, τ̂ , xj) for some j ∈ N ; and the belief is α∗.

Case V5.1: Proposer πn has just proposed policy
(
S, τ̂ , xj

′) for some j′ ∈ N .

If voter i is a member of Cj′ , then she accepts the proposal; otherwise, she

accepts the proposal if and only if

W j′

i (α∗) ≥ (1− δ)wi(R, τ̂ , xj | α∗) + δα∗γ∆W 0
i (1) + δ(1− α∗γ∆)W 0

i (αk∗+1 .

Case V5.2: Proposer πn has just proposed policy (b, τ ′, y), where (b, τ ′, y) 6= (S, τ̂ , xj) for

all j ∈ N .

Voter i accepts the proposal if and only if

(1− δ)wi(R, τ̂ , xj | α∗) + δα∗γ∆W 0
i (1) + δ(1− α∗γ∆)W 0

i (αk∗+1)

≤ (1− δ)wi(b, τ ′, y | α∗) + δ

 α∗γ∆W 0
i (1) + (1− α∗γ∆)W 0

i (αk∗+1) if b = R,

W 0
i (α∗) if b = S.

Case V5.3: Proposer π`, ` < m, has just proposed policy
(
S, τ̂ , xj

′) for some j′ ∈ N .

If voter i is a member of Cj and j′ = j, then she accepts the proposal; if she is

a member of Cj , j′ 6= j and there is `′ > ` such that π`′ ∈ Cj , then she rejects

the proposal; otherwise, she accepts the proposal if and only if W j′

i (α∗) >

W
π`+1

i (α∗).

Case V5.4: Proposer π`, ` < m, has just proposed policy (b, τ ′, y), where (b, τ ′, y) 6=

(R, τ̂ , xj) for all j ∈ N .

Voter i accepts the proposal if and only if

W
π`+1

i (α∗) < (1−δ)wi(b, τ ′, y | α∗)+δ

 α∗γ∆W 0
i (1) + (1− α∗γ∆)W

(
i αk∗+1) if b = R,

W 0
i (α∗) if b = S.

Case V6: The status quo is (a, τ, x), with (a, τ, x) 6= (R, τ̂ , xj) for all j ∈ N ; and the belief is

α∗.

Voter i behaves as in Cases 3 and 4 (with k = k∗).

Case V7: The belief is equal to one. In this case, apply Cases V1 and V2 replacing αk and

αk+1 by 1.
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B.1.3 Verification that σ∆ Is a Renegotiation-proof equilibrium

Optimal stopping rule. Before proceeding to the verification that σ∆ is a renegotiation-

proof equilibrium, it is worth noting that it sustains the optimal stopping rule. The game

starts with status quo (S, 0, x0) and belief α0. The first proposer, say j, is prescribed

to propose policy (R, τ̂ , xj) (see Case P1 above), which is accepted by all the members of

decisive coalition Cj (see Case V2.3). This policy is then implemented again in every future

period that begins with a belief greater than α∗, as any proposal to amend it is voted down

by the members of Cj (see Case V1). If the belief becomes α∗, then all members of Cj

reject any proposal until one of them proposes policy (S, τ̂ , xj), which they all accept (see

Cases P3.2 and V5.3). (As Cj is a decisive coalition, Cj ∩{π1, . . . , πm} 6= ∅ and, therefore,

at least one of its members is a proposer.) Policy (S, τ̂ , xj) is then never amended, as any

proposal to change it is voted down by the members of Cj (see Case V3). Hence, the

optimal stopping rule is implemented on the path. Any deviation from this path leads

the next proposer j′ to successfully propose policy
(
R, τ̂ , xj

′) if the belief is greater than

α∗, or policy
(
S, τ̂ , xj

′) if the belief smaller than or equal to α∗. The induced path again

supports the optimal stopping rule.

Continuation values and renegotiation-proofness. Let Vi(b, τ, y|α) be player i’s

average discounted value (induced by σ∆) from implementing policy (b, τ, y) when the

belief is equal to α. Observe first that if a policy (R, τ̂ , xj), with j ∈ N , is implemented in

a period that begins with belief αk, k < k∗, then it is also implemented in any future period

beginning with a belief greater than α∗ (Cases V1 and V7 above). If the belief becomes

equal to α∗, then (R, τ̂ , xj) is amended to policy (S, τ̂ , xj) (see Cases P3.2, V5.1 and V5.3),

which is then implemented in every future period (see Cases V6 and V3). This implies

that Vi(R, τ̂ , xj |αk) = W j
i (αk) for all i, j ∈ N and k < k∗. Similar arguments establish

that Vi(R, τ̂ , xj |1) = W j
i (1) and Vi(S, τ̂ , x

j |αk) = W j
i (αk), for all i, j ∈ N and k ≥ k∗.

