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The Effects of Pharmaceutical Marketing and Promotion on
Adverse Drug Events and Regulation’

By Guy DAVID, SARA MARKOWITZ, AND SETH RICHARDS-SHUBIK

This paper analyzes the relationship between postmarketing promo-
tional activity and reporting of adverse drug reactions (ADRs) by
modeling the interaction between a regulator (the FDA) and a phar-
maceutical firm. Promotion-driven market expansions enhance prof-
itability yet may involve the risk of inappropriate drug prescriptions,
leading to regulatory actions against the firm. We empirically test the
relationship between drug promotion and reporting of ADRs using
an innovative combination of commercial data on pharmaceutical
promotion and FDA data on regulatory interventions and ADRs. We
provide some evidence that increased levels of promotion and adver-
tising lead to increased reporting of ADRs for certain conditions.
(JELL51, L65, M31, M37)

he market for pharmaceuticals is one of the most highly regulated markets in the
nation. The US Food and Drug Administration (FDA) interacts with pharma-
ceutical manufacturers to ensure the safety and efficacy of drugs. The relationship
between manufacturers and the FDA spans the lifecycle of drugs from pre-approval
drug testing and development through post-approval activities. The interaction
between the two that occurs in the pre-approval stage has received much attention
in the literature (F. M. Scherer 2000). What is lacking is a thorough understanding
of the post-approval interactions between manufacturers and the FDA. In this paper
we study such interactions where a firm has to balance the profitable expansion of
its product with the risk of future unfavorable regulatory actions. In particular, we
emphasize the effects of advertising and promotion decisions by the firm, which
while raising sales, may also trigger unfavorable regulatory actions against the firm
due to the expansion of prescriptions to users who are poor matches for the drugs.
This project is motivated in part by recent, high profile safety lapses that led
to severe regulatory actions against approved drugs.| As a result, the Institute of
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Medicine published a series of policy recommendations (Alina Baciu, Kathleen
Stratton, and Sheila P. Burke 2007) to improve the oversight abilities of the FDA.
These include a call for improvements in the postmarketing surveillance of prescrip-
tion drugs and a recommendation for legislation to give the FDA new post-approval
enforcement authority (Alina Baciu, Kathleen Stratton, and Sheila P. Burke 2007).
The need for postmarketing surveillance is underscored by the inherent uncertainty
that arises when a new drug enters the market. The randomized controlled trials,
used by the FDA to approve new drug applications, are considered to be the gold
standard for demonstrating the efficacy of drugs. However, the generalizability of
these results to the “real world” is unclear since clinical trials do not encompass
the uncontrolled, real-world conditions. Individuals represented in the clinical trials
may be very different from those in the post-approval population, since these trials
often exclude people with co-morbid conditions or who use other drugs concur-
rently. The trials also tend to underrepresent elderly and ethnic minorities (Alina
Baciu, Kathleen Stratton, and Sheila P. Burke 2007). Small sample sizes, and short-
term exposure to the drugs in the trials, also make rare adverse events difficult to
detect. Lastly, the implications of off-label use are unknown. Off-label use creates
a “new” user population with a potentially different risk-benefit profile. All of these
factors contribute to the limitations of clinical trials, and explain why the safety of
drugs may still be in question even after they go through a rigorous approval process.

After receiving FDA approval, manufacturers have strong incentives to expand
the population of users by advertising and promoting a new drug. The amount of
money spent on such activities has been steadily increasing since the mid-1990s,
with nominal expenditures rising from about $9.2 billion in 1996 to $27.7 billion
in 2004 (Kaiser Family Foundation 2009). Promotional activities aimed at health
professionals make up the bulk of expenditures, although the share of direct to con-
sumer advertising (DTCA) has risen steadily over time. DTCA spending was $790
million in 1996 (8.6 percent of the total), and rose to $4.0 billion, 14.4 percent
of total promotional spending, by 2004 (L. J. Sellers and Andra Brichacek 2001;
Michael D. Lam 2004; Diane West 2007). Much of this growth can be attributed to
new television and magazine advertising that emerged after the FDA changed the
regulations regarding advertising in 1997.7

On the professional side, pharmaceutical companies’ promotional activities
include detailing (meetings with sales representatives), gifts, free samples, trips to
conferences, sponsorship of educational events, and advertising in medical journals
(Joan Buckley 2004). It is unclear whether the informational benefits outweigh the
potential for biased prescription practices (see Ashley Wazana 2000 for a complete
review of this literature). John A. Rizzo (1999) and Frank Windmeijer et al. (2006)
find that the presence of promotion reduces the price elasticity of demand for pre-
scribed drugs, implying higher prices. In addition, Windemeijer et al. (2006) find

2 Prior to 1997, firms could either advertise the condition with no mention of the drug’s name, or advertise the
drug’s name with no mention of the condition. These restrictions were lifted in 1997, allowing the firm to estab-
lish a link between the drug advertised and the condition it treats, and hence to improve the effectiveness of their
advertising.
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that promotion primarily expands market share, while Rizzo (1999) finds evidence
that promotion expands the size of the market.

DTCA was found to be associated with increases in spending on prescrip-
tions drugs, increased doctor visits, and increased prescribing rates (US General
Accounting Office 2002; W. David Bradford et al. 2006; Toshiaki lizuka and
Ginger Zhe Jin 2005; Julie M. Donohue et al. 2004). But there are both pros and
cons to the increased drug use. On the plus side, DTCA has the potential to edu-
cate people about certain conditions, encourages them to seek professional help,
and may result in the receipt of treatment that they otherwise would not have (A.
Masson and P. H. Rubin 1985; Alan Lyles 2002; Blenda A. Chao 2005; Elizabeth
A. Almasi et al. 2006). On the down side, the concern with DTCA is that the rapid
uptake of new drugs may not necessarily be better than the use of existing drugs,
and problems may arise when the new uptake is among patients who are not a
good match for the drug (Richard L. Kravitz et al. 2005; Michele M. Spence et
al. 2005). Because of the potential for mismatch, pharmaceutical advertising may
be welfare decreasing when it expands the size of the market (Ernst R. Berndt
2007).7 Under the current US regulatory system, firms may be penalized for creat-
ing a mismatch between patients and drugs on the basis of safety.! Therefore, a
firm has to balance the profitable expansion of its product with the risk of unfavor-
able regulatory actions.

To capture this notion, our paper examines the incidence of adverse drug events
associated with pharmaceutical promotion and advertising and their relation-
ship with adverse events and regulatory action by the FDA. To do so, we present
a newly developed theoretical framework that explicitly addresses the interaction
between firms and their regulator, while incorporating the FDA’s problem of poor
signal quality. This framework then guides an empirical analysis of adverse events,
which examines two parts of the connection between pharmaceutical promotional
activities and the FDA. The first seeks to measure the degree to which increases in
reported adverse events lead to FDA actions. The second seeks to answer the ques-
tion of whether increased levels of promotion lead to a worsening match of drugs
with patients, and lead to increased reporting of adverse medical events. We study
these relationships separately across four different medical conditions, because each
provides important variation in disease prevalence, degree of generic competition,
and the ability of patients and manufactures to influence physicians’ prescribing
behavior.

There has been little previous research into the factors influencing the safety
of drugs post approval, and much of this research has examined the influence of
approval time on drug withdrawals (Nigel S. B. Rawson and Kenneth I. Kaitin 2003;
Berndt et al. 2005), and adverse drug reactions (ADRs) that resulted in hospitaliza-
tion and death (Mary K. Olson 2002; Niklas Rudholm 2004). This is the first study

3 When DTCA does not expand the market and only affects market shares, brand switching among consumers
will be welfare enhancing when it improves the match. However, the current literature shows that DTCA is primar-
ily market expanding (Narayanan et al. 2004; Tizuka and Jin 2005).

