

Toward the Comparison of Open Source Commons Instit utions

Charlie Schweik
University of Massachusetts, Amherst

Paper prepared for presentation at the Workshop on Cultural Commons,

NYU School of Law, New York, New York.

(Note to reviewer – apologies! A VERY rough draft, version 1.0)

1

Introduction

 In this day and age of networked computers and the Internet, any effort to

understand commons and culture needs some attention to what is happening in the

digital world, and in particular, collaboration over the Internet. In this paper, I report

some of our findings from a five-year empirical study of open source software

commons.

In his seminal work The Wealth of Networks, Benkler coined the phrase “commons-

based peer-production” (2006, 63) to describe situations where no centralization exists,

no hierarchical assignments occur, and individuals self-select what to work on. In the

best of circumstances, large numbers of individuals, working over the Internet, search

for the right project to contribute to (Benkler 2005, 178). One of the key incentives

driving this search, according to Eric von Hippel (2005a, b), is user-driven need.

This idea of people searching the Internet for activities that interest them and that

they might be able to contribute to extends to a variety of digital commons situations

(consider the phenomenon of people contributing to Wikipedia entries, for example), it is

not at all a stretch to argue that computer programmers were probably the first

community to do this. After all, in the earliest days of computing right up to about 1980,

it was standard practice in the academic and computer industry to share and collaborate

on software code (Cambell-Kelly, 2003). This practice continued as Internet

infrastructure was being built and up until around 1980 when an amendment to the

Copyright Act of 1976 treated software code and their corresponding binary distributions

as trade secrets (Schwarz and Takhteyev, 2009). This privatization of software, as

2

many in this conference know, led to the free/libre and open source software

“movement,” initiated by Richard Stallman and colleagues in the 1980s and the brilliant

use of copyright law to create software licenses that promoting sharing and

collaboration – an approach referred to as Copyleft (FSF, 2009). Benkler (2006: 63) has

referred to the collaborative principles that have emerged through this history and have

evolved on the Internet in free/libre and open source software as the “quintessential

instance” of commons-based peer-production.

Experiments following open source-like commons-based peer production have now

emerged in other settings. The obvious example is the open digital content effort

Wikipedia. But this idea has expanded into other collaborative areas of writing, such as

in the area of course curriculum (e.g., Rice Connexions, MIT Open Courseware) and in

many areas where digital products can be shared and remixed (see

CreativeCommons.org for many examples). Moreover, peer-production commons

experiments have appeared in some surprising new areas. Consider, for example, the

use of this production model in national intelligence gathering (Howard, 2010) or the

borrowing of open source production and crowdsourcing to spur design innovation and

efforts to produce “openly designed physical (not digital) products, sometimes in an

effort to solve market failure problems.1 My particular interest in understanding open

source peer-production motivation is to see how these collaborative principles might be

applied to encourage sharing and dialog between public sector academics and

practitioners (see Schweik, et al., 2011) or in efforts to solve problems faced across the

world in environmental management (see Schweik, Evans and Grove, 2005).

1 For a few interesting examples, see LocalMotors (2011) for an example in the automotive industry in

an effort to crowdsource innovative design ideas, or Jha and Nerurkar (2010) and Kuniholm (2011) for
examples in health care where market failures exist.

3

Given that the open source collaborative paradigm was born in the context of

computer programming, and that it is in this space that it has been around the longest, it

makes sense to study open source software commons empirically. Historically, there

has been a great deal of research on open source software from a wide range of

disciplines. Prominent book-length related-studies include Weber (2004), von Hippel

(2005a), Benkler (2006) and Fogel (2006). There are also a vast number of studies in

variety of outlets (see for example, Feller et al. 2005, for an edited volume with a variety

of empirical studies). Many more individual studies on particular elements of open

source software commons can be found in a variety of journals.

What I report in this paper is some results of a study that we initiated in 2005 in an

effort to gain insight into the socio-technical aspects of open source software

collaboration. This study took over five years to complete, and involved a team of

researchers at the University of Massachusetts, Amherst. The major product of the

study is a book-length manuscript (Schweik and English, forthcoming) that summarizes

our efforts to capture what was happening in a close approximation to the population of

open source. Much of the research prior to this study focused on high-profile open

source software cases, such as the Linux operating system. The goal of this study was

to get a better understanding of what was happening in the broader population of open

source projects, the vast majority of which are small, much less visible projects. The

study has two primary goals: (1) to identify factors that appear to affect whether an open

source software commons is successful in terms of maintaining ongoing collaboration –

or becomes abandoned; and (2) to focus more attention on how open source projects

are governed, and to explore methods for the more systematic study of the institutions

4

that govern open source commons.2 In this paper, I will provide first a few of the findings

from #1, and then focus attention on #2 with the goal of creating a dialog in the Cultural

Commons Workshop on how we move toward systematic study and articulation of open

commons cases.

