
\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 1 13-JUN-05 12:17

AN INQUIRY INTO COMPUTER SYSTEM
PATENTS: BREAKING DOWN THE

“SOFTWARE ENGINEER”*

SCOTT ELENGOLD**

INTRODUCTION

In 2002, IBM received 3,288 patents, yielding a total of more
than 22,000 patents acquired over the previous ten years, the high-
est number received by any corporation.1 IBM is one of the many
companies taking advantage of the rapid proliferation of computer
system patents that will have a large impact on the future of the
technology industry and play a major role in protecting important
assets in the United States economy. In fact, computer systems have
grown to be such a large component of the United States economy
that they accounted for approximately one quarter of the overall
increase in Gross Domestic Product during the 1990s.2 The success
of these computer systems often depends upon their innovative
step;3 software companies are always struggling to offer newer or
better software than their competitors. Protecting these innova-
tions in order to spur innovative growth in the art has only recently

* This Note received the 2004–2005 Seymour A. Levy Memorial Award, given
each year to the graduating student who has written the most outstanding Note for
the NYU Annual Survey of American Law.

** Note Editor, NYU Annual Survey of American Law 2004–05; J.D., New York
University School of Law, 2005. I would like to thank the editors and staff of the
NYU Annual Survey of American Law for all of their hard work and helpful
comments. It was a privilege to work with Jessie Beller, who provided invaluable
editorial assistance in preparing this Note for publication. I would also like to
thank Professors Rochelle Dreyfuss and Diane Zimmerman for providing many
useful suggestions on an earlier version of this Note and Professor Katrina Wyman
for sparking my desire to contribute to legal scholarship. This Note is dedicated to
Kate Sablosky, Linda and Mark Elengold, Harold Anfang, and Steven Pokotilow
for their guidance, advice, and support throughout my law school career.

1. Lisa M. Bowman, .Net patent could stifle standards effort, CNET News.com, at
http://news.com.com/2100-1001-984052.html (Feb. 10, 2003).

2. Wikipedia, Software Engineering - Wikipedia, the free encyclopedia, at http://
en.wikipedia.org/wiki/Software_engineering (last visited Mar. 24, 2005).

3. I will use the term “innovative step” to refer to that aspect, contained within
the larger system, which is novel and non-obvious.

349

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 2 13-JUN-05 12:17

350 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

become a reality in our patent system, and already an estimated
eighty thousand computer system patents have been issued.4

The goal of this Note is to call for a re-examination of how the
patent system treats computer system patents.5 The courts have
often used the fiction of an all-knowing “software engineer” as one
of ordinary skill in the art which leads to an improper assessment of
the contributions made within the field of computer science. A dis-
section of the “software engineer” is necessary in order to ensure
that the patent system does not reward patent protection where it is
unwarranted while denying patents to innovative advancements
within the more specific areas of the art.

I will assume for purposes of this Note that the patent system
will remain the forum of choice for software protection in the com-
ing years. Other academics have suggested a sui generis intellectual
property scheme for computer software6 and there are definite ad-
vantages to such a proposal, but at this point such a sui generis sys-
tem has not been instituted nor has such a program been formally
proposed. With the Federal Circuit endorsing patentability without
qualification, the question of whether software is or should be pat-
entable subject matter is “for the history books.”7 As this subject
has been given extensive treatment in the academic literature, I will
limit discussion of the merits of expanding the use of the patent
system and instead focus on how computer systems should be ana-
lyzed within the existing doctrines and patent requirements.

Part I briefly explores the history of software protection. The
gradual approval of computer systems as patentable subject matter
has played a large role in how the art is perceived within the patent
system and helps explain the current state of the patent law as ap-
plied to software patents. Computer systems are only viewed “as a
whole” when being assessed for patentability, a result of this early
precedent. Part II examines an alternative, and I feel more accu-
rate, view of the practical requirements and steps for modern
software development. I briefly explain the current standard pro-
cess for the art of software development—the Rational Unified Pro-

4. Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the Software
Industry, 89 CAL. L. REV. 3, 4 (2001).

5. Computer system patents contain processes that may be implemented in
either hardware or software solutions. The patent system has often treated the
implementation method as irrelevant to inquiries of patent validity, so I will use
the terms “computer system patents” and “software patents” interchangeably.

6. See, e.g., Pamela Samuelson et al., A Manifesto Concerning the Legal Protection
of Computer Programs, 94 COLUM. L. REV. 2308 (1994).

7. Cohen & Lemley, supra note 4, at 4. R

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 3 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 351

cess;8 and how the widespread adoption of this production model
should alter the current view within the patent system of the all-
knowing “software engineer.” I propose breaking down the term
“software engineer” into four roles: graphic designer, software de-
signer, software developer, and application architect.

Part III reviews how the patent system currently treats software
development. I focus on Federal Circuit opinions that deal with the
prevalent standard of “one of ordinary skill in the art” and particu-
larly how this standard has affected determinations of non-obvi-
ousness and disclosure requirements for computer system patents.
In addition, I briefly examine the patent examiner guidelines for
reviewing computer system patents. Part IV re-examines the patent
requirements and the use of “one of ordinary skill in the art” under
the practices of modern software development to identify issues and
propose the adoption of this modern view within the patent system.

By the conclusion, I aim to show that by grouping all of the
roles involved in software development under the term “software
engineer,” the patent system has not adjusted to the actual func-
tioning of the art of computer system development. This raises is-
sues for determining the patentable aspects of computer systems
and how the patent requirements should be applied to these inven-
tions. Going forward, the industry would be better served by having
the courts take a meaningful look at the scope of the art for each
innovation and the true skills possessed by those involved in the
innovative step when dealing with software patents.

I.
THE HISTORY OF COMPUTER SYSTEMS AS

PATENTABLE SUBJECT MATTER

The complicated history of software patentability has resulted
from the application of basic patent requirements to a constantly
changing art. The patent system has completely reversed course in
the last two decades after initially denying the availability of patent

8. For examples of how the Unified Process has come to dominate software
engineering, see http://www.enterpriseunifiedprocess.info/ (identifying the Uni-
fied Process as the de facto standard development process) (last updated Oct. 26,
2004); http://www.ronin-intl.com/training/rup.html (specifying the Rational
Unified Process as the standard development process for mission critical systems)
(last visited Mar. 24, 2005); Scott Ambler, Strategic Reuse Management and the Ra-
tional Unified Process (RUP), available at http://www.flashline.com/content/Am-
bler/reuseRUP.jsp (last visited Mar. 24, 2005) (stating that “the RUP is a very
good, rigorous software process, arguably the de facto standard within the IT
industry”).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 4 13-JUN-05 12:17

352 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

protection to the field. As can often be expected from the legal
system, the shift towards patentability has occurred mostly by draw-
ing distinctions from earlier cases rather than proclaiming an over-
whelming acceptance of protection for the new art. Thus, the
current acceptance of computer system patents is tempered by a
variety of precedents that have shaped the perception of the art
within the courts. The Supreme Court and the Court of Appeals
for the Federal Circuit have led other courts in development of key
precedent.

The first case to directly address the patentability of software
went before the Supreme Court in 1972. In Gottschalk v. Benson,9
the patent at issue described an invention “related to the processing
of data by program and more particularly to the programmed con-
version of numerical information in general-purpose digital com-
puters.”10 The claims at issue in the case were rejected by the
Patent Office for failing to be a “process” as defined and used in
sections 100 and 101 of the Patent Act.11 The patent broadly
claimed a method of converting binary-coded decimal (“BCD”)
number representations into binary form, and the court conceded
that “one may not patent an idea. But in practical effect that would
be the result if the formula for converting BCD numerals to pure
binary numerals were patented in this case.”12 Leaving the issue of
whether to extend patent protection to algorithms for use in a digi-
tal computer to Congress, the Supreme Court created a “mathemat-
ical algorithm” exception to the term “process” as defined in
section 100. This early decision appeared to preclude patents for
software, even when embodied within a functioning computer sys-
tem. Thus, the initial focus for the patentability of software was on
the algorithm as a whole.