+ Note that when the regulatory system focuses on safety, firms have little incentive to improve the quality of
the match on the basis of the benefit to patients.
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to examine the interactions between pharmaceutical promotion (and advertising),
ADRs, and regulatory actions.

The paper proceeds as follows: Section I presents a model of promotion and
safety, in which a drug manufacturer chooses price and promotion, and a regula-
tor chooses regulatory actions that may impact the demand for the drug. Section
IT describes the data and estimation, Section III discusses the results, and Section
IV concludes.

I. A Model of Promotion and Safety

This model puts a theoretical foundation around the interactions between the
FDA and pharmaceutical firms in terms of promotion and safety activities. Once a
drug is approved for use, a welfare maximizing regulator (i.e., the FDA) and a profit
maximizing drug manufacturer engage in a game. The FDA, having the power to
recommend a withdrawal of a drug from the market (or reduce its demand through
labeling restrictions and warnings), will offer the firm a scheme specifying regula-
tory actions based on signals from persons taking the drug. The firm maximizes
expected profits by expanding the number of prescriptions filled. The safety and
benefit profile of people receiving the drug changes as demand for the drug expands.
Demand is affected by promotional activities, which increase both revenues and the
chance of a poor match between patients and the drug. A crucial aspect of the model
is that regulation depends on distorted information about the utility impact of a drug,
so we can analyze the effect of an overemphasis on drug safety as compared with the
actual balance of safety and benefit.

We consider the simplest case, in which the firm is a monopoly, it produces only
one drug (or the profits derived from different drugs are entirely separable), and
the drug can treat only a single health problem. Under these assumptions the pro-
motional activity taken by a firm has no effect on other firms. Hence, the relation-
ship between the FDA and pharmaceutical firms can be reduced to an interaction
between the agency and a single firm. In addition, we assume the FDA attempts to
maximize welfare conditional on initially approving a drug.

We begin by specifying utility over two dimensions: safety and benefit. We relate
this to a demand function for the drug which is mediated by physicians and influ-
enced by promotional activities. We then turn to the FDA problem and derive the
welfare maximizing regulatory rule, which relies on safety signals from persons
taking the drug. The firm, in turn, chooses promotion to maximize expected profits
incorporating the FDA’s regulatory rule. Unlike existing models of promotion under
uncertainty, the firm’s choice of promotional activity affects the risk exposure to
unprofitable regulatory interventions.

A. Utility and Appropriateness

We model utility using a two-dimensional space of safety and benefit, as shown
by The two dimensions allow for misaligned incentives or distorted infor-
mation in the regulatory process, and in particular, address the difficult task faced by
the FDA of balancing safety with efficacy when it considers regulatory actions. In
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Drug safety

(0,0) Health benefit 1

FIGURE 1. THE SAFETY-BENEFIT SPACE FOR PATIENTS

the space, individuals are located throughout the unit square, meaning that the health
benefit of a drug and its safety range from O to 1, with the point (1,1) representing
the highest combination of benefit and safety attainable.”] Our measure of utility
then comes from the concept of the “appropriateness” of a drug for an individual
patient, which refers to an assessment of the balance between its potential risks
and benefits to that patient. Appropriateness reduces the safety-benefit tradeoff to a
single distance measure, so people with different positions in the space may have the
same utility. For example, a sick but relatively fragile person who stands to benefit
substantially from the drug, but has serious risk of harmful side effects or interac-
tions (position B), could have the same expected utility as a more healthy person
who also has the condition but would recover eventually without the drug (position
C). Position A represents the same health benefit as position B, yet higher safety.
Similarly, a person in A has the same safety level as one in C, yet higher health ben-
efits. Therefore, we say that the drug is more appropriate for a person in position A
than it is for either persons in positions B and C.

The utility for individual i taking the drug is u; = 3 — z; where (3 s the value of the
drug at the optimal match and can be thought of as the highest attainable utility from
the drug.” We normalize (3 to be between zero and one, so that no drug could benefit the
entire population, even absent any safety concerns. z; is the difference in appropriateness

5 A person located at (1,1) will experience the maximum health benefits and minimal risk of an adverse reaction.
6 3 can be interpreted as the highest attainable benefit relative to other treatment options; however, in that case
this benefit might vary across patients with heterogeneous ranking of different therapeutic options.
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for individual i, compared with the best possible match for the drug. We use the
Euclidean distance from the optimal match at (1,1) to measure the appropriateness
of using a drug. Specifically, a person i with b; potential benefit and s; potential
safety would have an overall effect that is z; = \/ (1 — b)* + (1 — s,)* less than
the optimum. Each level of z produces an iso-appropriateness curve in the benefit-
safety space.

B. Promotion and Demand

Our notion of promotion is very general—it encompasses everything done by the
firm to affect demand and perceptions of its drug, not just paid advertising or other
easily observed and audited activities. This helps to explain why the FDA puts little
emphasis on regulating promotional activities directly./

Both physicians and consumers respond to promotional activities, which largely
take the form of detailing and direct-to-consumer advertising. We assume physi-
cians will only prescribe drugs that are sufficiently appropriate for their patients, so
they have a threshold z and will only prescribe the drug to individuals with z; < z.
This z responds to promotion (e.g., detailing) because physicians update their beliefs
regarding the safety and benefits associated with the drug. As for the effect on con-
sumers, we assume DTCA increases the value that all consumers place on the drug,
so more patients will choose to visit a doctor. Additionally, DTCA makes patients
more insistent that they be treated.’ Because physicians wish to satisfy their patients,
they will adjust z indirectly due to DTCA (Barbara Mintzes et al. 2002; Kravitz et
al. 2005).

We assume that physicians accurately understand the tradeoff between benefit
and safety as they affect patient utility. This means that promotional activity which
targets a single aspect (e.g., benefit) would impact the entire frontier in the (b, s)
space. Updating beliefs about the benefits of a drug corresponds to its perceived
appropriateness. The more beneficial a drug is, the greater the willingness to pre-
scribe it to patients with higher risk. This tradeoff may be present even when promo-
tional activity does not target physicians directly (i.e., detailing).”

The idea that individual physicians can assess the appropriateness level of
a drug relies on the notion that physicians are able to identify accurately each
individual’s address on the safety-benefit space (similar to Kurt R. Brekke and
Michael Kuhn 2006). The risks involved with taking a drug depend on a large
number of factors that include demographics, lifestyle, family history, health con-
ditions, and other drugs in use. Physicians who are faced with drug prescribing
decisions will eventually take this complex multi-dimensional risk space, even
if not explicitly, and collapse it in some fashion to guide their decision-making

7 The FDA’s Division of Drug Marketing, Advertising, and Communications (DDMAC) receives an average
of 53,000 promotional pieces a year. The bulk of ads are launched without the agency reviewing them first, and the
division’s regulatory authority consists of warning manufacturers of potential misrepresentations.

8 DTCA also makes patients more likely to request a particular drug among a set of options, but this goes
beyond the monopoly setting in the model.

9 If direct-to-consumer advertising alters patients’ perception of the health benefits of a drug, patients still need
to communicate this belief to their physician, who then makes the tradeoff between benefits and safety and adjusts z.
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process. For tractability, we assume that risk can be condensed into a single index,
s;. Our formulation rules out dynamic improvements in match quality by learning
about the impact of risk factors.""