By construction of σ∆, these are all the possible continuation values induced by σ∆ at

the start of any continuation game. As they all belong to the Pareto frontier (Subsection

B.1.1), this implies that if σ∆ is an equilibrium, then it must be renegotiation proof.
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Now suppose that a policy (b, τ, y), where (b, τ, y) 6= (R, τ̂ , xj) for all j ∈ N , is imple-

mented in a period that starts with a belief αk, k < k∗. Player i receives (1− δ)wi(R, τ, y |

αk) in that period. If b is alternative R, then there are two possible cases: it succeeds with

probability αkγ∆, in which case the next period’s first proposer j successfully offers policy

(R, τ̂ , xj) (see Cases P1, V7 and V1); and it fails with probability 1−αkγ∆ in which case,

the next period’s first proposer j successfully offers policy (R, τ̂ , xj) if k < k∗−1 (see Case

V2.3), or (S, τ̂ , xj) if k = k∗ − 1 (see Cases V6 and V4.3). Therefore,

Vi(R, τ, y|αk) = (1− δ)wi(R, τ, y | αk) + δαkγ∆
∑
j∈N

pjVi(R, τ̂ , x
j |1)

+ δ(1− αkγ∆)
∑
j∈N

pj

 Vi(R, τ̂ , x
j |αk+1) if k < k∗ − 1

Vi(S, τ̂ , x
j |α∗) if k = k∗ − 1

= (1− δ)wi(b, τ, y | αk) + δαkγ∆
∑
j∈N

pjW
j
i (1)

+ δ(1− αkγ∆)
∑
j∈N

pj

 W j
i (αk+1) if k < k∗ − 1

W j
i (α∗) if k = k∗ − 1

= (1− δ)wi(R, τ, y | αk) + δ
[
αkγ∆W 0

i (1) + (1− αk)γ∆W 0
i (αk+1)

]
.

If b is alternative S then, in the next period, the first proposer j successfully offers policy

(R, τ̂ , xj) (see Cases P1 and V2.3); so that

Vi(S, y|αk) = (1− δ)wi(S, τ, y | αk) + δ
∑
j∈M

pjVi(s, τ̂ , x
j |αk)

= (1− δ)wi(S, τ, y | αk) + δ
∑
j∈N

pjW
j
i (1)

= (1− δ)wi(S, τ, y | αk) + δW 0
i (1) .

Using parallel arguments, one can show that player i’s continuation value from implement-

ing a policy (b, τ, y), where (b, τ, y) 6= (S, τ̂ , xj) for all j ∈ N , in a period with belief αk,

k ≥ k∗, is given by

Vi(b, τ, y|αk) = (1− δ)wi(b, τ, y | αk) + δ

 W 0
i (αk+1) if b = r ,

W 0
i (αk) if b = s ,

34



and that her continuation value from implementing a policy (b, τ, y), where (b, τ, y) 6=

(R, τ̂ , xj) for all j ∈ N , in a period where the belief is equal to one is given by

Vi(b, τ, y|1) = (1− δ)wi(b, τ, y | 1) + δW 0
i (1) .

It follows directly from this characterization of continuation values and from Lemma ??

that (R, τ̂ , xj) with i ∈ Cj is player i’s ideal policy when the belief is greater than α∗— i.e.,

Vi(R, τ̂ , x
j |α) ≥ Vi(b, τ, y|α) for all i, j ∈ N such that i ∈ Cj , (b, τ, y) ∈ {R,S}× [0, τ̂ ]×X,

and α > α∗ — and that (S, τ̂ , xj) with i ∈ Cj is her ideal policy when the belief is smaller

than or equal to α∗ — i.e., Vi(S, τ̂ , xj |α) ≥ Vi(b, τ, y|α) for all i, j ∈ N such that i ∈ Cj ,

(b, τ, y) ∈ {R,S} × [0, τ̂ ]×X, and α ≤ α∗.

Voting stages. To verify that σ∆ is an equilibrium, we will first check that all possible

deviations in voting stages are unprofitable. To do so, we will consider in turn the various

cases in the definition of voting strategies.

In Case V1, (decisive) voter i receives a payoff of Vi(R, τ̂ , xj |αk) = W j
i (αk) if she rejects

the proposal (a, τ, y) to amend status quo (R, τ̂ , xj) (as any future attempt to amend it in

this period will be unsuccessful), and a payoff of

Vi(a, τ, y|αk) = (1−δ)wi(a, τ, y | αk)+δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if a = R ,

W 0
i (αk) if a = S ,

if she accepts it. Hence, she cannot profitably deviate from σ∆ if she is not a member

of Cj . Moreover, it follows from Lemma ?? and the above equality that Vi(a, τ, y|αk) <

W j
i (αk) = Vi(R, τ̂ , x

j |αk) for all i ∈ Cj , so that voter i cannot profitably deviate from

rejecting (a, τ, y) if she is a member of Cj .

It follows immediately from our characterization of continuation values above that, in

Cases V2.1 and V2.2, σ∆ prescribes voter i to accept the last proposer’s offer if and only

if her continuation value from implementing this offer exceeds her continuation value from

implementing the status quo. Therefore, deviations are also unprofitable in these cases.