The Patent Office and the Court of Patent Appeals struggled
with applying this exception to the variety of computer patents be-
ing filed, and in 1978 the case of Parker v. Flook13 was heard by the
Supreme Court. The patent at issue was for a method of utilizing a
computer to continuously recalculate an alarm limit during a chem-
ical conversion process. In Flook, the Supreme Court found that the

9. 409 U.S. 63 (1972).
10. Id. at 64 (internal quotations omitted).
11. 35 U.S.C. § 100(b) (“The term ‘process’ means process, art or method,

and includes a new use of a known process, machine, manufacture, composition of
matter, or material.”); 35 U.S.C. § 101 (“Whoever invents or discovers any new and
useful process, machine, manufacture, or composition of matter, or any new and
useful improvement thereof, may obtain a patent therefor. . . .”).

12. Benson, 409 U.S. at 71.
13. 437 U.S. 584 (1978).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 5 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 353

only novel part of the invention was the use of the computer
software to implement a pre-existing process and reaffirmed the
holding in Benson that the “discovery of a novel and useful mathe-
matical formula may not be patented.”14 In Flook, however, there
appeared to have been an inventive step; secondary considerations
such as the success of the invention lent strong credibility to the
claims that the invention was an advancement in the art. Again,
however, the Supreme Court invalidated the patent as not falling
within the statutory subject matter of section 101 by focusing on the
use of a known algorithm rather than its novel, computerized
implementation.15

The reversal in favor of software patentability began three years
later in Diamond v. Diehr,16 where a process for molding uncured
synthetic rubber into shaped, cured products was held to be patent-
able subject matter. Diehr claimed that while the Arrhenius equa-
tion17 for time, temperature, and cure relationships could yield
accurate curing results, the industry had not been able to accurately
measure the temperature inside the mold throughout the process
to achieve ideal results.18 Diehr’s contribution to the art was to
constantly feed the temperature measurements from inside the
press into a computer which was programmed to continuously cal-
culate the cure time with the Arrhenius equation and signal a de-
vice to open the press when the curing process was complete.19

The hard question before the Court was whether this case was
truly different from Flook. The Court distinguished the case from
Flook by stating that:

In contrast, the respondents here do not seek to patent a math-
ematical formula. Instead, they seek patent protection for a
process of curing synthetic rubber. Their process admittedly
employs a well-known mathematical equation, but they do not
seek to pre-empt the use of that equation. Rather, they seek
only to foreclose from others the use of that equation in con-
junction with all of the other steps in their claimed process.20

The Court focused on the claim as a whole to find an innova-
tive step beyond the use of the Arrhenius equation, but a tenuous

14. Id. at 594.
15. Id.
16. 450 U.S. 175 (1981).
17. The equation is named after its discoverer Svante Arrhenius and had long

been used to calculate the cure time in rubber-molding presses. Id. at 177 n.2.
18. Id. at 177–78.
19. Id. at 178–79.
20. Id. at 187.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 6 13-JUN-05 12:17

354 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

distinction between simply a patent for an encoded algorithm and a
patent for an encoded algorithm used with additional steps in the
process remained. Regardless, the decision in Diehr appears to have
opened the door for a flood of patents where an entirely new pro-
cess, or a new process utilizing previously known algorithms, could
be implemented through the use of computer processing power.
As long as a physical process was included in the claims, even if well
known in the art, a patent could be issued to a novel computer
algorithm; the patentability of computer systems was tied to the
process in which they were used rather than the innovations con-
tained within.

This trend continued until 1994 when the Federal Circuit de-
cided In re Alappat,21 a decision which opened the door for an addi-
tional class of software patents. Alappat’s invention was a means for
smoothing out the wave form display in a digital oscilloscope; a
claim construed by the Federal Circuit to cover a machine com-
posed of the logical circuits listed by Alappat to perform his
smoothing technique.22 The court acknowledged the mathemati-
cal algorithm exception to section 101 and directly stated that the
claimed subject matter in the case did not fall within the
exception.23

The court limited the Diehr, Flook, and Benson line of cases as
applying the exception “that certain types of mathematical subject
matter, standing alone, represent nothing more than abstract ideas
until reduced to some type of practical application, and thus that
subject matter is not, in and of itself, entitled to patent protec-
tion.”24 But the court looked further to how the application of
software to a general purpose computer creates a patentable ma-
chine.25 The court said that “such programming creates a new ma-
chine, because a general purpose computer in effect becomes a
special purpose computer once it is programmed to perform partic-
ular functions pursuant to instructions from program software.”26

The Alappat opinion made it clear that software claims must be
tied to a machine in order to pass the section 101 subject matter
test. The search for patentable subject matter within computer sys-
tems was shifted to focusing on the software itself as a novel and
useful process, which could be executed by a computer. After Alap-

21. 33 F.3d 1526 (Fed. Cir. 1994).
22. Id. at 1541.
23. Id. at 1542.
24. Id. at 1543 (footnote omitted).
25. Id. at 1544–45.
26. Id. at 1545.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 7 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 355

pat, the only remaining major obstacle to patenting computer pro-
grams was the requirement that software claims implement the
program within an apparatus or machine. This obstacle fell in 1995
when IBM appealed a United States Patent and Trademark Office
rejection of a claim to the Federal Circuit.27 On appeal, the Com-
missioner of Patents and Trademarks conceded that “computer
programs embodied in a tangible medium, such as floppy diskettes,
are patentable subject matter,” and the case was dismissed for lack
of case or controversy.28

In State Street Bank & Trust Co. v. Signature Financial Group,
Inc.,29 the Federal Circuit addressed business systems or so-called
“business method” patents and eliminated an additional hindrance
to computer system patents. Signature was the assignee of a patent
for implementing an investment structure for pooling assets of mu-
tual funds in a data processing system.30 State Street brought a de-
claratory judgment action against Signature alleging invalidity, and
the appeal concerned whether the patent was invalid for failing to
claim statutory subject matter under section 101. The court reiter-
ated that a mathematical algorithm is only unpatentable when not
useful; when transformed by a machine to a “useful, concrete and
tangible result,” the abstract idea becomes a patentable machine or
process.31 The court also eliminated any conception of a business
method exception by describing the exception as “an unwarranted
encumbrance to the definition of statutory subject matter in section
101, that [should] be discarded as error-prone, redundant, and
obsolete.”32

Computer systems are now well established as containing pat-
entable subject matter, and the number of patents issued for these
innovations continues to rise. As a consequence of this rapid shift
to acceptance within the legal community, the focus of the patent
system has remained on the statutory subject matter requirements
for patentability of the computer systems as a whole, and little atten-
tion has been paid to the patentability of innovations that can occur
within the larger framework of overall software development.
These innovations are analogous to a more powerful engine, a
more responsive steering system, or a more sensitive radio antenna

27. In re Beauregard, 53 F.3d 1583 (Fed. Cir. 1995).
28. Id. at 1584.
29. 149 F.3d 1368 (Fed. Cir. 1998).
30. Id. at 1370.
31. Id. at 1373.
32. Id. at 1375 n.10 (citing In re Schrader, 22 F.3d 290, 298 (Fed. Cir. 1994)

(Newman, J., dissenting)).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 8 13-JUN-05 12:17

356 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

that can all be embodied as components within a larger automo-
bile; similarly important advancements can occur within the overall
computer system. These automobile components are evaluated by
the patent system as independent contributions, and specialists in
the arts of engine design, steering mechanics, and radio technolo-
gies are each considered to be one of ordinary skill in their respec-
tive art. It is important to likewise analyze the advancements that
can occur within the computer system as a whole by breaking down
the process of software development into stages and roles and using
each of these specialists as one of ordinary skill in his art.