Moreover, absent from our model is the notion that promotion can be effectively
tailored to subpopulations defined in terms of safety or benefit. Firms would ben-
efit from switching a high benefit—high-risk individual with a low benefit—low
risk individual, even when the drug is more appropriate for the former (i.e., replac-
ing individual A in figure 1 with individual C). The reason is that the incentives
provided by the regulator tracks safety closer than it tracks benefits. This behavior,
that might be termed “defensive” tailoring, is consistent with both increasing the
firm’s expected profits and decreasing social welfare. While the notion of ISO-
appropriateness curves rules out defensive tailoring, it is important to notice that
such tailoring of promotional activity would reduce the match quality even fur-
ther as it leads to replacing sicker individuals, in need of treatment, with health-
ier ones (i.e., lowering the average level of appropriateness). This highlights the
regulatory problem of achieving incentive compatibility by relying on a single
dimension—safety.'"

For simplicity, we assume that demand function is given by az(p,A), where «
is a parameter capturing market size for the drug, p is the price of the drug and A is
the expenditure on promotional activities chosen by the firm. We make the standard
assumption that z(p,A) is concave in promotion, which has implications for the
distribution of utility and the effectiveness of promotion.'? With regard to the effect
of price on z(p,A), we assume that physicians are perfect agents for their patients,
and that they internalize the effect of price on consumer utility. An increase in price
has two effects: the first is the usual lowering of the quantity demanded (through a
reduction in the area under z), the second is improving the average match (appro-
priateness). This notion of conflicting welfare effects coincides with Nava Ashraf,
James Berry, and Jesse M. Shapiro (forthcoming).

C. Welfare and the Regulatory Process

The regulatory goal is to maximize welfare, given by [ ([3 — c] — 2)f(z)dz.
where ¢ is the marginal cost and f(z) is the density of z in the population.'d In a

19 Learning over time, about the various risk factors for a specific drug, calls for repeated updating of each
individual’s location on the benefit-safety space. However, for the purpose of our empirical analysis, this assump-
tion is conservative insofar as any such learning will weaken the relationship between promotional activities and
reporting of adverse events.

' In a manner similar to “defensive” tailoring, warnings or restrictions on product labeling, which are common
yet less severe regulatory actions, are represented by a safety level cutoff point, i.e., individuals with s < § will be
advised not to use the drug (in this case the benefit dimension is not considered). Unlike withdrawal where the drug
is removed from the market and patient access is blocked, labeling restrictions will not be totally effective so some
fraction of people, 6, with s < § but z < z will still receive the drug. Interestingly, effective product labeling (i.e.,
small 6) could serve to shield the firm against drug withdrawals.

12 Because in general fewer people have a condition that is treated by a drug than not, the density of individuals
with small z; (highly appropriate) would be less than those with large z; (poor match). Hence the density of individu-
als would increase as z; increases. Therefore, for demand to be concave in promotion, it must become sufficiently
more difficult to expand the frontier z to counter this increase in the density of potential consumers.

'3 The resulting f(z) for the case that the distribution of individuals within the safety-benefit space is joint
uniform is available from the authors.
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perfect world, the regulator would observe the utility each user derives from the
drug, i.e., 0 — z;, and take action against the firm if 3 — ¢ < g.” However, the FDA
does not observe the universe of prescribing decisions made by physicians and,
therefore, is unable to elicit and regulate on z. Instead, the FDA relies on adverse
drug event reporting to produce a signal for regulatory actions. While this signal is
imperfect, it is informative in that the probability of a bad signal increases as the
appropriateness decreases.

The FDA relies primarily on the Adverse Event Reporting System (AERS) to
generate this signal. The information coming from the AERS, regarding the appro-
priateness of use, is noisy and bound to overemphasize safety. The FDA’s mission
historically has been consumer protection from unsafe products, hence, the AERS
is set up to receive reports of adverse events, not benefits. However, individuals are
more likely to report an adverse reaction when the benefits from the drug are rela-
tively small.' Thus, the reporting propensity generated through the AERS involves
both safety and benefit, but it constitutes a departure from the concept of appropri-
ateness discussed earlier.'¢ For the purpose of maximizing consumer welfare, this
can be viewed as a system design failure.

In addition to the noise resulting from the incorrect weighting of risks and ben-
efits, the AERS also suffers from a potentially severe measurement error problem.
Randomized clinical trials control for confounding factors, yet due to the small
number of participants, can only detect common side effects. Rare and potentially
serious side effects require a large population base, and only once a drug is approved
for marketing is a large population base obtained. However, this is no longer a con-
trolled study, and establishing a causal link between using the drug and its benefit
and safety profile is difficult.

To capture these sources of noise, we model the signal obtained by the FDA
as z + ¢, where ¢ is a mean zero error term. The FDA uses this signal to take a
regulatory action, w, which can be thought of as either the probability that a drug is
withdrawn from the market, or the loss in the number of prescriptions filled due to
labeling restrictions. To simplify our analysis, the regulatory action takes the form
w =m(z + ¢€), where m is the emphasis placed by the FDA on the signal. The
larger m is, the greater the incentive provided to the firm to contain expansions in
z through its choice of p and A. Therefore, from the firm’s perspective, m can be
viewed as a penalty weight. On the other hand, the larger m is, the greater the FDA’s
reliance on a noisy and potentially distorted signal. This may lead the FDA to take
actions that may decrease welfare.

14 Note that society would benefit from a regulator who limits the use of drugs to only those users for whom the
benefit exceeds the cost. Therefore, a welfare maximizing regulator takes action against a manufacturer who sells a
drug to individuals for whom the drug is not cost-beneficial.

15 For example, a patient may decide to report minor side effects if the drug she takes is useless, and ignore these
side effects if the drug adequately treats the condition for which it was originally prescribed.

16 For example, the individual’s reporting propensity can be written as y, = \/2(1 — @) (1 — b)* +26(1 — 5,)%,
which may be larger, smaller or equal to z; depending on b; and s;. Note that ¢ > 0.5 represents the overemphasis
on safety.
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Given the information and actions available to it, the FDA maximizes expected
welfare that takes the following form: E[(1 — w) [ ([8 — c] — 2)f(z)dz]. by
choosing m which is imbedded in w.

D. The Firm’s Problem

Following our discussion of promotion, demand, and the regulatory process, the
expected demand function is given by (1 — mE|[z(p,A) + €])az(p,A). Note that
high promotional expenditure will raise demand for the drug, but will also lower
the average appropriateness of the drug for its population of users. In turn, a poorer
match between patients and the drug will increase the likelihood of unfavorable
regulatory interventions through the effect of z on w. Thus, the firm faces uncer-
tainty which it can mitigate or reinforce with its choice of price and promotion level.

For a safety signal to exist, individuals must purchase and experience the drug
first, and therefore generate initial revenue for the firm. While it is plausible that
profits made by the firm initially (before the signal is formed) are important, we
will assume that the signal is formed fast enough that a hit-and-run strategy is never
profitable, mainly due to the high research and development (R&D) costs and costly
lawsuits that follow a decision to withdraw a drug.

To fix ideas, we carry through the standard Robert Dorfman and Peter O. Steiner
(1954) analysis in which the firm’s revenue is given by paz(p,A). Quantity
decreases with price and increases with promotion. The Dorfman-Steiner rule for
the monopoly case with no uncertainty is: A/paz = —n,/np,, where the left-hand
term is the advertising-to-sales ratio, a common industry measure of advertising
intensity, and 7, and 7, are the elasticity of advertising and the elasticity of demand,
respectively.

Similar to Ira Horowitz (1970), Pierre Dehez and Alex Jacquemin (1975), and
Ivan E. Brick and Harsharanjeet S. Jagpal (1981), who introduced uncertainty to
the advertising framework, the pharmaceutical firm maximizes expected profit by
choosing price and promotion expenditures:

(1) Max(l — mE[z(p,A) + e])lez(p.A)p — c)] — A.