In case V2.3, (decisive) player i anticipates that if she rejects the `th proposer’s offer,

(R, τ̂ , xj), then the next proposer will successfully propose (R, τ̂ , xπ`+1). It is therefore
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optimal for her to accept (R, τ̂ , xj) if and only if Vi(R, τ̂ , xj |αk) = W j
i (αk) ≥W

π`+1

i (αk) =

Vi
(
R, τ̂ , xπ`+1 |αk

)
, as prescribed by σ∆ to every i /∈ Cj . Moreover, by definition of W j

i ,

W j
i (αk) ≥W j′

i (αk) for all i, j, j′ ∈ N such that i ∈ Cj . Therefore, it is always optimal for

voter i to accept (R, τ̂ , xj) if i ∈ Cj . The same argument applies to Case 2.4 except that

in this case, the `th proposal offer is some (b, τ, y) 6= (R, τ̂ , xj) for all j ∈ N , so that the

value from accepting it is equal to

Vi(b, τ, y) = (1− δ)wi(b, τ, y | αk) + δ

 αkγ∆W 0
i (1) + (1− αkγ∆)W 0

i (αk+1) if b = R,

W 0
i (αk) if b = S.

The arguments to show that there is no profitable deviation from σ∆ in all the other cases,

but Case V5.3, are analogous: in each of these cases, σ∆ prescribes decisive voter i the ac-

tion that maximizes her continuation value. In Case V5.3, (decisive) voter i anticipates that

if she rejects the `th proposer’s offer,
(
R, τ̂ , xj

′), then the next proposer will successfully

propose (R, τ̂ , xπ`+1), and she will consequently receive Vi
(
R, τ̂ , xπ`+1 |α∗

)
= W

π`+1

i (α∗). If

she is a member of coalition Cj and j′ = j, then it is optimal for her to accept the offer

(as prescribed by σ∆): by definition of Wi, Vi
(
R, τ̂ , xj

′ |α∗
)

= Vi(R, τ̂ , x
j |α∗) = W j

i (α∗) ≥

W
π`+1

i (α∗). This implies that every member of coalition Cj knows that if the status quo is

(R, τ̂ , xj) in a period where the belief is α∗, then the first proposer in Cj will successfully

offer policy (S, τ̂ , xj). It therefore follows from Lemma ?? and our the characterization

of continuation values above that every member i of Cj obtains her highest possible con-

tinuation value, Vi(S, τ̂ , xj |α∗) = W j
i (α∗), by rejecting any offer until a proposer in Cj

successfully offers (S, τ̂ , xj) (as prescribed by σ∆). Finally, if i is not a member of Cj ,

or if (off the path) all the proposers in Cj have failed to amend the status quo, then σ∆

optimally prescribes her, as in the previous cases, to choose the action that maximizes her

continuation value.

Proposal stages. Consider now player i’s behavior in a period where she is the `th

proposer and the first `− 1 proposers have failed to amend the status quo. We begin with

cases where the belief α is greater than α∗. If the status quo is (R, τ̂ , xj) for some j ∈ N ,

then any proposal to amend it is voting down by decisive coalition Cj (see Cases V1 and
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V7). Therefore, proposer i’s payoff will be Vi(R, τ̂ , xj |α), irrespective of the action she

takes. If the status quo is a policy (a, τ, x) 6= (R, τ̂ , xj) for all j ∈ N and she proposes

(R, τ̂ , xi) (as prescribed by σ∆), then her proposal is accepted by all the members of Ci (see

Cases V2.1 and V2.3) and she obtains a payoff of Vi(R, τ̂ , xi|α) = W i
i (α). As we established

above, this is the highest payoff she can get if α > α∗. Therefore, any deviation from σ∆

must be unprofitable.

Suppose now that the belief α is smaller than α∗. If the status quo is (S, τ̂ , xj) for

some j ∈ N , then any proposal to amend it is voting down by decisive coalition Cj (see

Case V3). Therefore, proposer i’s payoff will be Vi(S, τ̂ , xj |α), irrespective of the action

she takes. If the status quo is a policy (a, τ, x) 6= (S, τ̂ , xj) for all j ∈ N and she proposes

(S, τ̂ , xi) (as prescribed by σ∆), then her proposal is accepted by all the members of Ci (see

Cases V4.1 and V4.3) and she obtains a payoff of Vi(S, τ̂ , xi|α) = W i
i (α). As we established

above, this is the highest payoff she can get if α ≤ α∗. Therefore, any deviation from σ∆

must again be unprofitable.

Finally, suppose that the belief is equal to α∗. If the status quo is a policy (a, τ, x) 6=

(R, τ̂ , xj) for all j ∈ N , then the proof that proposer i cannot deviate from proposing

(S, τ̂ , xi) is the same as in the previous paragraph. If the status quo is a policy (R, τ̂ , xj)

for some j ∈ N , then there are several possible cases:

(i) If i is a member of Cj and she proposes (R, τ̂ , xj), then her proposal is accepted

by all the the members of decisive coalition Cj . As this policy is one of her ideal policies

when the belief is α∗, she cannot profitably deviate from the behavior prescribed in Case

P3.2.

(ii) If i is not a member of Cj and all proposers in Cj have already (unsuccessfully)

proposed, then all the members of decisive coalition Ci accept proposal (S, τ̂ , xi) (see Case

V5.1 and the last sub-case in Case V5.3). As we established above, this is the policy that

maximizes her continuation value when the belief is α∗. It is therefore impossible for her

to profitably deviate from proposing it, as prescribed in Case P3.1.