A Summary of the Open Source Commons Success and Ab andonment Study

A major incentive driving the initiation of our study was that, at the time we started in

2005, there was very little empirical work trying to capture and document the population

of open source software commons, and also looking at these projects as socio-technical

systems of production. The overarching research question is “What factors lead some

open source software commons to achieve ongoing collaborative success while others

become abandoned?”

Over the next five years we: (1) established an overarching theoretical framework to

guide the research; (2) conducted literature reviews in a number of relevant disciplines

– Information Systems, Virtual Teams and Distributed Work, Environmental Commons,

and the emerging literature specifically on open source – in an effort to identify testable

hypotheses or, in some cases, “sub-research questions” where no testable hypothesis

could be identified from the existing literature. Multiple people on our team worked for a

year and a half and identified a variety of variables aligned along the components of the

Elinor Ostrom and Colleague’s Institutional Analysis and Development (IAD) framework

(Ostrom, 2005; Hess and Ostrom, 2007). Ultimately, more than 40 hypotheses and

research questions were identified, each of which we later investigated empirically

2 In this paper “open source commons” and “open source projects” are used interchangeably.

5

(Schweik and English, forthcoming). Figure 1provides a quick summary of some of the

variables we researched, organized following the structure of the guiding theoretical

Institutional Analysis framework (see Hess and Ostrom, 2007).3

*** Figure 1 about here ***

Like other areas of digital culture, open source software is a space that is changing

rapidly. At the time we initiated this study, a vast majority of the literature was focused

on the central question of why people (volunteers) would contribute their ideas and

effort to a public commons, rather than protect their work as private, proprietary

property. This “gift culture” (Raymond, 2000) was a particular puzzle to economists and,

over time, the motivations driving these contributions became better understood (e.g.,

self learning, user centered need, self promotion, contributing to a movement, and being

part of a community) (David and Shapiro, 2008; Schweik and English, forthcoming).

However, in 2005 when we started this study a shift was occurring moving open

source software from what had largely been described as all-volunteer efforts to a more

complex ecosystem (Figure 2). Some in private industry, such as IBM, embraced the

open source collaborative paradigm in an effort to advance their business. A variety or

business models and motivations connected to the open source commons production

exist (see Krishamurthy, 2005; Riehle, 2007; and Deek and McHugh, 2007: 272–279 for

more detail). Governments embraced open source in efforts to break the vendor lock-in

problem and, in some cases, to jump-start their own country’s software industry (Simon,

3 We are not the only ones to consider the utility of this framework for the study of culturally-related

commons. See Madison, Frischmann and Standburg (year needed) for another adaptation of it in cultural
commons research.

6

2005; Lewis 2010). Not-for-profit organizations became active in this space both in their

own efforts to cut information technology costs and also in some instances to promote

and help open source projects operate through overarching foundations (McQuillan,

2003; NOSI, 2008). Scientific and academic organizations continued, in some cases as

they always had, to share and collaborate on software code, but in sometimes new

areas in an effort to move their own IT needs forward (see Courant and Griffiths, 2006).

In short, when we started in 2005 it was apparent that open source was moving from a

less complicated setting of volunteers collaborating to one where a variety of

organizations could be involved, suggesting that the governance and institutional design

(meaning in our case rules-in-use guiding collaboration) could be more complex and

fluid in its evolution. We set out in our study to investigate this possibility.

*** Figure 2 about here ***

The Dependent Variable:
Success and Abandonment in Open Source Commons

After the task of researching relevant theory and empirical work related to factors that

contribute to the successful collaboration or abandonment of open source projects, we

then turned our attention to how to conceptualize and, ultimately, operationalize this

important measure for our study. Space limits us from going into a deep discussion on

7

this component of the project. Here, we’ll only summarize a few key aspects of this

work.4

First, in this work we focused on the longitudinal aspects of these commons and

identified two key stages in their evolution. As we see it, open source commons go

through an “Initiation Stage” where they start up and have yet to produce a first public

release, and a “Growth Stage” capturing the period after a first public release of code.