The Dorfman-Steiner rule applies here, as the expected advertising-to-sales ratio is
positively associated with the demand responsiveness to advertising, and negatively
associated with the firm’s market power.'”’

Combining the two first-order conditions, with respect to price and promotion,
yields a modified Dorfman-Steiner condition (see Appendix A for derivation):

2) 4 = -

(1 — mE[z + €])azp b

!7 Patent protection for their medicines often results in market power for pharmaceutical firms.
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This expression in (2) includes the indirect effect of prices and promotion on profits
via the probability of regulatory action. In essence, increasing promotional activities
trades off higher likelihood of profit-lowering regulatory actions, with higher profits
in the case that such regulatory action is not taken. For a more general regulatory
action, the modified rule suggests that the expected advertising-to-sales ratio is a
weighted average of demand, advertising, and regulatory elasticities.'"

E. Equilibrium and Predictions

We model the postmarketing interaction between the firm and the FDA as a one-
shot sequential game. This is a simplification as we leave out various types of itera-
tive dynamics such as learning, reputation building, reinvestment of profits, etc. The
timing of the game is as follows: In period 1, the FDA chooses m and announces it to
the firm. To keep the exposition simple, we assume that the FDA cannot later renege
on the choice of m. This choice is ex ante efficient when price and promotion are

Timing of the Game

1 2 3 4 period

| | | -
>

I I I I
FDA announces a Firm chooses Signal is The FDA takes
contract (i.e., m) pand A realized  regulatory action

more important than € in producing the AERS signal. If containing A has little effect
on the match quality, there is not much use for regulation. Similarly, when the signal
is very noisy, the FDA will have little benefit from using the system as the basis for
regulatory interventions.

In period 2, the firm incorporates the FDA’s regulatory rule, and chooses price
and promotion expenditures to maximize its expected profits. The firm’s choice will
determine the number of users and their safety-benefit profile. In period 3, some
users, based on their safety-benefit location, will report adverse drug events to the
FDA to form a reporting signal with noise. In period 4, the signal is observed by the
FDA and translated into a regulatory action according to its pre-specified rule, w.
Finally, the firm’s profits are realized.

The firm maximizes expected profits as given by the expression in (1). In order to
obtain a closed form solution we specify z(p,A) = yv/A — p, with y capturing the
effectiveness of promotional expenditures in increasing the number of prescriptions

'8 In this case, (2) will be A/(1 — E[w])azp = —((1 — E[w])ny — E[w]sy)/(1 — E[w])np, — E[w]sp),
where ¢, and ¢, represent the sensitivity (as an elasticity) of the regulatory action to the firm’s price and advertising
expenditures, respectively. Derivations are available from the authors.
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filled, which may vary across medical conditions. In addition, we specify the distri-
bution of z to be uniform. The solutions to the first-order conditions are denoted:"

(3) A" = A" (a,y,m,c) ;

(4) P = p(ay.mec).

Note that A* and p* are the best response functions to any level of m chosen by the
regulator.

The FDA observes the firm’s best response functions in (3) and (4) and hence,
uses A* and p” in its welfare maximization:

(" A7)
(5)  Max(l — mz(p*(a,y,m,c),A"(a,y,m,c)) fo (6 = ¢ = 2)f(z)dz

s.t. E[m] > 0.

The first order condition with respect to m is:
(6) m" = m"(a,7,5,c).

Comparative statics yields unambiguous signs on all four parameters, such that:
dm” [dc < 0;dm” /do > 0;dm” /d3 < 0;dm"™ /dy > 0. The FDA is more likely to
place a strong weight on the AERS signal when production costs (c) are lower, mar-
ket size («) for the drug application is larger, the value of the drug (/3) is lower, and
the effectiveness of promotion () is large.

The model shows how the key parameters lead to different equilibrium outcomes
(e.g., the strictness of regulation). For example, greater effectiveness of promotion
has both a direct effect (promotional expenditures lead to higher revenue absent
regulation), and an opposite indirect effect (making regulation more sensitive to
the AERS signal). Thus there are offsetting effects for the relationship between the
elasticity of promotion, and the likelihood of regulatory action, w, in equilibrium.
Because the net effect may be quite different across drugs, our empirical analysis
will be conducted separately by disease.

Thus far, we assume that the signal extraction is costless. In reality, the infra-
structure needed to assess the safety of drugs post-approval is costly and claims
resources. While it is debatable whether the cost of investing in FDA-based post-
launch analysis is justifiable on economic grounds, an alternative regime exists. The
FDA can charge the firm with the task of engaging in postmarketing surveillance.
Under this regulatory mechanism, discussed in Appendix B, the FDA relies solely
on a signal produced by the firm. While the comparative statics yield the same signs
on the parameters of interest, equilibrium outcomes such as the average match qual-
ity are potentially different.

19 The expressions and their derivations are available from the authors.
20 This expression uses the fact that ¢ is mean zero.
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II. Empirical Estimation

In this section, we empirically examine two of the main propositions in this paper.
The first is whether adverse events do, in fact, translate into regulatory actions, and
second, whether higher levels of pharmaceutical promotion and advertising lead to
a worsening match with patients as reflected by increased reporting of adverse drug
reactions. Equations (7) and (8) show these relationships:

(7) wi = f(ADR§, X5, Y7),

jr

=2 t—11
=0

t=t—3

In equation (7), regulatory actions (wj,) for drug j at month ¢ and condition c
are a function of reported adverse drug reactions (ADRY,), observed characteristics
specific to each drug (X}), and indicator variables for the regulatory environment
at a particular time (Y7). In equation (8), adverse drug reactions are a function of
expenditures on advertising and promotion (A %), observed characteristics specific to
each drug (X$), unobserved time-invariant characteristics of each drug (DY), and the
regulatory environment at a particular time (Y¥).

The drugs considered () are prescription drugs used to treat allergies, arthritis pain,
depression, and high cholesterol. These particular drugs are chosen because of their
popularity, and the high propensity of firms to advertise and promote them. We group
drugs by their primary active ingredients. Our list of ingredients is based on the Web
site drugdigest.org. A total of 65 distinct active ingredients are considered, and of these,
11 are for high cholesterol, 10 for allergies, 19 for arthritis pain, and 25 for depression.

Following our conceptual framework, the four conditions represent therapeutic
classes that may vary in markup (p—c), value ((3), market size («), and elasticity of
promotion (). Because promotion and advertising may have differential effects on the
utilization of the drug and resulting ADRs based on the condition for which the drug is
prescribed, where possible, we estimate the equation separately for the four conditions.

A. Data Sources

Regulation—Information on safety-based actions (wj;) comes from the FDA’s
MedWatch summaries. MedWatch lists monthly actions pertaining to five safety
labeling changes: boxed warnings, contraindications, warnings, precautions, and
adverse reactions. From this information, we generate a drug-specific dichotomous
indicator for the month in which the FDA required the manufacturers of that drug to
change the label to include any of the above listed changes. While drug withdrawals
are an important FDA action, we do not consider withdrawals as an outcome since

only one drug, Vioxx, was withdrawn from the market during our two-year sample.

Adverse Drug Reactions.—ADRs are a count of “very serious” reported adverse
drug reactions for each drug j (i.e., active ingredient) at time 7 (months). Data on
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ADRs come from the FDA’s AERS, which was designed for postmarketing drug
safety surveillance. Manufacturers are required to submit reports of adverse events
to the AERS, while reports from doctors, consumers, and lawyers are voluntarily
contributed. The FDA uses this database to inform its regulatory decisions regarding
postmarket safety of drugs. The availability of these data, along with the availability
of the advertising and promotion data (described below), limits time span of our
data () to the 24 months of 2003 and 2004.