II.
THE MODERN APPROACH TO SOFTWARE DEVELOPMENT

The rapid growth of the software industry has led to such a
large number of innovations that individual workers can no longer
keep up with the rapid pace of change within the software develop-
ment process; workers have been forced to specialize within the
field in order to maintain the quality of their work product. As a
result of increasing competition, software production firms further
contributed to worker specialization by placing workers into spe-
cific roles to maximize the quality of their software products while
taking advantage of the efficiency gain created by worker specializa-
tion. Workers and firms alike sought a standard process to yield
maximum efficiency in software production and to create a uni-
form system of roles and responsibilities for employees.

A. The Rational Unified Process

In any industry, there are constant improvements and refine-
ments in the methods of production that can change the whole in-
dustry, such as the introduction of assembly lines at Ford Motor
Company.33 The Unified Process has had a similarly sweeping ef-
fect on software development over the past five years. The Unified
Process is a complete software design and construction strategy that
incorporates material in the areas of data engineering, business
modeling, project management, and configuration management.
The first instance of the Unified Process was the Rational Unified
Process (“RUP”) and to date it is the most widely accepted version34

33. See Douglas G. Baird, In Coase’s Footsteps, 70 U. CHI. L. REV. 23, 31–35
(2003) (chronicling the changes required at GM to reorganize its production to
capture the same efficiencies as Ford).

34. For details on the Rational Unified Process, see IBM, Rational Software, at
http://www.ibm.com/rational (last visited Mar. 25, 2005).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 9 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 357

and has become the industry standard for object-oriented
development.35

The Rational Unified Process is a detailed version of a more
generic process originally described by Ivar Jacobson, Grady Booch,
and James Rumbaugh in the textbook The Unified Software Develop-
ment Process.36 These three recognized scholars developed the Ra-
tional Unified Process in the mid-1990s, and in January of 1999, the
publication of The Unified Software Development Process released the
details of this work to the public.37 The Rational Unified Process
was the first software development tool to use the newly created
Unified Modeling Language (“UML”),38 which allows for an easy
explanation of software design and use for both technical and non-
technical workers. Centered on the concept of use case39 and an
object-oriented design method,40 the RUP has rapidly gained rec-
ognition in the software industry and has been adopted and inte-
grated by many companies worldwide.41

The first phase defined in the RUP is the inception phase.42

During the inception phase, the business case for the system is es-
tablished, and the project scope is defined.43 All external entities
with which the system will interact, hereafter referred to as actors,
need to be identified, and the nature of the interaction needs to be
defined, though only at a high level.44 Examples of actors include
system operators, other computer systems, and end users. In order

35. See supra note 8.
36. RATIONAL SOFTWARE CORPORATION, RATIONAL UNIFIED PROCESS: BEST

PRACTICES FOR SOFTWARE DEVELOPMENT TEAMS 17 (2001), available at http://
www.probank.biz/rational.pdf (last visited Mar. 25, 2005).

37. Id.
38. UML is the standard language for specifying, visualizing, constructing,

and documenting all of the artifacts of a software system. Id. at 1.
39. A use case is a sequence of related transactions performed by an actor in

an interaction with the system. TERRY QUATRANI, INTRODUCTION TO THE UNIFIED

MODELING LANGUAGE 7 (June 11, 2003), available at http://www3.software.ibm.
com/ibmdl/pub/software/rational/web/whitepapers/2003/intro_rdn.pdf. A use
case differs from a software module in that it purely represents functionality, not
any discrete collection of code. Defining the use cases in use case diagrams allows
for the developers, supervisors, and clients to be jointly aware of all high-level func-
tionality requirements for the computer system. Id. at 7–9.

40. Object-oriented design structures the computer system design around the
object that exists within the system instead of only the procedural steps that will
need to take place for each interaction.

41. See supra note 8.
42. IVAR JACOBSON, GRADY BOOCH, & JAMES RUMBAUGH, THE UNIFIED

SOFTWARE DEVELOPMENT PROCESS 8, 341 (1999).
43. Id. at 341–42.
44. Id. at 345.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 10 13-JUN-05 12:17

358 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

to clearly define all of the actors and their roles, all of the system
use cases must be identified.

The second phase, elaboration, is essentially what it sounds
like; here the problem domains will be worked out, and an architec-
tural foundation will be established.45 By the conclusion of this
phase, the workers will have elaborated upon the use cases in se-
quence diagrams, collaboration diagrams, and a class diagram. The
class diagram is arguably the most important; it lists and defines all
of the objects that have been identified within the system. The class
diagram then defines the attributes and behaviors for each of the
objects, and the objects morph into classes, a group of objects that
possess similar qualities.46

At the completion of this phase, “the hard ‘engineering’ is con-
sidered complete.”47 Not a single line of code has been written, but
the computer system is essentially fully laid out on paper and has
been conceptually “created” though there is no working software
implementation. The next two phases are the construction phase
and the transition phase.48 The construction phase is the actual
implementation or writing of the code to support the computer sys-
tem, where the bulk of the work in terms of hours will take place,
and the transition phase details the release of the software into its
intended use.49

The RUP illustrates the knowledge required to design the “pro-
cess” of a computer system; this knowledge does not require an abil-
ity to implement the process within a technical architecture or to
write computer code. The RUP also lays out a framework for re-
source allocation—a collection of roles that workers can be placed
into to maximize both the productivity and innovation gains that
come from specialization. By having workers gain detailed knowl-
edge over the state of the art in one aspect of software develop-
ment, the final software product can be a better and more
efficiently produced product.

B. Roles in Software Development

The Federal Circuit and the lower courts have continually used
the terms “software engineer” and “software programmer” when re-
ferring to one of ordinary skill in the art of computer systems.50

45. RATIONAL SOFTWARE CORPORATION, supra note 36, at 4. R
46. QUATRANI, supra note 39, at 12. R
47. RATIONAL SOFTWARE CORPORATION, supra note 36, at 4. R
48. Id. at 5–7.
49. Id.
50. See infra Part III.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 11 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 359

Instead of grouping all of the software development process partici-
pants under this general heading, I have identified four distinct
roles in the RUP—the graphic designer, software designer, software
developer, and application architect. Breaking down the “software
engineer” into these roles allows for a better measure of the contri-
butions made by a patent application within each of these special-
ized fields.51

1. The Graphic Designer

The graphic designer is the worker who designs the user inter-
face for the software. In modern society the interface is often web-
enabled, or designed to work inside an Internet browser such as
Microsoft’s Internet Explorer. For “back-end” systems, systems not
accessible to users outside the company building or software in-
stalled on the local machine, the interface is often windows-based.52

While the graphic designer must have knowledge of the capabilities
and limitations that the technology being used to build the system
possesses, often the worker in this role does not understand the
details of the implementation behind the interface. The main job
of the graphic designer is to design a user interface that is intuitive
and easy to use.