We hypothesized that the factors affecting collaborative success and abandonment

would be different in these two stages.

Second, with these stages identified, we set out to develop solid metrics for

collaborative success and abandonment in each of these stages. The measures are

conservative in that they see both projects that grow and gain large development teams

and ones that begin and remain as very small collaborations (even 1 developer and a

small community of users) as collaborative success stories. Our measures build on

project “life and death metrics” (Robles-Martinez and colleagues, 2003) as well as

“project popularity metrics” (Weiss, 2005).

Datasets/Methods

As I stated above, a key interest at the outset of this project was to analyze a more

representative dataset of open source software commons, rather than to focus on more

high profile, larger ones. In 2005 – and arguably continuing to this day – a very

important location where these commons “reside” is the project hosting site

4 A full discussion on this dependent variable can be found in English and Schweik (2007; also in

Schweik and English, forthcoming, Chapter 7) and the work was generally replicated by Wiggins and
Crowston (2010) helping to confirm that a solid measure of these concepts was established.

8

Sourceforge.net (SF). For those unfamiliar with this site, it provides a free web-based

platform that allows open source software developers to store and manage their code

and projects. It is a website widely known in the software programming world and is a

hub on the Internet where users can find open source software projects for potential

use. It is also understood that it is a somewhat “noisy” dataset in that it is used by

programmers to store, for example, projects they developed for a college course. That

said, in Schweik and English (forthcoming) we provide a discussion on why we think SF

still would provide the best data at the time if a researcher wanted to attempt to

characterize the unknown population of open source software commons.

To get SF project data, we turned to an open access dataset of SF projects called

“FLOSSMole” built and provided by researchers affiliated with Syracuse University

(Howison, Conklin and Crowston, 2004). The initial FLOSSMole database had 107,747

projects and represented SF in the fall of 2006. After analyzing the 2006 data alone, we

then developed an online survey to capture theoretical concepts related to community

and institutional variables that are not found in the SF project metadata. In an effort to

ensure enough data on abandoned projects, we invited a large random sample of SF

developers in the Fall of 2009 resulting in over 1400 usable surveys returned (Schweik

and English, forthcoming). We then connected our survey data to another “snapshot” of

SF project data provided by Madey (2010) for a more conceptually complete dataset

representing, roughly, yearend 2009. Summarizing several years of work in one

sentence, we carefully categorized each project in these datasets based on our

definitions of success and abandonment (Table 1) and with the dependent variable in

place, we analyzed and investigated the importance of theoretically identified

9

independent variables using contingency tables, classification and regression tree and

logit regression. But rather than present statistical results, we will simply extract a few

findings we think are important for discussion at the cultural commons workshop.

*** Table 1 about here ***

Finding 1. The vast majority of open source projects have very small development
teams.

Figure 3 provides a histogram of the team size distribution of the 174,000 projects in

SF in the fall of 2009. Table 2 shows team size numerically. Together they show that

the vast majority of SF projects have only one or two developers involved. This finding

isn’t new – Krishnamurthy (2002) was one of the first to make this observation. But this

leads to two points to be made related to this. First, much of the case research in open

source over the last decade has focused on high profile projects with larger team

compositions. But looking at open source from a “cultural commons” standpoint, this

demonstrates that these commons are often very small teams. A second point to be

made is that even though these are often very small development teams, even the

140,000 1-developer projects could be collaborations. It is well understood in open

source that the end users of the software sometimes contribute to these projects in the

form of bug reporting, testing, or even the creation of supporting documentation.

*** Figure 3 about here ***

*** Table 2 about here ***

10

Finding 2. We have statistical support for “conventional wisdom” of how open source
projects operate.

Our broad statistical analysis described in detail in Schweik and English

(forthcoming) tells a story of how open source projects, in general, operate. In the

Initiation (pre-first release) stage, the most important factors for success originate with

the designated leader of the project, who is often the single developer on the project.

Projects that are successful in this stage – meaning they continue to be worked on – are

ones where project leaders who devote larger numbers of hours to the project. In

addition, putting in place plans for architecture and functionality, project goals, and

project documentation as well as a good project web presence appears to be important,

for it helps get contributions from volunteers or potential end-users before the first

release. We found that “putting in the hours” and various elements of leadership are not

simply correlated with success but appear to be causes of success in the Initiation

stage.