We define a “very serious” adverse event based on the FDA definition from the
AERS reporting instructions, which includes: death; life-threatening injury; hospi-
talization; disability or permanent damage; and congenital anomaly /birth defect.
The unit of observation in the AERS is the event. Multiple drugs can be associated
with each event, and we currently treat these as separate observations.’'

The AERS data suffer from some drawbacks including a lack of data on the
number of drug users in the population, recall bias, poor case documentation, and
underreporting (Alina Baciu, Kathleen Stratton, and Sheila P. Burke 2007, p. 55).
We generate user data to act as a denominator in the rate from the International
Monetary Systems’ (IMS) National Prescription Audit (NPA) database. This source
has national monthly counts of pharmacy sales of all prescription drugs. From this,
we extract the sales (in thousands) of the same ingredients under consideration in
the AERS data, and match by linking the drug names to the corresponding ingredi-
ent on our list. From the NPA, we also include on the right hand side of the equation
a variable with the percent of sales accounted for by generic drugs.

Measurement error in the AERS will be a problem only if the error is correlated
with our variables of interest, dollars spent on advertising, and promotion. Recall
bias and poor case documentation are not likely to be correlated with dollars spent.
However, it is possible that reporting patterns for certain drugs are influenced by
advertising—for example, if consumers are reminded to report an event based on a
television commercial. We discuss the possible endogeneity further below.

Advertising and Promotion.—The vector A§, in (8) represents measures of expen-
ditures on advertising and promotion. Data on direct to consumer advertising comes
from the TMS Media Ad$pender database (formerly Competitive Media Reports).
We use total dollars spent per month on television, magazines, billboards, and Internet
advertising for each drug under consideration.’ Monthly data on professional promo-
tion comes from IMS’s Integrated Promotion Service (IPS). We consider dollars spent
on direct contact with physicians (termed “cost of contact”) and total dollars spent
on professional promotion (termed “professional promotion”). The cost of contact
is an estimate of the dollar value of time spent with physicians in the promotion of
the product. Total dollars on promotion is the sum of the cost of direct contact with
physicians, journal advertising, and the retail value of samples. As with the NPA data,
the drug names in these data are linked with the corresponding ingredient on our list.
Because of the overlap among the two measures of promotion expenditures, each one

2! In the relevant tables below, the observations for Vioxx occurring after the withdrawal date, 9/04, are excluded.
Models were tested that exclude all observations for Vioxx and the results are similar to those presented below.
22 When a drug is not mentioned in this source, we assume the value of advertising is zero for that month.
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enters separately into the models. There is much less correlation between promotion
and advertising so each model contains a measure of promotion and advertising.

As shown in equation (8), we consider current quarter expenditures (the sum of
month ¢, month #-1 and month #-2), along with the sum of expenditures for the pre-
vious three quarters (months #-3 to #-11) to represent the existing stock of expendi-
tures. Current quarter expenditures rather than current month are used for two reasons.
First, ADRs are reported throughout the month so it is not clear that current month’s
expenditures are appropriately matched to all observations. In some cases, the previ-
ous month might be a better match. Second, there may be a time delay between the
doctor visit and the filling of a prescription. Including the previous two months allows
us to capture promotion and advertising exposure in the near past. For the stock, we
do not specify a depreciation rate, rather, we let the coefficients on the stock reflect the
product of the marginal effect on reported ADRs and the depreciation rate.

Observed Drug Characteristics.—The vector Xj, represents some characteristics
of the users of the drug that may influence reporting. Olson (2002) notes that adverse
event reporting is influenced by the length of time a drug has been on the market
with more reports made early in the life cycle of a drug. Drugs that are the first in
their class may have more adverse events than older drugs, in part because doctors
and patients lack experience with these drugs. To account for this, we include, in
all models, indicators for categories of the length of time since approval date as
reported in the NPA (0-6 months, 7 months to 2 years, 3-5 years, 6-10 years, with
> 10 years as the omitted reference category).

The next set of drug characteristics are all generated from IMS Health’s National
Disease and Therapeutic Index (NDTI) database. The NDTI is a nationally repre-
sentative sample of office-based physicians in private practice in the United States.
Each physician reports demographic and medical information on all patients seen
during two consecutive workdays in each calendar quarter. The reports include pre-
scriptions written, which allows us to examine and include the characteristics of
users of a particular drug.

From the NDTI, we generate and include the following sets of variables for each
drug under consideration: First, we include the share of prescriptions for the drug
written for different age groups interacted with gender (ages 0-39, 40-64, 65 and
up, with females and males age 0-39 as the omitted reference group). Second, we
include the share of prescriptions paid for by government insurance. And third, we
include the share of prescriptions written for smokers. Fourth, we have shares for
Asian and black race, and Hispanic ethnicity. Finally, we have shares of prescrip-
tions written for patients with prehypertension, stage 1 hypertension, and stage
2 hypertension. All of these variables are calculated per year to reduce sampling
variability.

Unobserved Drug Characteristics.—Dj are fixed effects for the drug. These fixed
effects should capture those drug-specific factors related to demand that would

23 Regressions that include just current expenditures, or include just the stock of expenditures, yield very similar
results to those presented below for the corresponding coefficients.
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occur without promotion or advertising. Some examples might be the results of
clinical trials, or whether the drug is fundamentally different than its predecessors.

B. Methodology

Alternative specifications of equation (7) that examine the effects of adverse drug
events reports on the regulator action are estimated. Initially, logit regressions are
used to analyze the effects of reported ADRs on the probability of a new labeling
change. However, since it is possible that reported ADRs will fall after a labeling
change and generate a reverse causality problem, we also estimate a discrete time
hazard model. The estimation of this model shows the effects of reported ADRs on
the probability of the first labeling change occurring. The disadvantage to this model
is that only the first change is considered, although it is not a severe concern since
few drugs experience multiple labeling changes, with the bulk of these changes
occurring in consecutive months.

Labeling changes are relatively rare events and occur in only 4 percent of the
drug/month observations. shows the means by condition. Just over half
of the drugs in the sample experience a labeling change at some point, and these
changes are concentrated most heavily among the allergy drugs (25 percent of the
labeling changes) and the antidepressants (47 percent of the labeling changes).
Cholesterol drugs and arthritis drugs account for 11 percent and 17 percent, respec-
tively. Because of these characteristics, there is not enough variation in the labeling
changes to estimate the logit models for each condition separately, or to include drug
fixed effects. We instead run a pooled model allowing for condition-specific slopes
(interactions between the indicators for each of the four conditions and ADRs),
along with the time-varying drug and user characteristics and year/month indicators.
In order to account for any cumulative effects of ADRs, we evaluate them monthly,
quarterly, and yearly.