Currently, copyright protection for the aesthetic design is gen-
erally viewed as the only intellectual property protection available
to the graphic designer. Copyright law, however, does not protect
ideas, and when the graphic interface is the only means of expres-
sion for the underlying ideas, this “merger” renders the work not
copyrightable.53 “When the ‘idea’ and its ‘expression’ are thus in-
separable, copying the expression will not be barred, since protect-
ing the expression in such circumstances would confer a monopoly
of the idea upon the copyright owner free of the conditions and

51. Some critics may counter that we should impute knowledge from all roles
in the RUP to the “person having ordinary skill in the art” because corporations,
and not individual inventors, make up the bulk percentage of computer system
patent filers. This runs counter to the precedents built into the foundations of our
patent system (i.e. the requirement of listing individual inventors on the patent
application rather than the employing corporation). For more information on the
historical context behind the requirement for joining individual inventors as pat-
ent filers rather than the overall corporation see 1 DONALD S. CHISUM, CHISUM ON

PATENTS § 2.03 [1]–[2] (2004).
52. An example is Microsoft Word, which runs inside Microsoft Windows.
53. MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT § 2.18

[B][2]–[3] (LexisNexis ed. 2004).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 12 13-JUN-05 12:17

360 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

limitations imposed by the patent law.”54 Under the current law, a
graphic designer is unable to receive any form of intellectual prop-
erty protection for the functional benefits achieved by a new
software interface design.

Arguably, this is where the patent system should step in. In
Apple Computer, Inc. v. Microsoft Corp.,55 the Ninth Circuit addressed
the lack of protection for these types of ideas. The court found that
the use of windows to display multiple images, the use of menus to
store information or functions in a convenient place, and the use of
iconic representations of familiar objects were not copyrightable
features of an operating system.56 The court attempted to separate
out functional elements from artistic ones, but found that con-
straints such as the power and speed of the computer could limit
the range of possible expressions and hamper copyright protec-
tion.57 The decision left available only the option of protecting the
“particular expression” in a graphical user interface and denied in-
tellectual property protection to the truly innovative aspects of Ap-
ple’s user interface.

Because user interface designs are generally regarded as only
aesthetic, it is admittedly difficult to advocate for a widespread use
of patent protection. However, when the improvement is a func-
tional, rather than purely expressive, advancement in the art, the
patent system is the appropriate place to evaluate whether the im-
provement merits protection. These improvements are better char-
acterized as ideas than expressions, and patent law is built upon the
foundation that patent protection for ideas spurs economic growth
and further development.58 A useful and novel user interface is as
much an apparatus or process as a machine executing software in-
structions; the only major difference is tangibility. With software
patents no longer requiring a tangible working machine, user inter-
face patents may be a logical consequence.

54. Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 742 (9th Cir.
1971).

55. 35 F.3d 1435 (9th Cir. 1994).
56. Id. at 1443–44.
57. Id. at 1444–45.
58. See, e.g., Mazer v. Stein, 347 U.S. 201, 219 (1954) (“The economic philoso-

phy behind the clause empowering Congress to grant patents and copyrights is the
conviction that encouragement of individual effort by personal gain is the best way
to advance public welfare through the talents of authors and inventors in ‘Science
and useful Arts.’”).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 13 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 361

2. The Software Designer

The next role from the Rational Unified Process, that of the
software designer, is most closely akin to what the Federal Circuit
has described as a “software engineer.” This role involves nearly all
of the computer system design that is currently protected under
patent law. The software designer does the majority of the work
accomplished in the elaboration phase of the RUP and details how
the system will function and how the various parts will interact.
Like the graphic designer, the software designer should also have a
basic understanding of the capabilities and limitations of the tech-
nology that will be used for the system; however, the majority of the
design work should remain independent of these details. The
software designer’s main responsibility is to detail the business func-
tionality that the computer system will be required to implement.

The patent system has traditionally focused on this role as the
main innovator in computer systems; the software designer is re-
sponsible for building a computer system that accomplishes fixed
requirements of utility in a novel way. This design work often lends
itself well to patent applications as the innovation can be easily com-
municated to non-technical workers via UML diagrams. As a result,
software designers have not been required to disclose the technical
details required to implement the computer system in their patent
applications because the UML designs sufficiently communicate to
judges and juries the functions of the system.

3. The Application Architect

The worker in the role of the application architect designs the
technological part of the system. The worker in this role has a deep
knowledge of the available technologies and their respective capa-
bilities and limitations. It is the job of the application architect to
review the requirements laid out by the software designer in order
to choose a technology and design an implementation strategy.
This usually involves decisions such as deciding whether to build
the system from scratch or use third-party software, determining the
programming language to be used if new software is needed, and
designing the overall structure of the computer system.59 It is ques-
tionable whether this type of invention, a new use of existing tech-
nologies for a software implementation, can be protected under the
current patent system.

59. This overall structure will include details such as the types and number of
servers to be used, the method of data storage to be used, and a security model.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 14 13-JUN-05 12:17

362 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

Computer system patents, such as the one at issue in State Street,
seem to conflate these types of purely technological innovations
with the process-driven functional advancements created by the
larger computer system. The State Street patent detailed a process
for pooling mutual fund assets, but also described in detail the
server structure and technological implementation of the system.60

It is worth noting that one lesson learned from the RUP is that the
functional design and the technical design are largely independent
of each other. The question of whether a purely technological ad-
vancement—likely written as a process claim that uses technology
in a novel way to solve a problem with an existing business system—
is patentable has not been addressed.

4. The Software Developer

A software developer is the worker who builds the nuts and
bolts of the computer system. This worker implements the software
design in the manner chosen by the application architect, and the
role involves the actual programming of the business logic. The
majority of the people working on building the computer system
will fall within this role, and they require very little knowledge of
the overall system design or the system architecture. Each worker is
likely to be given a discrete subset of the overall process to build
and will implement and test that part of the system. This role often
has the lowest knowledge requirement at the system level and the
highest level of knowledge of the detailed workings. Only the work-
ers in this role must possess the ability to read the source code that
makes the computer system function as designed. The work accom-
plished in this role is currently protected only under the copyright
system, which, as previously noted protects only the expression and
not the functional aspect of the source and object code. Thus, a
work of developed software is infringed upon only if the exact code
is copied and reused by an infringer.

5. Consequences of Recognizing the Roles of the Software
Development Process

There are concerns to breaking down the patentable subject
matter from the systems “as a whole” to each innovative step accom-
plished by each of the aforementioned workers. One such concern
is the creation of a “patent thicket,”61 or a tangle of patents that

60. State St. Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d 1368,
1371–72 (Fed. Cir. 1998).

61. Carl Shapiro, Navigating the Patent Thicket: Cross Licenses, Patent Pools,
and Standard Setting, in 1 INNOVATION POLICY AND THE ECONOMY 119–20 (Adam

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 15 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 363

would hinder further innovation. This concern should be allevi-
ated somewhat by the combination of the unique aspects of
software development along with the current patent requirements.
Unlike the physical world, the virtual world, wherein software inno-
vations exist, is not bound by the laws of physics, and there are far
more possibilities for improvement. It is true that computing speed
and power create some limitations, but Moore’s law of ever-ex-
panding computing power has proven that these limitations are
only temporary and constantly in flux.62 As a result, the only fixed
limit on innovation in software design is human ingenuity. This
creates the perfect breeding ground for “design around”
engineering.63

The patent requirements also address this concern by enforc-
ing validity standards of novelty, utility, and non-obviousness. By
breaking down the roles in software development into the catego-
ries in which workers actually participate, the level of innovation
that satisfies these requirements is arguably raised instead of low-
ered. An ordinary worker in the art of interface design will have
more detailed knowledge about advancements in the art than an
ordinary worker who participates only in software development
more generally. This raises the bar for non-obviousness determina-
tions by creating a higher standard for innovation; “one of ordinary
skill in the art” will have a much greater level of skill when the
worker has specialized in the art.