(iii) If i is not a member of Cj and some proposers in Cj have not yet proposed, then

any proposal that differs from (S, τ̂ , xj) is rejected by the members of Cj (second sub-case
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in Case V5.3) and, by the end of the period, some proposer in Cj will successfully propose

(S, τ̂ , xj). This implies that, irrespective of the proposal she makes, proposer i’s payoff will

be Vi(S, τ̂ , xj |α∗). Therefore, any deviation is unprofitable.

This proves that σ∆ is a renegotiation-proof stationary equilibrium, thus completing

the proof of part (i) of Proposition 2.

B.2 Proof of Part (ii) of Proposition 2

Suppose now that τmax = 1. In this case, the Pareto frontier of the set of feasible payoff

vectors is the simplex P (∆) ≡
{

(w1, . . . , wn) ∈ Rn+ :
∑

i∈N wi = V ∗(α0)
}
for all ∆ > 0. Fix

ε > 0; let V ∗(α0) ≡ lim∆→0 V
∗(α0); let P ∗ ≡

{
(w1, . . . , wn) ∈ Rn+ :

∑
i∈N wi = V

∗
(α0)

}
;

and letWε ≡
{

(w1, . . . , wn) ∈ Rn+ :
∑

i∈N wi ≤ V
∗
(α0)−ε

}
. As ε > 0, it is readily checked

that there exists λ̄ ∈ (0, 1) such that every vector in Wε is strictly Pareto dominated by

some vector in P ∗
λ̄
≡
{

(w1, . . . , wn) ∈ P ∗ : wi ≥ λ̄V
∗
(α0),∀i ∈ N

}
; that is, for every

w ∈Wε, there is w′ ∈ P ∗
λ̄
such that w′i > wi, for all i ∈ N .

In the previous subsection, we provided an equilibrium construction which, in the case

where τmax = 1, gives each legislator i an expected payoff of

x̄iV
∗(α0) = V ∗(α0)

1

n− 1

∑
j : Cj3i

pj ,

for arbitrarily small values of ∆. A similar construction yields any payoff vector of the form(
λ1V

∗(α0), . . . , λnV
∗(α0)

)
, with λ = (λ1, . . . , λn) ∈

{
(λ′1, . . . , λ

′
n) ∈ [λ̄, 1] :

∑n
i=1 λi = 1

}
,

if one replaces the revenue distribution xi proposed by legislator i (if recognized) in the

first period by yi ∈ X, defined by

yij(λ) ≡

 λj + η
(

1−
∑

` : C`3j p`

)
if j ∈ Ci ,

λj − η
∑

` : C`3j p` if j ∈ Ci ,

where η > 0 is chosen in such a way that yij(λ) ≥ 0 for all i, j ∈ N . That is, for every λ in

the compact set
{

(λ′1, . . . , λ
′
n) ∈ [λ̄, 1] :

∑n
i=1 λi = 1

}
, there exists ∆(λ) > 0, such that the

payoff vector
(
λ1V

∗(α0), . . . , λnV
∗(α0)

)
is supported by a renegotiation-proof equilibrium

whenever ∆ < ∆(λ). Moreover, inspection of the proof of Lemma B1 reveals that the
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threshold ∆(λ) can be taken to be continuous in λ. It follows that there is a uniform

threshold ∆0 > 0 such that any payoff vector in
{

(w1, . . . , wn) ∈ P (∆): wi ≥ λ̄V
∗
(α0),∀i ∈

N
}
can be supported by a renegotiation-proof equilibrium whenever ∆ < ∆0. Coupled

with the previous paragraph, this observation yields the second part of Proposition 2.

C Proof of Proposition 4

As in Section A, we use the notation Γ(p, α) to represent the game that begins with an

initial status quo p and in which legislators initially hold belief α.

Lemma C1. Let q = n, τ ∈ [0, 1] and x ∈ X. For all ∆ > 0:

(i) Γ(R, τ, x | 1) has a renegotiation-proof equilibrium σ1
τ,x and, in any such an equilibrium,

each player i’s payoff is γ∆
[
(1− τ)ri + τxir̄

]
; and

(ii) Γ(S, τ, x | 1) has a renegotiation-proof equilibrium.

Proof. Consider an equilibrium (or a subgame perfect equilibrium) of Γ(R, τ, x | 1). Player

i can always choose to reject any proposal at every history, and so receive (1− δ)γ∆
[
(1−

τ)ri + τxir̄
]
in every period. Hence, her equilibrium payoff must be at least γ∆

[
(1 −

τ)ri+τxir̄
]
. As this is true for all players and the payoff vector

(
γ∆
[
(1−τ)rj +τxj r̄

])
j∈N

belongs to the Pareto frontier, γ∆
[
(1−τ)ri+τxir̄

]
is also i’s maximum equilibrium payoff.

Consider a game of the form Γ(a, τ ′, y | 1), with a ∈ {R,S}, τ ′ ∈ [0, 1] and y ∈ X;

and let Γ̃(a, τ ′, y | 1) be a variant on this game where, as in standard model of Baron and

Ferejohn (1989), the first successful proposal is never amended. Routine arguments show

that Γ̃(a, τ ′, y | 1) has a stationary equilibrium in which: the first period’s last proposer

successfully offers a Pareto efficient policy if the status quo (a, τ ′, y) is not itself efficient;

and (a, τ ′, y) is never amended otherwise — see Baron and Ferejohn (1989) for more details.