The characteristics of the ADR data necessitate a different approach when esti-
mating equation (8) for the effects of advertising and promotion on ADRs. ADRs
are relatively rare: 15 percent of the observations are zeros for arthritis drugs, with a
median value of 11; 10 percent are zeros for depression drugs with a median of 18;
5 percent are zeros for cholesterol drugs, with a median value of 14; and 1 percent
are zeros for allergy drugs, with a median value of 9. Given that the number of cases
of adverse events tend to be small, and have many zeros, we use a count model to
estimate the models. Specifically, we use a fixed effects Poisson method (Jeffrey M.
Wooldridge 2002; A. Colin Cameron and Pravin K. Trivedi 1998). This estimator
is a quasi-maximum likelihood estimator, that includes fixed effects to account for
unobserved heterogeneity. Estimates are consistent regardless of whether the counts
actually have a Poisson distribution (Wooldridge 2002). To permit overdispersion, a
common feature of count data that is not accommodated by the Poisson maximum
likelihood estimator, standard errors, are adjusted for heteroskedasticity of unknown
form (Cameron and Trivedi 2005).*

2% Alternative models were tested using a negative binomial regression with fixed effects. The results are similar
to those presented in the tables below.
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TABLE 1—MEANS, STANDARD DEVIATIONS BY CONDITION

Arthritis pain Depression High cholesterol Allergies
(n=429) (n = 540) (n = 247) (n = 240)

Variable Mean SD Mean SD Mean SD Mean SD

Any labeling change 0.03 0.16 0.05 0.23 0.03 0.17 0.07 0.25

Very serious ADR 3791  82.08 3390 3721 49.89  71.57 1387 1154

Total prescriptions 363.40 52420 1,086.80 1,197.50 2,312.80 3,405.40  934.60 735.30

Very serious ADR rate 0.09 0.10 0.08 0.17 0.02 0.02 0.03 0.04

Current quarter total promotion and DTCA 11.00 2323 1241 2294 26.80  40.56 26.20  20.14
(real $1,000,000)

Stock total promotion and DTCA 3380 71.92 36.38  64.27 7512 111.87 79.07  58.61
(real $1,000,000)

Current quarter professional promotion 9.65  20.09 10.82  19.94 22.84 3457 20.57  13.69
(real $1,000,000)

Stock of professional promotion 30.21  63.58 31.83 5539 64.70  96.00 61.12 4049
(real $1,000,000)

Current quarter cost of contact 3.02 6.17 2.87 5.39 4.47 4.96 6.68 4.85
(real $1,000,000)

Stock of cost of contact 9.42 1943 8.65 1520 13.53  14.90 2091 1517
(real $1,000,000)

Current quarter DTCA 1.35 4.05 1.59 4.49 3.96 7.84 5.62 8.45
(real $1,000,000)

Stock of DTCA 3.58  10.46 455 1230 1042 17.18 17.95  21.69
(real $1,000,000)

Percent generics 0.71 0.41 0.57 0.45 0.28 0.44 0.17 0.34

Percent of drug prescribed to smokers 0.21 0.13 0.21 0.10 0.14 0.05 0.11 0.02

Percent of drug prescribed to 0.48 0.15 0.51 0.19 0.51 0.05 0.47 0.05
prehypertension

Percent of drug prescribed to 0.26 0.16 0.16 0.10 0.25 0.07 0.16 0.06
stage 1 hypertension

Percent of drug prescribed to 0.08 0.12 0.05 0.07 0.07 0.06 0.04 0.03
stage 2 hypertension

Percent of drug w/government insured users 0.27 0.11 0.32 0.14 0.40 0.09 0.24 0.10

Percent of drug prescribed to Asians 0.02 0.03 0.01 0.02 0.04 0.02 0.04 0.01

Percent of drug prescribed to blacks 0.10 0.05 0.04 0.03 0.08 0.05 0.10 0.02

Percent of drug prescribed to Hispanics 0.07 0.05 0.03 0.02 0.05 0.02 0.07 0.02

Drug approval date 5 years — 10 years 0.04 0.20 0.19 0.39 0.24 0.43 0.57 0.50

Drug approval date 2 years — 5 years 0.15 0.36 0.02 0.14 0.11 0.31 0.05 0.23

Drug approval date 7 months — 2 years 0.03 0.17 0.03 0.18 0.03 0.17 0.05 0.21

Drug approval date <= 6 months 0.00 0.00 0.002  0.04 0.00 0.00 0.00 0.00

Percent of drug prescribed to females 0.25 0.10 0.36 0.14 0.19 0.03 0.20 0.04
ages 40-64

Percent of drug prescribed to females 0.14 0.11 0.11 0.07 0.25 0.08 0.08 0.03
ages 65 +

Percent of drug prescribed to males 0.20 0.11 0.16 0.08 0.24 0.09 0.13 0.02
ages 40-64

Percent of drug prescribed to males 0.09 0.05 0.05 0.06 0.21 0.05 0.08 0.07

ages 65 +




VOL. 2 NO.4 DAVID ET AL.: PHARMACEUTICAL MARKETING, PROMOTION, SAFETY, AND REGULATION 17

TABLE 2—EFFECTS OF REPORTED ADVERSE EVENTS ON PROBABILITY OF FDA ACTION

Hazard models: Probability of first

Condition Probability of any labeling change labeling change
Current Current Current Current Current Current
month’s quarter’s year’s month’s quarter’s year’s
reports reports reports reports reports reports
Arthritis pain 0.004 0.002 0.001 0.004 0.003 0.002
[0.0001] (0.0001] (0.00002] [0.0001] (0.0001] (0.00005]
(2.03) (2.65) (2.71) (1.24) (1.72) (2.35)
Depression 0.011 0.004 0.002 0.014 0.004 0.002
[0.0003] (0.0001] (0.00005] [0.0003] (0.0001] (0.00004]
(1.82) (1.57) (2.70) (1.81) (1.05) (1.88)
High cholesterol 0.006 0.003 0.001 0.005 0.003 0.001
[0.0002] (0.0001] (0.00001] [0.0001] (0.0001] (0.00002]
(1.33) (1.50) (1.31) (1.06) (1.40) (1.29)
Allergies 0.023 0.006 —0.0001 0.049 0.027 0.0208
[0.0006] (0.0001]  [—0.000001] [0.0011] (0.0005] [0.0004]
(1.08) (0.67) (—0.02) (1.81) (2.04) (2.18)
N 1,321 1,319 1,303 747 746 733

Notes: Logit coefficients are presented, with #-statistics in parentheses and marginal effects in brackets. Other vari-
ables include share of prescriptions written for: females ages 40-64; males ages 40—64; females ages 65 and up;
males ages 65 and up; Asian and black races and Hispanic ethnicity; smokers; people with government insurance;
prehypertension, stage 1 hypertension, and stage 2 hypertension. Models also include indicators for drug approval
dates and year/month indicators.

Each model includes the log of the number of prescriptions for the drug in each
month as a right-hand side variable to normalize for exposure in the population.
The coefficient on prescriptions is constrained to equal one. This is equivalent to
estimating the rate of adverse events. By doing so, we allow expenditures to affect
both the population of users and the number of reported adverse events.

III. Results

Table 1 shows the means and standard deviations of all the variables based on the
sample of drugs for each of the four conditions (arthritis pain, depression, high cho-
lesterol, and allergies). It is clear from this table, that reported very serious adverse
drug events are rare. The average monthly count ranges from a low of 13.87 for
allergy drugs, to a high of 48.89 for cholesterol drugs. However, the rates of reported
adverse events, which account for the size of the population of users, are very simi-
lar for allergy and cholesterol drugs at 0.02 and 0.03 per 1,000 users, respectively.
Arthritis pain and depression drugs have higher reported rates at 0.09 and 0.08 per
1,000 users, respectively.