In both academic literature and the courts, the inquiry into the
patentability of computer system innovations has shifted from sub-
ject matter concerns to questions of patent requirements.64 The
decision of how to view software development and what aspects
merit patentability is inexorably tied to the case-by-case analysis of
the requirements for a patent. Without breaking down the concept
of the “software engineer” into more specific roles, the patent sys-
tem will continue to reward patent protection in situations which

Jaffe et al. eds. 2001) (describing a patent thicket as “a dense web of overlapping
intellectual property rights” that a company must navigate in order to “commer-
cialize new technology”).

62. In 1965, Gordon Moore observed an “exponential growth in the number
of transistors per integrated circuit,” and predicted that the number of transistors
would continue to double every couple of years. See Intel Corporation, Intel Re-
search – Silicon – Moore’s Law, available at http://www.intel.com/research/silicon/
mooreslaw.htm (last visited Mar. 25, 2005).

63. “Design around” engineering is the process of copying an invention with
small changes sufficient to avoid patent infringement.

64. See, e.g., Jared Earl Grusd, Internet Business Methods: What Role Does and
Should Patent Law Play?, 4 VA. J.L. & TECH. 9 (1999).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 16 13-JUN-05 12:17

364 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

may be unwarranted and deny patents to innovative advancements
in more specific arts. To date, only a small number of the issued
computer system patents have been litigated in the courts, and the
application of the patent requirements to computer system patents
is still in the early stages of development. The existing cases from
the Federal Circuit illustrate the dangers of continuing down the
path of the all-knowing “software engineer.”

III.
HOW THE PATENT SYSTEM VIEWS SOFTWARE

DEVELOPMENT: “ONE OF ORDINARY
SKILL IN THE ART”

There is great importance in patent litigation of accurately de-
termining the scope of the relevant art and the ordinary skill in the
art—an inquiry in which the aforementioned roles should play a
part. The usage of “one of ordinary skill in the art” comes into play
in determinations of non-obviousness and whether a patent specifi-
cation satisfies the disclosure requirements of enablement, written
description, and best mode.65 An analysis of these requirements
demonstrates how they are tied up in determining the patentable
aspects of computer systems; only the innovative step should be re-
quired to be non-obvious, and steps known within the art should
not require disclosure. This section will review and establish the
importance of these requirements and then attempt to discern how
the Federal Circuit has applied these tests and factors to shape the
current patentability of the computer system as a whole.

A. Graham v. John Deere Co.

Much of the discussion in the courts about determining the
level of ordinary skill in the art has come when applying the frame-
work from Graham v. John Deere Co.66 This case laid out a test for
determining non-obviousness, a requirement rooted in section 103
which provides that:

[a] patent may not be obtained . . . if the differences between
the subject matter sought to be patented and the prior art are
such that the subject matter as a whole would have been obvi-
ous at the time the invention was made to a person having or-
dinary skill in the art to which said subject matter pertains.67

65. See infra Part IV.
66. 383 U.S. 1 (1966).
67. 35 U.S.C. § 103(a) (2000).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 17 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 365

The creation of the “one of ordinary skill in the art” test for
non-obviousness was intended to set a lower standard for patenta-
bility than the previous “flash of creative genius” test68 because a
concern existed that judges were too often finding patents obvi-
ous.69 The Federal Circuit has expressly made clear that
“[i]nventors . . . possess something . . . which sets them apart from
the workers of ordinary skill, and one should not go about determin-
ing obviousness under section 103 by inquiring into what paten-
tees . . . would have known or would likely have done, faced with the
revelations of references.”70 The “ordinary skill in the art” standard
prevents judges and juries from facing what seems to be an ines-
capable paradox: for the invention to have been created it must
have been obvious to the inventor.

In Graham, the Court listed three inquiries that must be made:
1) the scope and content of the prior art are to be determined; 2)
differences between the prior art and the claims at issue are to be
ascertained; 3) and the level of ordinary skill in the pertinent art
must be resolved.71 The Court also made clear that non-obvi-
ousness is a question of law based on factual determinations;72 the
determination of non-obviousness is reviewed de novo in appellate
courts, while the underlying factual inquiries, such as the level of
ordinary skill in the art, are only reviewed for clear error.73 As a
result, there is little guidance from published appellate opinions on
how to best conduct this factual inquiry at the district court level.

The Federal Circuit has, however, articulated some factors to
consider in determining the level of ordinary skill in the art, includ-
ing the educational level of the inventor, the types of problems en-
countered in the art, prior art solutions to those problems, the
rapidity with which innovations are made, the sophistication of the
technology, and the educational level of the workers in the field.74

The court has indicated that while in individual cases one or more
may predominate, when these factors are present they should all be

68. See Cuno Eng’g Corp. v. Automatic Devices Corp., 314 U.S. 84, 91 (1941)
(applying the flash of creative genius test).

69. DONALD S. CHISUM ET AL., PRINCIPLES OF PATENT LAW 598 (2d ed. 2001).
70. Standard Oil Co. v. Am. Cyanamid Co., 774 F.2d 448, 454 (Fed. Cir.

1985).
71. Graham, 383 U.S. at 17.
72. Id.
73. Ruiz v. A. B. Chance Co., 234 F.3d. 654, 663 (Fed. Cir. 2000).
74. See Custom Accessories v. Jeffrey-Allan Indus., 807 F.2d 955, 962 (Fed. Cir.

1986) (“Not all such factors may be present in every case, and one or more of them
may predominate.”) (citing Envtl. Designs, Ltd. v. Union Oil Co., 713 F.2d 693,
696 (Fed. Cir. 1983)).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 18 13-JUN-05 12:17

366 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

considered.75 The standard of “one of ordinary skill in the art” has
also been applied to other areas of patent law such as the require-
ments of what must be disclosed in a patent application.76

B. Northern Telecom v. Datapoint Corp.

In the initial cases that laid the framework for determining the
validity of software patents, the Federal Circuit has made clear that
software code need not be disclosed in computer system patents.
The patent litigated in Northern Telecom, Inc. v. Datapoint Corp. con-
tained only a description of the software, equivalent to UML dia-
grams, used in the computer system instead of any examples of
computer code.77 The district court found that “the patent specifi-
cation’s lack of any information concerning the invention’s pro-
grams would require a person reasonably skilled in the art of
computer programming to experiment unduly in attempting to
write programs.”78 The Federal Circuit overturned this finding and
held that the description of what the software accomplished was
sufficient and adequate for a skilled programmer.79 In what is now
oft quoted language the court reiterated that “the conversion of a
complete thought (as expressed in English and mathematics, i.e.
the known input, the desired output, the mathematical expressions
needed and the methods of using those expressions) into a lan-
guage a machine understands is necessarily a mere clerical function
to a skilled programmer.”80 This was tempered, however, by the
statement that “[t]he amount of disclosure . . . may vary according
to the nature of the invention, the role of the program in carrying it
out, and the complexity of the contemplated programming, all
from the viewpoint of the skilled programmer.”81

C. Fonar Corp. v. General Elec. Co.

The opportunity for accused infringers to argue for patent in-
validity due to a lack of code disclosure was foreclosed in subse-
quent cases. In Fonar Corp. v. General Electric Co.,82 General Electric

75. Custom, 807 F.2d at 962–63.
76. See infra Part IV. For more detail on the addition of the “person having

ordinary skill in the art” (“PHOSITA”), see Cyril A. Soans, Some Absurd Presumptions
in Patent Cases, 10 IDEA 433, 438–39 (1966).

77. 908 F.2d 931 (Fed. Cir. 1990).
78. Id. at 941.
79. Id. at 943.
80. Id. at 942 (quoting In re Sherwood, 613 F.2d 809, 817 n.6 (C.C.P.A.