It is easy to see that a strategy profile for Γ(R, τ, x | 1) (or Γ(S, τ, x | 1)) that prescribes

the same actions as that stationary equilibrium in the first period of each continuation

game Γ(a, τ ′, y | 1) is an equilibrium. Moreover, as the policy implemented in each period

is Pareto efficient, the equilibrium thus obtained is renegotiation-proof.
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Lemma C2. Suppose q = n and τmax = 1. Then, there exists ∆̂1 > 0 such that the

following holds for all ∆ < ∆̂1, τ ∈ [0, 1], x ∈ X and αk ≤ α∗:

(i) For every coalition C ⊂ N comprising n−1 legislators, Γ(R, τ, x | α∗) has a renegotiation-

proof equilibrium, in which the payoff to each legislator i ∈ C is equal to Pi(τ, x|α∗) ≡

γ∆
[
(1− τ)ri + τxir̄

]
α∗; and

(ii) the set of renegotiation-proof equilibrium payoff vectors for the game Γ(R, τ, x | α∗) is{
(w1, . . . , wn) ∈ Rn+ :

∑n
i=1wi = s̄∆ and wi ≥ Pi(τ, x|α∗), ∀i ∈ N

}
.

Proof. We begin with the definition of the threshold ∆̂1. An application of l’Hôpital’s rule

gives

lim
∆→0

α∗ =
ρs̄

γ
[
(ρ+ γ)r̄ − s̄

] ,

so that

lim
∆→0

[
s̄− 1

∆

∑
i∈N

Pi(τ, x|α∗)
]

= s̄− γr̄ lim
∆→0

α∗ =
s̄(γr̄ − s̄)

γ
[
(ρ+ γ)r̄ − s̄

] > 0 ,

for all τ ∈ [0, 1] and x ∈ X. Therefore, there exists ∆̂1 > 0 such that, whenever ∆ < ∆̂1,

δ(1− α∗γ∆)(n− 2)
[
s̄− 1

∆

∑
i∈N

Pi(τ, x|α∗)
]
>
[
1− δ(1− α∗γ∆)

]
s̄ ,

for all τ ∈ [0, 1] and x ∈ X. Henceforth, we assume that ∆ < ∆̂1.

Part (i). The proof is constructive. We begin with an intuitive description of the equilib-

rium. The safe alternative S is implemented in each period (both on and off the path). As

the belief that R is good is less than or equal to α∗, this implies that payoff vectors are

Pareto optimal and, therefore, that the putative equilibrium is renegotiation-proof. Once

S has been implemented, all proposers pass in all future periods, irrespective of the tax

rate and distribution of revenues. If S has not yet been implemented, then behavior is

determined by a set of n “phases,” each corresponding to one legislator in N . If the status

quo is of the form (R, τ ′, y) and the belief is αk ≤ α∗ then, in phase i, every proposer

successfully offers a policy that gives a payoff of Ri(τ ′, y|αk) ≡ s̄∆−
∑

j 6=i Pj(τ
′, y|αk) to

legislator i and Pj(τ ′, y|αk) to each legislator j 6= i. The idea is that i receives her “reward

payoff” and the others their “punishment payoffs.” If a proposer, say i, deviates from, then
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every legislator (other than i) rejects her proposal and the game transitions to phase k,

where k is the identity of the first legislator who rejected the proposal. If voter i rejects a

proposal which she should have accepted, then the game moves to phase i.

We now turn to the formal definition of the equilibrium, σ∗, for Γ(R, τ, x | α∗), with

τ ∈ [0, 1] and x ∈ X. Let C ⊂ N be a coalition comprising n − 1 legislators. The game

begins in phase ı̈ /∈ C. Then, σ∗ prescribes the following behavior:

• Proposal stages with uncertainty. Consider first proposer i’s behavior in a period

where the order of proposers is π = (π1, . . . , πn) with π` = i for some `, the first ` − 1

proposers have failed to amend the status quo, the belief is αk ≤ α∗, and the game is in

phase j ∈ N . There are two cases:

Case P1: The status quo is (R, τ ′, y), where τ ′ ∈ [0, 1] and y ∈ X.

Proposer i’s strategy prescribes her to offer (S, 1, xj), where xj ∈ X is defined by:

xj` ≡ P`(τ
′, y|αk)/(s̄∆) for all ` 6= j. The game remains in phase j, irrespective of

her move.

Case P2: The status quo is (S, τ ′, y), where τ ′ ∈ [0, 1] and y ∈ X.

Proposer i’s strategy prescribes her to pass — i.e., to offer (S, τ ′, y). The game

remains in phase j, irrespective of her move.

• Voting stages with uncertainty. Consider now voter i’s behavior in a period where

the order of proposers is π = (π1, . . . , πn), the belief is αk ≤ α∗, and the game is in phase

j ∈ N . There are several cases:

Case V1: The status quo is (R, τ ′, y), where τ ′ ∈ [0, 1] and y ∈ X, and policy (S, 1, xj) has just

been proposed.