Table 1 also shows that these pharmaceuticals are heavily promoted. Average cur-
rent quarterly real expenditures on professional promotion, and direct-to-consumer
advertising combined, total $11 million for arthritis pain drugs, $12.41 million for
depression drugs, $26.8 million for cholesterol lowering drugs, and $26.20 million
for allergy drugs. Note that the bulk of this total comes from professional promo-
tion, which includes not only the cost of contact with the physician but also includes
the retail value of samples and the cost of professional journal advertisements.
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TABLE 3—EFFECTS OF PROMOTION AND DIRECT TO CONSUMER ADVERTISING ON ADVERSE DRUG EVENTS
REPORTS FOR ARTHRITIS PAIN AND DEPRESSION

Arthritis pain Depression
(n= 429) (n= 540)
() 2 3) 4 ) (6)
Current quarter total promotion and DTCA ~ —0.005 0.001
(real $1,000,000) (—1.67) (0.32)
Stock total promotion and DTCA (real 0.007 0.001
$1,000,000) (3.12) (1.02)
Current quarter professional promotion (real —0.008 0.002
$1,000,000) (—1.57) (0.57)
Stock of professional promotion (real 0.009 —0.001
$1,000,000) (2.98) (—1.26)
Current quarter cost of contact (real 0.002 0.027
$1,000,000) (0.12) (1.67)
Stock of cost of contact 0.031 —0.002
(real $1,000,000) (2.46) (—0.70)
Current quarter DTCA 0.008 0.005 —0.001  —0.002
(real $1,000,000) (1.03) (0.49) (—0.18) (—0.76)
Stock of DTCA 0.019 0.015 0.004 0.003
(real $1,000,000) (2.82) (2.19) (2.57) (2.16)

Notes: T-statistics in parentheses. Each column is a separate regression. Coefficients represent the percent change
in the outcome resulting from one unit change in the independent variable. All models include share of prescrip-
tions written for: females ages 40-64; males ages 40-64; females ages 65 and up; males ages 65 and up; Asian and
black races and Hispanic ethnicity; smokers; people with government insurance; prehypertension, stage 1 hyper-
tension, and stage 2 hypertension. Models also include share of generics, indicators for drug approval dates, year/
month indicators and drug fixed effects. The log of total prescriptions is included on the right hand side with the
coefficient constrained to one.

hows the effects of ADRs on the probability of regulatory action. The
first three columns of Table 2 show the logit coefficients and marginal effects.
Here, reported ADRSs are positive and statistically significantly associated with the
probability of a labeling change for arthritis pain and depression drugs. In general,
the association holds whether the current month, current quarter, or current year is
the relevant time span for reported ADRs. The association is also generally positive,
but not statistically significant, for cholesterol and allergy drugs. The effects are
substantial, considering the probability of a labeling change is 0.04. Consider a mar-
ginal effect of 0.0001 for arthritis pain or depression drugs. This means that every
100 additional adverse drug reports increases the probability of a labeling change by
one percentage point, a fourth of the baseline rate.

The last three columns of Table 2 show the results of the discrete time-hazard
model. We find that increases in reported ADRs are associated with an increase in
the probability of the first incidence of a labeling change. Here, statistical signifi-
cance varies somewhat depending on the timing of the ADRs under consideration,
however, all coefficients are positive. Only for cholesterol drugs are all coefficients
statistically insignificant. The magnitudes of the effects are also similar to that of the
first three models. The conclusion from these models is that firms do need to worry
that increased adverse events will lead to a regulatory reaction by the FDA.

and 4 show results from the fixed effects Poisson estimation of the
effects of advertising and promotion on reported adverse drug reactions for arthritis
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TABLE 4—EFFECTS OF PROMOTION AND DIRECT TO CONSUMER ADVERTISING ON ADVERSE DRUG EVENTS
REPORTS FOR HIGH CHOLESTEROL AND ALLERGIES

High cholesterol Allergies
(n=247) (n=240)
(1) 2) 3) @ ) (6)
Current quarter total promotion and DTCA —0.002 —0.006
(real $1,000,000) (—1.65) (—1.46)
Stock total promotion and DTCA 0.0001 0.002
(real $1,000,000) (0.12) (0.64)
Current quarter professional promotion —0.003 —0.020
(real $1,000,000) (—2.14) (—3.43)
Stock of professional promotion 0.0004 0.003
(real $1,000,000) (0.48) (0.90)
Current quarter cost of contact —0.024 —0.051
(real $1,000,000) (—1.72) (—3.42)
Stock of cost of contact —0.015 0.008
(real $1,000,000) (—2.25) (1.04)
Current quarter DTCA 0.001 0.002 0.002 0.004
(real $1,000,000) (0.21) (0.58) (0.47) (0.86)
Stock of DTCA —0.0004 —0.001 0.004 0.005
(real $1,000,000) (—0.21) (-0.34) (1.41) (1.65)

Notes: T-statistics in parentheses. Each column is a separate regression. Coefficients represent the percent change
in the outcome resulting from one unit change in the independent variable. All models include share of prescrip-
tions written for: females ages 40—64; males ages 40—64; females ages 65 and up; males ages 65 and up; Asian and
black races and Hispanic ethnicity; smokers; people with government insurance; prehypertension, stage 1 hyper-
tension, and stage 2 hypertension. Models also include share of generics, indicators for drug approval dates, year/
month indicators and drug fixed effects. The log of total prescriptions is included on the right-hand side, with the
coefficient constrained to one.

pain-and depression (Table 3), and cholesterol and allergies (Table 4). Each column
in these tables represents a separate regression. Within each condition, the first col-
umn uses the total sum of dollars spent on professional promotion and DTCA. The
second column separates total professional promotion from DTCA, and includes
both sources of expenditures in the models. The third column replaces total promo-
tion dollars with the cost of contact, but also includes total DTCA spending.

The coefficients in the fixed effects Poisson estimation can be interpreted as semi-
elasticities, that is, the percentage change in the ADR count from a one unit change
in the independent variable. When expenditures on advertising or promotion are con-
sidered, we want to know the total effect of this spending over all time periods. The
relevant effect, therefore, is the sum of the current and past expenditures, with consider-
ation that the coefficient on past expenditures includes an unspecified depreciation rate.

Consider first the results for arthritis pain in Table 3. Using the combined total
of expenditures on promotion and DTCA (column 1), there appear to be conflict-
ing effects between expenditures in the current quarter and the stock. However,
this result is driven by current quarter professional promotion, which is negative
but insignificant in column 2. Restricting the measure of professional promotion to
expenditures on contact with physicians, we find positive effects for both the cur-
rent quarter and the stock of expenditures, with the stock significant at the 5 percent
level (column 3). Here, the estimates imply that a one standard deviation increase
in detailing expenditures raises ADR reporting by approximately 60 percent. The



20 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY NOVEMBER 2010

results in columns 2 and 3 show that DTCA expenditures for arthritis pain drugs
are also positively related to ADR reporting, and the stock of DTCA is statisti-
cally significant. Using the estimates in column 3, a one standard deviation increase
in DTCA raises ADR reporting by approximately 20 percent. These results pro-
vide support for our assertion that advertising and promotion can worsen the match
between the drug and patients.

Depression drugs are also considered in Table 3. Here, professional promotion,
measured either as the total expenditure or as the cost of contact with physicians, has
no statistical relationship with reported adverse events (columns 5-6). By contrast,
the coefficients on the stock of DTCA are positive and statistically significant, with
a one standard deviation increase in DTCA raising ADR reporting by approximately
5 percent. These results imply that promotion to professionals has no harmful effects
on patients, while DTCA may be detrimental.

The results in Table 4 are much different for cholesterol lowering drugs and
allergy medications. With the exception of one coefficient on the stock of DTCA
in the third allergy model (column 6), no other coefficient in any of these models is
positive and statistically significant, suggesting there is no harmful effect of promo-
tion and advertising for these types of drugs. For cholesterol drugs, higher expen-
ditures on total professional promotion and direct contact with physicians may be
helpful in that these expenditures are negatively associated with reported adverse
events. For example, a 1 standard deviation increase in the stock of cost of contact
lowers ADR reports by approximately 22 percent. The same can be said for allergy
medications, where the current quarter expenditures on total promotion and cost of
contact are negative and statistically significant.

We are concerned with the potential endogeneity of pharmaceutical advertising
and promotion expenditures in the equation for reported ADRs. Endogeneity that
stems from any unobserved, time-invariant, drug-specific characteristics should be
accounted for by the drug fixed effects. However, it is possible that reports of adverse
drug events may affect the firm’s decisions regarding the levels of professional pro-
motion and DTCA, generating a reverse causality problem. In results available upon
request, we checked for biases by first, using only past expenditures that should be
predetermined, and second, by using instrumental variables.” The results of these
models suggest there is no substantial endogeneity bias.