1980)).
81. Id. at 941 (citing In re Sherwood, 613 F.2d at 817).
82. 107 F.3d 1543 (Fed. Cir. 1997).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 19 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 367

argued that Fonar failed to disclose two software routines that the
inventors knew were the best means for using the invention.83 The
Federal Circuit instead agreed with Fonar that the jury’s finding
that the patent satisfied the best mode requirement was supported
by substantial evidence. The court relied heavily on testimony of
one of the inventors who agreed that there was a “sufficient descrip-
tion to a software engineer, such as [himself], of what software
need to be written.”84 The court stated that “[a]s a general rule,
where software constitutes part of a best mode . . . , description of
such a best mode is satisfied by a disclosure of the functions of the
software.”85

The strong language from the court established a bright line
rule for those drafting patent applications that code disclosure is
not required; merely a description of the functions of the software
is sufficient. The Federal Circuit reiterated the point later that
same year, holding “that when disclosure of software is required, it
is generally sufficient if the functions of the software are disclosed,
it usually being the case that creation of the specific source code is
within the skill of the art.”86

D. The United States Patent and Trademark Office

The United States Patent and Trademark Office guidelines for
evaluating computer system patents also illustrate the view of the art
of software development that existed at the time the guidelines
were issued. The guidelines state that:

In certain circumstances, as where self-documenting program-
ming code is employed, use of programming language in a
claim would be permissible because such program source code
presents “sufficiently high-level language and descriptive iden-
tifiers” to make it universally understood to others in the art
without the programmer having to insert any comments. Ap-
plicants should be encouraged to functionally define the steps
the computer will perform rather than simply reciting source
or object code instructions.87

This paragraph exactly illustrates the view of software develop-
ment that has remained pervasive within the patent system. While
it is permissible to use programming languages in a claim, many of

83. Id. at 1548.
84. Id.
85. Id. at 1549.
86. Robotic Vision Sys. v. View Eng’g, 112 F.3d 1163, 1166 (Fed. Cir. 1997).
87. Examination Guidelines for Computer-Related Inventions, 61 Fed. Reg.

7478, 7486 (Feb. 28, 1996).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 20 13-JUN-05 12:17

368 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

the workers that provide the high-level business method design for
computer systems may not know this language. Additionally, en-
couragement to provide a functional block diagram rather than any
code at all in the specification assumes that the implementation of
nearly all software designs is within the ordinary skill of any
programmer in the art.

The Federal Circuit has recently made interesting pronounce-
ments about software development in areas of patent law outside of
non-obviousness and disclosure requirements that also influence
the determination of “ordinary skill in the art.” While the court has
not directly returned to the issues of patentable aspects of com-
puter systems or disclosure requirements, recent cases demonstrate
a shift in the court’s thinking. For instance, in Creo Products, Inc. v.
Presstek, Inc.,88 the Federal Circuit issued a decision that indirectly
modified the previous precedents on what aspects of a computer
system should be reviewed in the search for patentable subject
matter.

E. Creo Products v. Presstek

Creo and Presstek were competing manufacturers of electronic
imaging systems designed to be installed in printing presses.89 The
patent at issue disclosed a printing press capable of electronically
correcting for mechanical imperfections that might otherwise result
in errors. Experts from both companies testified on equivalence90

at trial, and the district court found that the calculation method
used was not equivalent because “it [did] not perform substantially
the same function in substantially the same way to achieve substan-
tially the same result.”91 Presstek argued that the use of a large
look-up table, as opposed to performing calculations on the fly, was
a design choice and that a software developer would consider the
two means of calculation to be equivalents.

In making the determination of non-equivalence, the district
court focused on the differences between the methods in terms of

88. 305 F.3d 1337 (Fed. Cir. 2002).
89. Id. at 1341.
90. The doctrine of equivalents is a rule of interpretation under which an

accused infringer, although not a literal infringer, is still infringing the patent if
the invention “performs substantially the same function in substantially the same
way to obtain the same result” as the claimed invention. Warner-Jenkinson Co. v.
Hilton Davis Chem. Co., 520 U.S. 17, 38 (1997) (quoting Machine Co. v. Murphy,
97 U.S. 120, 125 (1877)).

91. 305 F.3d at 1351.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 21 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 369

complexity, computing speed, and time requirements.92 These fac-
tors were acknowledged in the Federal Circuit’s review of the case
and allowed as part of the determination that the district court’s
decision was not clearly erroneous.93 It is interesting to note that
factors such as computing speed and time requirements do not
look like parts of the software design “as a whole” but rather parts
of the implementation at the architecture and programming
levels.94 This is a strange group of factors to take into consideration
since the preceding cases appear to hold that the business method,
or process, is the only patentable aspect of a computer system. The
case marks a shift from allowing computer system patents only as a
business method or general process patent to an analysis of the in-
novations that can occur within the implementation of the process
to increase speed and usability.

F. Medical Instrumentation v. Elekta

The requirements for a software patent and the relevant skill in
the art for legal determinations have also recently been muddled in
Medical Instrumentation and Diagnostics Corporation. v. Elekta AB.95

The claim at issue was whether Elekta was infringing patents held
by Medical Instrumentation and Diagnostics Corp. (“MIDCO”).
The patents in the case related to a system for planning surgical
treatment using scanned images to locate the site on which a sur-
geon is supposed to operate and described a “method and appara-
tus for generating a video presentation of images from a variety of
separate scanner imaging sources.”96 The key dispute on appeal
was whether the district court was correct in including software as a
structure for the conversion means.97

The district court decided that a person of ordinary skill in the
art would understand software to be a corresponding structure.
The majority opinion on appeal seemed quite deferential to expert
testimony and stated that “MIDCO presented some evidence before
the district court that a skilled programmer at the time of the appli-

92. Id.
93. Id.
94. For a detailed examination of the roles and levels of software develop-

ment, see supra Part III.
95. 344 F.3d 1205 (Fed. Cir. 2003).
96. Id. at 1208.
97. Id. at 1209. The allegedly infringed claims were “means-plus-function”

claims. “The duty of a patentee to clearly link or associate structure with the
claimed function is the quid pro quo for allowing the patentee to express the claim
in terms of function.” Id. at 1211 (citing Budde v. Harley-Davidson, Inc., 250 F.3d
1369, 1370 (Fed. Cir. 2001)).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 22 13-JUN-05 12:17

370 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

cation’s filing could have written a program for digital-to-digital
conversion of image size, and we have no reason to doubt that as-
sertion.”98 Nonetheless, the majority held that even though the
software was thus readily available, the failure to adequately de-
scribe it in the specification invalidated the patent.99

In dissent, Judge Newman clearly illustrated the majority opin-
ion’s break from precedent. The dissent agreed with the majority
that the software procedures were well known to persons skilled in
the art, but argued that this finding was relevant to the requirement
of code disclosure. The dissent stated that “the patent specification
need not ‘teach software’ and the writing of routine programs in
order to teach how to practice the described method If one of
skill in the programming art would have been able to write such a
program without undue experimentation, the statutory require-
ments are met.”100 Judge Newman continued:

For decades the rule and practice has been that such software
need not be included in the specification. Over thirty years
ago this court’s predecessor endorsed this format, stating in In
re Ghiron, that “if such a selection would be well within the skill
of persons of ordinary skill in the art, such functional-type
block diagrams may be acceptable and, in fact, preferable if
they serve in conjunction with the rest of the specification to
enable a person skilled in the art to make such a selection and
practice the claimed invention with only a reasonable degree
of routine experimentation.”101

Judge Newman correctly summed up the majority’s move by
stating that it was now unclear what was required for proper disclo-
sure of a computerized software routine,102 asking “Is this court
now requiring a five-foot-shelf of zeros and ones?”103 It is, however,
clear that the disclosure requirements for software patents, such as
non-obviousness, now directly turn on a determination of the scope
and skill in the art. The best way to solve the confusion is to ascer-
tain where the innovation is occurring within each computer system
patent and to utilize the level of ordinary skill employed by workers
in that role to determine what should be the proper requirements
for patent protection.