Legislator i’s strategy prescribes her to accept this proposal. If all voters accept the

proposal,then the game remains in phase j; otherwise, it transitions to phase ̂ + 1

where ̂ is the first voter who rejected the proposal. (We set ̂+ 1 = 1 if ̂ = n.)

Case V2: The status quo is (R, τ ′, y), where τ ′ ∈ [0, 1] and y ∈ X, and a proposer π` has just

offered policy p 6= (S, 1, xj).
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Case V2.1: Proposal p is of the form (S, τ ′′, z) for some τ ′′ ∈ [0, 1] and z ∈ X.

The strategy of legislator i 6= π` prescribes her to accept this proposal if and only if

[
1− δ(1− γ∆)

]
wi(R, τ

′, y | αk) + δ(1− αkγ∆)Ri(τ
′, y|αk+1) < wi(S, τ

′′, z | αk);

and the strategy of legislator π` prescribes her to accept this proposal if and only if

[
1− δ(1− γ∆)

]
wi(R, τ

′, y | αk) + δ(1− αkγ∆)Pi(τ
′, y|αk+1) < wi(S, τ

′′, z | αk).

If (S, τ ′′, z) is rejected by some i 6= π`, then the game transitions to phase ı̂, where ı̂

is the first voter (other than π`) who rejected it. Otherwise, the game transitions to

phase ̂, where ̂ ≡ min{i ∈ N : i 6= π`}.

Case V2.2: Proposal p is of the form (R, τ ′′, z) for some τ ′′ ∈ [0, 1] and z ∈ X.

The strategy of legislator i 6= π` prescribes her to accept this proposal if and only if

[
1− δ(1− γ∆)

]
wi(R, τ

′, y | αk) + δ(1− αkγ∆)Ri(τ
′, y|αk+1)

<
[
1− δ(1− γ∆)

]
wi(R, τ

′′, z | αk) + δ(1− αkγ∆)

 Ri(τ
′′, z|αk+1) if i = ̂ ,

Pi(τ
′′, z|αk+1) if i 6= ̂ ,

where ̂ is defined as in V2.1; and the strategy of legislator π` prescribes her to accept

this proposal if and only if

[
1− δ(1− γ∆)

]
wi(R, τ

′, y | αk) + δ(1− αkγ∆)Pi(τ
′, y|αk+1) < Pi(τ

′′, z|αk) .

If (R, τ ′′, z) is rejected by some i 6= π`, then the game transitions to phase ı̂, where ı̂

is the first voter (other than π`) who rejected it. Otherwise, the game transitions to

phase ̂.

Case V3: The status quo is (S, τ ′, y), where τ ′ ∈ [0, 1] and y ∈ X, and a policy p 6= (S, τ ′, y)

has just been proposed.

Case V3.1: Proposal p is of the form (S, τ ′′, z) for some τ ′′ ∈ [0, 1] and z ∈ X.
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Legislator i’s strategy prescribes her to accept this proposal if and only if (1−τ ′′)si+

τ ′′zis̄ > (1− τ ′)si + τ ′yis̄. The game remains in the same phase, irrespective of the

legislators’ voting behavior.

Case V3.2: Proposal p is of the form (R, τ ′′, z) for some τ ′′ ∈ [0, 1] and z ∈ X.

Legislator i’s strategy prescribes her to accept this proposal if and only if

wi(S, τ
′, y | αk) <

[
1− δ(1− γ∆)

]
wi(R, τ

′′, z | αk) + δ(1− αkγ∆)xji s̄.

The game remains in the same phase, irrespective of the legislators’ voting behavior.

• Proposal/voting stages without uncertainty. In any continuation game where the

belief is equal to one, σ∗ prescribes the same actions as one of the equilibria obtained in

Lemma C1.

To see that σ∗ is an equilibrium, consider first legislator i’s behavior in case V1. If

another legislator has already rejected proposal (S, 1, xj), then her action has no impact

on her payoff and is, therefore, trivially optimal. Suppose that all previous voters have

accepted the proposal. If she also accepts (as prescribed by σ∗), then she will receive a

payoff of

xji s̄∆ =

 Ri(τ
′, y|αk) if i = j ,

Pi(τ
′, y|αk) otherwise;

if she rejects, then she will receive

[
1− δ(1− γ∆)

]
wi(R, τ

′y | αk) + δ(1− αkγ∆)Pi(τ
′, y|αk+1) = Pi(τ

′, y|αk) .

As Ri(τ ′, y|αk)− Pi(τ ′, y|αk) =
[
s̄− (1/∆)

∑
j∈N Pj(τ

′, y|αk)
]
∆ > 0 when ∆ < ∆̂1, devi-

ating from σ∗ is unprofitable for i in this case.

Consider now case V2.1. By the same argument as above, player i cannot profitably

deviate if another legislator, other than the proposer π`, has already rejected the proposal.