IV. Conclusions

The growth of pharmaceutical promotion, particularly direct-to-consumer adver-
tising, along with recent drug withdrawals and other regulatory interventions, calls
for an understanding of the basic relationship between the promotion of a drug and

25 The instruments are the current quarter’s expenditures on total professional promotion (or cost of contact)
for all drugs manufactured by a firm. For example, suppose a drug in our sample is made by only one manufacturer.
The instrument is total spending on professional promotion across all drugs the firm produces, excluding the drug
under consideration. If there are multiple firms that produce a drug in our sample, then the expenditures by these
manufacturers are all considered as possible instruments. The idea here is that certain firms may, as a business
practice, tend to promote more than other firms. Thus, promotion for all drugs predicts current expenditures for the
specific drugs in our sample, yet is unrelated to reported adverse events.
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the benefit-risk profile of its users. In this paper, we have provided a theoretical
framework for the behavior of a pharmaceutical firm under regulation by the FDA,
and we have tested aspects of this model using an innovative combination of data
on promotion, regulation, and adverse reactions. The model shows how product and
market characteristics, such as the elasticity of promotion, would lead to different
levels of promotion and regulatory oversight.

The empirical results confirm the basic assumptions and features of our model.
We find that the FDA responds to high numbers of reported adverse drug reactions
with a greater probability of regulatory action, and that direct-to-consumer adver-
tising and promotion increase the rate of reported adverse drug reactions for cer-
tain conditions. The differential results by condition likely arise from two sources.
The first is the differential ability of physicians to function as effective gatekeepers
across conditions, and the second stems from the degrees of severity of known side
effects across drugs. In our framework, advertising and promotion first affect the
quality of the patient match, which in turn affects the occurrence of adverse side
effects, and adverse events, reported to the FDA. The effectiveness of gatekeeping
across conditions is likely to be the result of the conclusiveness of the available diag-
nostic tools. High cholesterol is easily detected with a simple diagnostic test, and
this test is widely used to determine whether to prescribe a drug. Therefore, for this
condition, any negative effect of promotion on the average match quality would be
limited. Similarly, for allergies, diagnostic tests are relatively simple to perform and
widely used. By contrast, the diagnosis of depression or pain is more subjective and
relies much more on patient-provided information, which is inherently noisy. This
increases the probability that a patient who is a poor match for the drug receives it.

The second effect links the match quality to the occurrences of side effects. Given a
similar deterioration in the match quality across conditions, drugs such as antidepres-
sants that have more severe known side effects, may produce higher rates of ADRs than
other drugs. The result will be a larger effect of advertising and promotion on ADRs
through the side effects, holding match quality constant. Note that the two effects
described are not necessarily independent. Doctors may be more cautious about the
match quality with drugs that have severe side effects, and less likely to report known
side effects. Our empirical results cannot net out the source of the differential effects
across conditions, but for our purposes, the total effects are informative.

It may not be surprising to see the effects of promotion and DTCA coming through
the stock rather than current expenditures. Our “current” time period is defined as
three months, and there are several steps that must occur between the promotion of a
drug and an adverse reaction. First, patients and/or physicians must receive the pro-
motion, then interact with one another such that the drug is prescribed. The patient
must then fill the prescription and take the drug, and finally the unanticipated toxic-
ity must accumulate to the point that it causes an adverse reaction. Depending on an
individual’s circumstance, this process could be swift or take more than a few months.

Our analysis is limited by the fact that we do not model the strategic interactions
among firms producing the same drug or drugs within the same class. However,
given the complexity of our monopoly model, incorporating competition among
firms seems prohibitive, and it is not of primary importance for this topic. The
empirical work accounts for this issue by including the share of generics and the
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age of the drug as variables, and our predictions hold with these controls in place.
A limitation of the empirical results is that we use a simple form for the effect of
promotion on ADRs, because we do not know the functional relationship between
promotion and demand. For example, it is possible that promotion at the time of a
drug’s introduction operates differently than later promotion.

An important conclusion from this analysis is that the relationship between pro-
motion and ADRs depends greatly on the condition. Our estimates show that detail-
ing is associated with a reduction in the adverse event rate for high cholesterol and
allergy drugs, but is associated with an increase in the rate for arthritis pain. We
also find that DTCA is associated with increases in the ADR rates for arthritis pain
and depression. Conceptually, drug promotion can be beneficial or detrimental, and
we believe the net effect depends critically on the role of physicians as mediators
between promotion and use. The effect of promotion and advertising in improving
communication between patients and physicians may be welfare increasing if physi-
cians can identify who is the best match for treatment. This is facilitated in the case
of cholesterol and allergy medications by the existence of more accurate diagnostic
tools. Public policy on pharmaceutical advertising and promotion should take this
into account. For conditions where physicians can perform their role as mediators,
there is less need for concern about inappropriate use due to promotion, but for con-
ditions where the diagnosis or risks are hard to assess there may be a need for greater
oversight and investment in postmarketing surveillance.

APPENDIX A: DERIVATION OF MODIFIED DORFMAN-STEINER RULE
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Plugging [p] in [A] results in the following modified Dorfman — Steiner Rule:
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APPENDIX B: EQUILIBRIUM PREDICTIONS WITH POSTMARKETING SURVEILLANCE

We introduce an alternative regulatory regime, in which the FDA charges the
firm with the task of engaging in postmarketing surveillance. The FDA receives
its benefit-safety signal from the firm. We assume that this signal takes the form
z — K + p (as opposed to z + ), where i is a mean-zero error term, potentially
with smaller variance than €, due to less costly and more effective surveillance by
the drug manufacturer and K is a non-negative parameter lowering the magnitude
of the signal and subsequently the likelihood of regulatory action. K can be thought
of as firm-specific bias in interpretation or lobbying, which is costly to the firm
and society. The FDA observes the signal, but not its components. Under the new
regulatory mechanism the firm chooses K in addition to p and A when maximizing
expected profits.

When the FDA incorporates postmarketing input provided by the firm into its
regulatory rule, the firm has an incentive to invest in postmarketing surveillance.
Similar to equation (1) the firm maximizes expected profits subject to the prob-
ability of regulatory action being between 0 and 1, where the cost of postmarketing
surveillance is assumed to be convex in K.

(B1)  Max(l = mE[(p.4) = K + p)(ozpA)p — ) — 4 - &=

The first order conditions with respect to p and A are unchanged. The additional first
order condition with respect to K is: K™ = m[az(p,A)(p — ¢)].

Note that two components govern the level of investment in K: (1) the importance
that the FDA places on communications with the firm, m, and (2) the profit level
when regulatory action is not taken. This would also mean that when the FDA com-
mits to incorporating input from the firm, the firm will choose a higher promotion
level (resulting in a higher demand level in equilibrium).

Similar to the baseline case, where the FDA relies solely on its own independent
interpretation of the AERS signal, comparative statics yields the same unambiguous
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signs on all four parameters (i.e., c,a, 3,7). However, there is a social cost to
delegating postmarketing surveillance to manufacturers. Under the firm-driven sig-
nal regime (compared with the FDA-driven signal regime), the average quality of
the match between drugs and users deteriorates; the FDA will place a higher penalty
weight on the firm’s signal; the probability of regulatory action increases, but so
does profitability conditional on survival; therefore, the effect on expected profit-
ability is ambiguous. Even if the new regime results in lower profitability, choosing
not to invest in postmarketing surveillance is not optimal and, therefore, not credible.
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