98. Id. at 1211–12.
99. Id. at 1212.
100. Id. at 1223.
101. Id. at 1224.
102. Id.
103. Id.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 23 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 371

IV.
COMPUTER SYSTEM PATENT REQUIREMENTS

VIEWED WITHIN THE RUP

As illustrated in Part III, prior to the recent shift in Federal
Circuit analysis, determining the scope of the art for evaluating
software patents had been a non-issue for the courts. Even today,
very few courts have gone beyond the term “software engineer” or
“software programmer” when analyzing software patents and tend
to use these terms interchangeably.104 Both of these general terms
have been applied in the same context—as a worker in the art of
computer systems who is capable of graphic design, software design,
software programming, and architecture design.

When analyzing these terms in the context of the RUP, as de-
tailed above, it appears that these terms are not interchangeable.
Rather, the software engineer should be recognized as the person
spearheading the elaboration phase effort to precisely lay out the
actions and usage of the computer system with little knowledge re-
quired for software programming. The software programmer, on
the other hand, should be viewed as the worker with little to no
knowledge of the overall system and a deep knowledge of the pro-
gramming art. Interestingly enough, however, the Federal Circuit
has always assumed that the person in either of these roles can im-
plement the system as well as design it.105 This section will identify
problems that continue to exist with the current patent require-
ments unless the all-knowing “software engineer” myth is replaced
with a modern view of software development.

A. Non-obviousness

The Graham findings, detailed in Part III A., are a necessary
part of any obviousness inquiry. The Federal Circuit reiterated this
point in Ruiz v. A.B. Chance Corporation, saying that “[o]ur prece-
dent clearly establishes that the district court must make Graham
findings before invalidating a patent for obviousness.”106 The court
gave a clear signal to district court judges by adding:

In patent cases, the need for express Graham findings takes on
an especially significant role because of an occasional tendency

104. See, e.g., Med. Instrumentation and Diagnostics Corp. v. Elektra AB, 344
F.3d 1205, 1212, 1219 (Fed. Cir. 2003) (using a software programmer as one of
ordinary skill in the art); Fonar Corp. v. Gen. Elec. Co., 107 F.3d 1543, 1548–49
(Fed. Cir. 1997) (using a software engineer as one of ordinary skill in the art).

105. See generally Northern Telecom, Inc. v. Datapoint Corp., 908 F.2d 931
(Fed. Cir. 1990).

106. Ruiz v. A. B. Chance Co., 234 F.3d. 654, 663 (Fed. Cir. 2000).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 24 13-JUN-05 12:17

372 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

of district courts to depart from the Graham test, and from the
statutory standard of unobviousness that it helps determine, to
the tempting but forbidden zone of hindsight. Thus, we must
be convinced from the opinion that the district court actually
applied Graham and must be presented with enough express
and necessarily implied findings to know the basis of the trial
court’s opinion.107

The non-obviousness requirement for software patents has
been characterized as a hard-to-meet standard under the Graham
test.108 I believe this is a result of the widespread usage of the
“software engineer” concept in the legal system. The underlying
factual inquiries require that the scope and content of the prior art
be determined, differences between the prior art and the claims at
issue are ascertained, and the level of ordinary skill in the pertinent
art be resolved.109 The fact-finders at trial are often faced with an
expert who claims full knowledge of all the identified roles from
the RUP, and after all aspects of the computer system are analyzed
by the court, little seems not to be obvious to “one of ordinary skill”
in all facets of software development.

If the jury were instead instructed to view the innovative step
through the eyes of a worker possessing truly “ordinary skill in the
art,” either as a graphic designer, software designer, application ar-
chitect, or a software developer, a better assessment of whether pat-
ent protection was merited could be obtained. Thus, an innovative
user interface should not be reviewed for non-obviousness under
the incorrect application of whether a “software engineer” could
combine the prior art in all areas of software development to
render the innovation unable to attain that “privileged position of a
patent,” requiring “more ingenuity . . . than the work of a mechanic
skilled in the art.”110 Instead, the proper analysis should focus on
whether an ordinary worker in the area of interface design, an art
in its own right,111 would have found the innovation obvious.

107. Id. at 663–64 (quoting Loctite Corp. v. Ultraseal Ltd., 781 F.2d 861, 873
(Fed. Cir. 1985)).

108. Dan L. Burk & Mark A. Lemley, Is Patent Law Technology-Specific?, 17
BERKELEY TECH. L.J. 1155, 1156–57 (2002).

109. Graham v. John Deere Co., 383 U.S. 1, 17 (1966).
110. Cuno Engineering Corp. v. Automatic Devices Corp., 314 U.S. 84, 90

(1941).
111. See, e.g., Usability Professionals’ Association, UPA: Home Page, at http://

www.upassoc.org/ (last visited Mar. 25, 2005); Association for Computing Machin-
ery, ACM/SIGCHI, at http://www.acm.org/sigchi/ (last visited Mar. 25, 2005) (de-
tailing the special interest group for computer-human interaction within ACM).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 25 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 373

This potential weakening of the non-obviousness requirement
could lead to more overlapping software patents and thus stifle in-
novation, but this outcome is not a foregone conclusion. The de-
termination of whether the level of “ordinary skill in the art” of a
graphic designer, software designer, application architect, or
software developer is higher or lower than that of the level of a
“software engineer” will only be determined once factual inquiries
begin to take place in the courts. I predict that while the scope of
the art will narrow, since ordinary workers in the art will no longer
be presumed to know everything about computer systems, the level
of skill in the specific art at issue in most cases will rise as “ordinary”
specialists will probably be more familiar with the prior art in the
field than “ordinary” generalists.

B. Disclosure Requirements

The disclosure requirements of written description, enable-
ment, and best mode also use the fictional character of “one of or-
dinary skill in the art.” The use of the “software engineer” in the
patent system has shaped these requirements to generally require
little to no code disclosure. This creates a risk of granting a patent
in situations where the invention may not be fully implemented,
such as the example of the Linux operating system described in this
section. The premature granting of a patent to an inventor who
cannot adequately demonstrate to “one of ordinary skill in the art”
that he is in possession of the invention raises concerns that can
only be addressed by breaking down the “software engineer” into
the aforementioned roles.

1. Written Description

The written description requirement has been given a broad
policy rationale by the Federal Circuit, necessitating that the patent
specification convey with reasonable clarity to those skilled in the
art that the inventor was in possession of the invention.112 The
scope of the art is central to the requirement because “an inventor
is not required to describe every detail of his invention”113 and the
“disclosure obligation varies according to the art to which the in-
vention pertains.”114 For complex computer systems, a description
of the functions of the software is often not enough to prove posses-

112. Vas-Cath Inc. v. Mahurkar, 935 F.2d 1555, 1563-64 (Fed. Cir. 1991).
113. In re Hayes Microcomputer Prods., Inc., 982 F.2d 1527, 1534 (Fed. Cir.

1992).
114. Id.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 26 13-JUN-05 12:17

374 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

sion of the invention; instead, in certain circumstances, a working
implementation of the software should also be required.