Suppose that, when it is legislator i’s turn to vote, all previous voters have accepted

p 6= (S, 1, xj). If i also accepts p, then it will never be amended (see Case P2) and i’s

payoff will therefore be wi(S, τ ′′, z | αk). If i rejects p, then (R, τ ′, y) is implemented in
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the current period and, if R is a success, will never be amended. If R is a failure (which

happens with probability (1 − αkγ∆)) and i 6= π` [resp. i = π`], then the game moves to

phase i [resp. ̂]. Hence, legislator i’s payoff from rejecting p is

[
1− δ(1− γ∆)

]
wi(R, τ

′, y | αk) + δ(1− αkγ∆)

 Ri(τ
′, y|αk+1) if i 6= π` ,

Pi(τ
′, y|αk+1) otherwise.

Hence, she cannot profitably deviate from σ∗. Note for future reference that, as q = n, a

necessary condition for the proposal to be accepted is[
1− δ(1− γ∆)

]
αkγ∆r̄ + δ(1− αkγ∆)

[
Pπ`(τ

′, y|αk+1) +
∑
i 6=π`

Ri(τ
′, y|αk+1)

]
< s̄∆

or, equivalently,[
1−δ(1−γ∆)

]
αkγr̄+δ(1−αkγ∆)(n−2)

[
s̄− 1

∆

∑
i∈N

Pi(τ
′, y|αk+1)

]
<
[
1−δ(1−αkγ∆)

]
s̄ .

As ∆ < ∆̂1 and
[
1 − δ(1 − γ∆)

]
αkγr̄ > 0, this inequality never holds and the proposal

is consequently rejected. By the same logic, there are no profitable deviations and the

proposal is always rejected in case V2.2.

In case V.3, σ∗ prescribes each legislator to vote for the policy that would maximize her

continuation value (in the vent that she is still decisive when she has to vote). Deviations

are therefore unprofitable. Moreover, as the status quo payoffs belong to the Pareto frontier

(and q = n), all proposals must be unsuccessful.

It follows from the analysis of cases V1 and V.2 that, in case P1, (S, 1, xj) is the only

proposal that can successfully be made. If proposer i makes this proposal, then she either

receives Ri(τ ′, y|αk) or Pi(τ ′, y|αk) — the former if i = j, and the latter otherwise. If she

deviates by making any other proposal, then she receives Pi(τ ′, y|αk). As Pi(τ ′, y|αk) <

Ri(τ
′, y|αk), deviations are unprofitable. Finally, in case P2, any proposal would be rejected

and, as the status quo is absorbing, proposers cannot improve on passing.

We have thus constructed an equilibrium for Γ(R, τ, x | α∗), in which player ı̈ /∈ C

receives Rı̈(τ, x|α∗) and each i ∈ C receives Pi(τ, x|α∗).

Part (ii). If legislator i rejects every proposal to amend the status quo in Γ(R, τ, x | α∗),

then she receives a payoff of Pi(τ, x|α∗). Therefore, her payoff must be at least Pi(τ, x|α∗)
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in any equilibrium. Moreover, it is easy to see that one can use a similar construction to

that used in part (i) to obtain any equilibrium vector in
{

(w1, . . . , wn) ∈ Rn+ :
∑n

i=1wi =

s̄∆ and wi ≥ Pi(τ, x|α∗),∀i ∈ N
}
: if every legislator i is willing to implement a policy

that yields her “punishment payoff” Pi(τ, x|α∗) when ∆ < ∆̂1, then she is also willing to

implement a policy that gives her any higher payoff. This implies that
{

(w1, . . . , wn) ∈

Rn+ :
∑n

i=1wi = s̄∆ and wi ≥ Pi(τ, x|α∗),∀i ∈ N
}

is the Pareto frontier of the set of

equilibrium payoff vectors and, consequently, the set of renegotiation-proof equilibrium

payoff vectors for Γ(R, τ, x | α∗).

Lemma C3. Suppose q = n and τmax = 1. Then, there exists ∆̂1 > 0 such that, for all

∆ < ∆̂1, τ ∈ [0, 1] and x ∈ X, the set of renegotiation-proof equilibrium payoff vectors of

Γ(R, τ, x | α1) is
{

(w1, . . . , wn) ∈ Rn+ :
∑n

i=1wi = V ∗(α1) and wi ≥ Pi(τ, x|α1),∀i ∈ N
}
.

Proof. Let k∗ ∈ N be implicitly defined by αk∗ ≡ α∗. We begin by characterizing the

set of renegotiation-proof equilibrium payoff vectors of Γ(R, τ, x | αk∗−1). Given the

(renegotiation-proof) equilibrium continuation values obtained in Lemmas C1 and C2,

it is routine to show that Γ(S, τ, x | αk∗−1) possesses a renegotiation-proof equilibrium.

Pick an arbitrary payoff vector w ∈
{

(w1, . . . , wn) ∈ Rn+ :
∑n

i=1wi = V ∗(αk∗−1) and wi ≥

Pi(τ, x|αk∗−1),∀i ∈ N
}
, and let y ∈ X be defined by: yi ≡ wi/V

∗(αk∗−1) for each i ∈ N .