In the Growth or post-first release stage, the story seems to be that once a project

has achieved a first release then the leadership abilities of members of the development

team, coupled with the utility of the software itself, begins to attract new users and

eventually, at least one new development team member or other “community”

contributors. Developers continue to make contributions to the software leading to a

virtuous circle of continuing improvements and continued collaborative success. In this

stage, we found that aspects of project leadership, slight growth in the development

team and project financing are causal influences for success.

11

These findings are aligned with what we would call “conventional wisdom” about

open source software commons, and may seem obvious to some who have thought

about these commons. However, our findings are based on a large empirical dataset

(170,000 projects) along with our own survey data of over 1400 developers. In other

words, our study confirms what is commonly thought about open source with strong

statistical evidence.

Finding 3. Statistical findings support the contention that the ecosystem is now more
complex than the earlier “all-volunteer” days of open source.

In our analysis of the quantitative data, we had several hypotheses that were related

to the emergence of the more complex ecosystem (Figure 2). Our SF dataset had

nearly 50 categorical variables that classified each project in some form. For example,

project administrators could identify which operating system it was built for. Or they

could classify the project along a large set of “software types” (e.g., databases, end user

desktop applications, etc.). Our expectation was that if open source was still being

motivated by the more philosophical open source or “free/libre movement,” we’d expect

to find projects aligned with this movement to be more successful in Initiation and

Growth compared to projects not aligned with this movement. In other words,

contingency tables would show statistically significant distributional differences for these

variables between successful and abandoned projects.

In our data analysis of our 1400 surveyed projects (Schweik and English,

forthcoming), we found no evidence suggesting that projects affiliated with more “pure

open source” were more successful compared to projects that did not have this

12

affiliation. We also found no distributional differences between projects licensed with the

General Public License (GPL; the license more often connected to the philosophical

free/libre movement). We found success and abandoned cases evenly distributed

across GPL and non-GPL cases. Finally, cases of success are found throughout all

different types of software classes. There were no classes that stood out in terms of

having higher numbers of successful collaborations. Further, in our survey we

investigated motivations for participating in open source projects and while a vast

majority felt that software should be open, it was clear that there was a wide mix of

motivations driving participation and that many of the participants were paid by firms.

Finally, von Hippel’s (2005) concept of user driven need is widely found in all projects

(successful and abandoned) and our survey shows evidence that this need driven is

both a motivation for why individuals participate but also why their employers encourage

them to participate (because their organization needs the software). Taken together,

we think these findings provide statistical evidence that while open source is still driven

by an ideology that software should be open, the lack of distributional differences in our

data suggest that open source is now more mainstream and found in many areas of

software. Moreover, it is not just about volunteers anymore but rather reflects the

footprint of the more complex ecosystem represented in Figure 2.

Finding 4. SF and search engines like Google act as global intellectual matchmakers.

This is one of our most interesting empirical findings. In our analysis of the 2006 SF

dataset, we found that the developer team in successful growth stage projects grows

13

slightly while abandoned projects did not. Armed with that knowledge, we investigated

this further in our 2009 survey to developers. We asked them two questions related to

this issue. First (paraphrasing), if their development team had more than one individual,

did they find that individual on the Internet (yes, no)? Second, we asked which of the

following best describes the geographic location of all project team members: very

close; same city; same state/province; same country; same continent or multi-

continental. Through these questions we found that successful projects find new team

members on the Internet more than abandoned projects, and in the growth stage, 52%

of the successful growth stage projects had team members from multiple continents

(Schweik and English, forthcoming). Third, we asked respondents about the frequency

of face-to-face interaction on their teams and found that while face-to-face indeed helps

to build social capital, there are many successful projects where some team members

have never met in person.

Taken together, what these findings suggest is that SF, perhaps coupled with search

engines like Google, act as a “power law hub” (Karpf, 2010) allowing people with similar

interests, passions and skills to connect with each other and begin to feel each other out

as potential collaborators, and eventually joining in co-production together. In the SF

case this is largely multi-continental collaborations between North America and Europe.

I have not seen statistical evidence anywhere else that suggests this is happening but

this appears to be important in open source and I think this is a very important finding

and something that is happening in other digital commons situations (e.g., Wikipedia). In

short, in open source it is often not about whether you can build a large development

team. It is about finding “just the right person” with similar interests, skills and passions

14

somewhere in the world and developing a collaborative relationship with that person. I

think this is a potentially very important insight for our understanding of cultural

commons.

Finding 5. Institutions provide “friction” but they also evolve.