A good example of a complex computer system where the im-
plementation, not just the overall software design, was the innova-
tive hurdle is the Linux kernel115 developed by Linus Torvalds.
Prior to the kernel being added, there was an open source version
of the UNIX operating system under development, known as
GNU.116 Much of the system was built through contributions from
programmers across the globe, but the one problem that tor-
mented the completion of the operation system was the lack of a
working kernel. When Linus Torvalds added his kernel to the sys-
tem, Linux became a popular operating system that is still widely
used today.

So what should be made of this example? If the contributors
to the GNU project could have accurately described the functions
of the kernel with UML diagrams, should they have been entitled to
patent protection even though they had no success in implement-
ing the operating system? This example demonstrates that mere
disclosure of the design for the software “as a whole” should not
always be enough to grant patent protection. Granting computer
system patents in these situations runs counter to a goal of disclos-
ing working inventions to the public and should be avoided. By
breaking down the “software engineer” into roles, it is easier to
identify when implementation of a computer system is truly within
the “ordinary skill in the art” of a software programmer, and, when
it is not, the disclosure of a working implementation should be re-
quired in order to obtain patent protection.

2. Enablement

Another disclosure requirement in section 112 is the “enable-
ment” requirement.117 The enablement requirement ensures that
the inventor has set forth sufficient information to enable a person
skilled in the relevant art to make and use the claimed invention
without undue experimentation.118 In the Linux example, the or-
dinary skill of a software programmer was not sufficient to make

115. A kernel is the central piece of an operating system that handles the
management of the computer resources for the programs being executed.

116. The GNU (GNU is a recursive acronym for “GNU’s Not UNIX”) Project
was launched in 1984 to develop a complete UNIX style operating system available
as free software. For more information, see http://www.gnu.org (last visited Mar.
25, 2005).

117. 35 U.S.C. § 112 (2000).
118. In re Wands, 858 F.2d 731, 736–37 (Fed. Cir. 1988).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 27 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 375

implementation of the computer system from the written descrip-
tion a “mere clerical function.”119 The quid pro quo120 of the patent
system requires that the public be able to practice the invention.
When the innovative step is not merely in the conception of the
software, but rather the implementation, the patent specification
should contain some actual code or pseudo-code.121

Another reason to require some sort of code disclosure is that
the implementation of a computer system generally takes signifi-
cant effort,122 and may often constitute undue experimentation.
The Federal Circuit has stated that:

Whether undue experimentation is needed is not a single, sim-
ple factual determination, but rather is a conclusion reached
by weighing many factual considerations [Factors] in-
clude (1) the quantity of experimentation necessary, (2) the
amount of direction or guidance presented, (3) presence or
absence of working examples, (4) the nature of the invention,
(5) the state of the prior art, (6) the relative skill of those in
the art, (7) the predictability or unpredictability of the art, and
(8) the breadth of the claims.123

In these situations, determining whether the system could be
built by any programmer of ordinary skill without undue experi-
mentation may be a question of fact that varies by case. Thus, blan-
ket statements from the Federal Circuit that the disclosure of
source code is not required could actually run counter to the over-
all goals of the patent system. I propose that the patent system
should no longer follow the assumption that any computer system
can be built by a “software engineer” without undue experimenta-
tion when no code is disclosed in the patent specification. Instead,
analyzing whether the innovation comes from the role of the
graphic designer, the software designer, the application architect,
or the software developer will lead to a better determination of
enablement.

119. See In re Sherwood, 613 F.2d 809, 817 n.6 (C.C.P.A. 1980) (describing the
writing of code as a “mere clerical function”).

120. The “quid pro quo” of the patent system is that it “seeks to foster and
reward innovation, [promote] disclosure of inventions, to stimulate further inno-
vation and to permit the public to practice the invention once the patent expires,
[and] assure that ideas in the public domain remain there for the free use of the
public.” Aronson v. Quick Point Pencil Co., 440 U.S. 257, 262 (1979).

121. Psuedo-code is commonly used by programmers to outline the algorithm
for how a specific function will be coded before the effort is undertaken to actually
implement the function in a programming language.

122. See JACOBSON, supra note 42, at 11.
123. Wands, 858 F.2d at 737.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 28 13-JUN-05 12:17

376 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

3. Best Mode

The best mode requirement involves factual inquiries into
whether the patent applicant had a best mode, and if there was a
best mode whether it was disclosed in sufficient detail to allow one
skilled in the art to practice it.124 The Federal Circuit has consist-
ently stated that the failure to disclose source code does not violate
the best mode requirement because “writing code for such software
is within the skill of the art, not requiring undue experimentation,
once its functions have been disclosed.”125 This view is obviously
consistent with the current practice of not requiring code disclo-
sure for the written description or enablement requirements, but
the best mode requirement raises additional issues.

The purpose of the best mode requirement “is to restrain in-
ventors from applying for patents while at the same time concealing
from the public preferred embodiments of their inventions which
they have in fact conceived.”126 This requirement is intended to
ensure that the patent applicant fully discloses the details of using
the patented invention. I believe that the broad scope of “ordinary
skill in the art” in software patents, evidenced by the “software engi-
neer,” allows computer system patentees to conceal the best mode
for their invention. The innovative steps can remain undisclosed
when the patent system assumes that “one of ordinary skill in the
art” can design and build the user interface, implement the system
design in computer code, and design the technical architecture.
Instead, the proper test for best mode should be whether one who
specializes in the innovative aspect of the invention would be able
to practice the best mode with the detail described in the patent
specification. Thus, I advocate this revised view of the best mode
requirement in light of the modern software development process.

V.
CONCLUSION

As the proliferation of computer system patents continues and
the relative importance of their impact on the economy increases,
the patent system will need to re-examine its view of the software
development process. If the patent system is to remain the pre-
ferred means for software protection, the courts will have to re-ex-

124. Fonar Corp. v. Gen. Elec. Co., 107 F.3d 1543, 1548 (Fed. Cir. 1997) (cit-
ing U.S. Gypsum Co. v. Nat’l Gypsum Co., 74 F.3d 1209, 1212 (Fed. Cir. 1996)).

125. Id. at 1548, reiterated in Bayer v. Schein Pharmaceuticals, Inc., 301 F.3d
1306, 1323 n.5 (Fed. Cir. 2002).

126. DeGeorge v. Bernier, 768 F.2d 1318, 1324 (Fed. Cir. 1985).

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 29 13-JUN-05 12:17

2005] BREAKING DOWN THE “SOFTWARE ENGINEER” 377

amine the scope of the art and the level of ordinary skill in the art
of each innovative aspect of software development to dissect the
concept of the all-knowing “software engineer.” Breaking down the
“software engineer” into specific roles will ensure that we are re-
warding innovators in the implementation roles with patent protec-
tion instead of only rewarding the first innovator to describe or
design a future innovation. It is important that we not deny all
forms of intellectual property protection to important innovations
that would benefit society if publicly disclosed.

Innovations can come from each of the roles identified, and
the patent system will need to do a better job of identifying the
innovative step in each computer system claim in order to properly
utilize the requirements and doctrines that exist within the patent
system. Requirements such as non-obviousness, written description,
enablement, and best mode all serve a function in limiting the
grant of a patent monopoly to innovations that are not obvious to
“one of ordinary skill in the art” and are adequately described to
the public in the quid pro quo at the heart of the patent system. By
applying knowledge of the modern software development process,
including its separate and distinct roles, to these determinations of
patent validity, the courts will more accurately measure innovation
and the required disclosure for computer system patents.

\\server05\productn\N\NYS\61-2\NYS207.txt unknown Seq: 30 13-JUN-05 12:17

378 NYU ANNUAL SURVEY OF AMERICAN LAW [Vol. 61:349