As ∆ < ∆̂1, we can use the equilibrium characterization of Lemma C2 to construct a

renegotiation-proof equilibrium σ for Γ(R, τ, x | αk∗−1) that supports w. The construction

is in the same vein as that used in the proof and we only provide an intuitive description

of σ:

• The strategy prescribes the first period’s proposer π1 to offer policy (R, 1, y) and all

legislators to accept this proposal. If any other proposer is called upon to make a proposal

(off the path), then she passes.

• For each i ∈ N , let σi be a renegotiation-proof equilibrium of Γ(R, τ, x | α∗) that gives

legislator i a payoff of Pi(τ, x|α∗) — we know from Lemma C2 that such an equilibrium

exists. If π1 proposes some policy p 6= (R, 1, y), then the proposal is rejected, the other

proposers pass and equilibrium σ1 is played in the continuation game Γ(R, τ, x | α∗). The

reason why p is rejected in equilibrium is that the payoff vector from the policy sequence
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that consists of (R, τ, x) followed by the policies induces by σ1 is in the Pareto frontier. This

guarantees that at least one legislator is better-off under this policy sequence than under

the policy sequence induced by accepting p. By construction, wπ1 ≥ Pπ1(τ, x|αk∗−1) =[
1− δ(1− γ∆)

]
wπ1(R, τ, x | αk∗−1) + δ(1− αk∗−1γ∆)Pπ1(τ, x|α∗), so that π1 is better off

successfully proposing (R, 1, y) than proposing p. A similar argument shows why passing

is optimal for each proposer π`, ` ≥ 2.

• The proposal (R, 1, y) is unanimously accepted for the following reason. If it is

accepted, then σ prescribes to play the renegotiation-proof equilibrium that gives legislator

i a payoff of yis̄ = yiV
∗(α∗) = wi in the continuation game Γ(R, τ, x | α∗) (Lemma C2); if

it is rejected, then σ prescribes to play σj in Γ(R, τ, x | α∗), where j is the first legislator

who rejected (R, 1, y). Given that the other legislators accept (R, 1, y), player i would thus

receive
[
1−δ(1−γ∆)

]
wi(R, τ, x | αk∗−1)+δ(1−αk∗−1γ∆)Pi(τ, x|α∗) = Pi(τ, x|αk∗−1) ≤ wi

if she rejected it.

As w was chosen arbitrarily from
{

(w1, . . . , wn) ∈ Rn+ :
∑n

i=1wi = V ∗(αk∗−1) and wi ≥

Pi(τ, x|αk∗−1), ∀i ∈ N
}
, this proves that the latter set is the set of renegotiation-proof

equilibrium payoff vectors of Γ(R, τ, x | αk∗−1). Applying the same logic recursively from

k = k∗ − 2 to k = 1, we obtain the lemma.

By assumption, ρs̄ < α0γ
[
(ρ + γ)r̄ − s̄

]
. This implies that there exists ∆̂2 > 0 such

that δ(n − 2)
[
V ∗(α0) − s̄∆

]
> (1 − δ)V ∗(α0) for all ∆ < ∆̂2. Henceforth, we assume

that ∆ < min
{

∆̂1, ∆̂2

}
. To complete the proof of Proposition 3, therefore, it suffices

to show that, for every vector w in the simplex W ∗ ≡
{

(w1, . . . , wn) ∈ Rn+ :
∑n

i=1wi =

V ∗(α0) and wi ≥ ∆si,∀i ∈ N
}
, there is a renegotiation-proof equilibrium that supports w.

In one such equilibrium, policy (R, 1, x), where xi ≡ wi/V
∗(α0) is implemented in every

period unless the belief becomes equal to α∗, in which case policy (S, 1, x) is implemented

in all future periods. The construction of this equilibrium parallels closely that used in

the proof of Lemma C2, and will be omitted. The two main differences are that: (i) it

focuses on what happens at the initial belief α0, using the equilibrium continuation values

obtained in Lemmas C1 and C3 to describe behavior at other beliefs; and (ii) the key

condition ensuring that all proposals p 6= (R, 1, x) in the first period are unsuccessful now
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relies on δ(n − 2)
[
V ∗(α0) − s̄∆

]
> (1 − δ)s̄∆. This is because, in equilibrium, the first

legislator i (different from the proposer) who rejects p is promised a continuation value

of V ∗(α0) −
∑

j 6=i sj∆, while the proposer ı̂ is promised sı̂∆. To be accepted, p must

therefore give a payoff greater than or equal to (1− δ)∆si+ δ
[
V ∗(α0)−

∑
j 6=i sj∆

]
to each

legislator i 6= ı̂, and a payoff greater than or equal to sı̂∆ to legislator ı̂. Summing across

the legislators, feasibility requires

(1− δ)s̄∆ + δ
[
sı̂ + (n− 1)V ∗(α0)−

∑
i 6=ı̂

∑
j 6=i

sj∆
]
≤ V ∗(α0)

or, equivalently,

(1− δ)s̄∆ + δ(n− 2)
[
V ∗(α0)− s̄∆

]
≤ (1− δ)V ∗(α0) .

As (1 − δ)s̄∆ > 0, this is impossible if δ(n − 2)
[
V ∗(α0) − s̄∆

]
> (1 − δ)V ∗(α0) — which

holds since ∆ < ∆̂.
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