The governance and institutional design is one of the areas of open source

commons that has been studied the least, although there are a few scholars who have

contributed important work (see for example O’Mahony, 2005, 2007; O’Mahony and

Ferraro, 2007; Markus, 2007). A driving motivation for our study was to begin to shed

more light in institutional structure of open source as well as the evolution of open

source institutions.

In his famous essay on open source The Cathedral and the Baazar (2001), Eric

Raymond argued potential contributors to open source software commons will be less

apt to participate if the “number of hoops” they have to deal with is higher. In other

words, more formalized rules guiding the process of contributing code will reduce the

likelihood of participation. Programmers want to program, not deal with rules guiding

collaboration. In our research, we found strong statistical and qualitative evidence

suggesting that this is indeed the case, and this is one area that differs quite sharply

from more traditional environmental commons I have studied in the past. In most of the

SF projects we surveyed, the operational rules are “very informal” social norms. What

operational rules that do exist are often embedded in the online collaborative system

used to coordinate work (e.g., CVS or Subversion). Moreover, we found that in the SF

15

survey data the dominant governance model was a “benevolent dictator” rather than a

model with more democratic processes.5

This all said, we did also see some indication – as we expected – that institutions

evolve and become more formalized as projects grow in terms of developers. However,

in our survey data, this tended to be more along the lines of “we moved from a very

informal institutional structure to simply an informal structure,” that is, the “very”

descriptor was removed. But it did suggest that institutions do evolve toward some level

of formalization.

What this tells us

Two conclusions come out of the discussion above that are important for where we

are headed in this paper.

First, looking back at Figure 3, our interest in understanding and articulating the

population of open software source commons leaves us with conclusions that are, in a

way, weighted toward smaller development projects. This is true because the population

we studied, SF, is vastly dominated by projects driven by very small development teams

and a majority that is only one developer. But even in cases of 1-developer teams, the

software is still a form of commons (more accurately a common-property regime, see

Schweik and English, forthcoming), and can still involve collective action between the

developer and a user community. However, what we didn’t do in our data analysis – and

what should be done – is an examination of the larger developer team projects that

5 We think this finding was so strong because we were trying to understand the population of open

source and so many of the projects in our dataset were small development team projects.

16

reside in the longer tail in Figure 3. In our 2006 data, the largest project was on the

order of 320 developers, but it was only one of 107,747 in our dataset. Still (while at the

time of this writing I don’t have the actual number) I estimate that there are several

thousand projects in these SF data that have a developer team of ten people or more.

The institutional design of these projects is likely different than the vast majority of

others in SF, and their attributes are drowned out in our statistical analysis because

they represent such a small proportion of the population.

Second, in our analysis, we have found evidence that the governance of projects do

indeed evolve. This is important to understand better, in particular for larger projects

that involve participants from a variety of organizations. For example, recently I gave an

invited talk on my forthcoming book at an open source software conference focused on

software in the U.S. Military (http://mil-oss.org/wg3-agenda). Participants at this

conference support the contention that open source software is now “more mainstream”

and involves a much more complex configuration of actors. Projects presented involved

university partners, private contracting firms, and government agencies. Other

presenters, such as Alex Voultepsis of the Office of the Director of National Intelligence,

talked about forming a software sharing and development effort that would cross

homeland security agencies and involve private contractors. Understanding the

evolution of how these collaborations work, and how they are structured institutionally,

is important for future larger-scale software projects (and other open-type collaborations

outside of software) to succeed.

In other words, mid- to large-sized projects are interesting and an important subset

of open source software commons that need to be understood and studied more

17

carefully. They are an important subset of open source commons “success stories” and

represent more “mature” collaborations.

The key questions that we must ask then are:

How do we systematically document the institutional designs of larger
collaborations or collaborations between organizations?

and,

How do we study systematically the evolution of open source-like commons?

Rich case description is helpful and important. However the question I am asking is how

do we compile and analyze, side by side, rich case studies of open source commons

institutional designs as well as their evolution? How do we compare, to use to famous

projects as an example, how the Debian Linux project has evolved compared to how the

Eclipse project has evolved? In the next section – the last part of this paper – I build on

work by Elinor Ostrom (2005) and summarize an attempt I have made to move toward

more systematic study of the institutional designs of larger-scale open source software

commons.

Toward a Systematic Analysis of Institutions:
The OSGeo Case Study

In parallel to the quantitative research briefly reported above, we also were interested

in understanding open source commons in more depth, for two reasons. First, we

wanted to complement our quantitative analysis with a more rich study to see if what we

were learning from the quantitative work aligned with what we could learn from case

research. Second, given we had read a number of more descriptive papers on specific,

usually high-profile open source projects, we wanted to take a step forward toward

18

developing a possible systematic comparative approach to analyzing open source

governance and institutional design.

We selected the Open Source Geospatial Foundation and seven of its associated

projects for study. We chose this case because it provided an example of a more

complex open source ecosystem given nonprofits and private firms are involved, and its

international scope was an added benefit. A practical reason for choosing this case is

that I am involved with this foundation, currently acting as the chair of its education and

curriculum group. This participation, I think, gave me more credibility as we moved

ahead to interview developers in OSGeo-related projects.

Full descriptions of the analysis of the OSGeo case can be found at Schweik and

Kitsing (2010) and Schweik and English, forthcoming (chapters 5 and 6). For our

interests here, my goal is to briefly describe my experience using IAD as a guiding

framework for institutional analysis, coupled with Ostrom’s seven categories of rules

(Ostrom, 2005).

A primer on the three institutional levels of IAD and Ostrom’s seven rule classes

 Summarizing what is more fully described in Ostrom (2005), within the “institutional

attributes” component of the IAD framework are three nested institutional levels:

operational, collective-choice and constitutional.

The operational level is a general label to describe the general sets of rules (formal or

informal) that influence the daily behavior and actions of commons participants. For

example, in an open source software setting, these can be rules established for how

19

computer code gets accepted into the next version of the software being developed or

the process for releasing a new version.

The collective-choice level involves a different set of rules that (a) define who is

eligible to undertake operational-level activities and (b) defines who has authority to

change operational-level rules and the procedures for how these changes come about.

An example of a collective-choice rule in the context of open source software commons

would be a change in the process of how code is committed to the repository, or a

change in how code is reviewed prior to adding to a new release library.

Finally constitutional level rules specify how the commons is structured or organized

constitutionally, but, in addition include specifications on who can change collective-

choice arrangements and also the procedure for how those changes can be made. In

open source software commons, an obvious constitutional issue is the choice of license

to attach to the software (e.g., a GPL or non-GPL type license). But it can also be

related to whether the project is associated with a non-profit foundation or whether there

are particular requirements related to an oversight board, etc.

These three levels of rules in IAD have been guiding commons researchers for at

least two decades, particularly in the context of natural resource commons. But what

was lacking in case analysis was more specificity on how to articulate rules that exist in

any of these levels. In her book Understanding Institutional Diversity (2005), Elinor

Ostrom tried to add more clarity by proposing seven classes of rules that can exist in

any of these three levels, summarized in Table 3.

*** Table 3 about here ***

20

The OSGeo Case

 OSGeo is a nonprofit foundation that provides overarching support to a number of

open source software projects working in the area of geographic information systems.

Broadly speaking, these are technologies that, in some fashion, deal with data that has

positional ties to the earth. OSGeo’s mission is to “support the development of open-

source geospatial software, and promote its widespread use” (OSGeo 2009). At the

time of our research there were ten software projects treated as “full members” with the

foundation, and several others in “incubation.” We chose to study only fully affiliated

projects because their institutional designs would be fully formed. We contacted

representatives of all ten projects for interviews, but only seven were willing to

participate in the study. Here, we only report some of the findings related to institutional

design and structure.

Institutional analysis of this case requires not only attention to the three levels and

classes of rules that Ostrom presents, but also a realization that there is an institutional

design at the foundation level, and then also institutional designs for each project.

Moreover, there are mandates established by the foundation that each project must

comply with.

At the foundation level, we found examples of Ostrom’s rule classes, some of which

are summarized in Table 4.

*** Table 4 about here ***

21

At the project level, our interviews and interpretation of online documentation led us

to a characterization of rules at this level as well (Table 5).

*** Table 5 about here ***

I present Tables 3 and 4 not with the expectation that readers will have enough

information to understand the institutional design of the OSGeo foundation or

associated projects. These tables are included simply to demonstrate that it is possible

to articulate open source commons institutional designs using Ostrom’s seven rule

framework.

In another section of our book-length study (Schweik and English, forthcoming,

Chapter 5, Table 5.4), I was able to take the description of the evolution of institutions in

the Debian Linux case articulated by O’Mahony and Ferrarro (2007) and associate key

rules described to Ostrom’s seven rule classes. In their paper, O’Mahony and Ferrarro

describe the evolution of governance structures in this high profile open source software

project, and we were able to articulate in a two-column table the various seven rule

classes described at different institutional levels (constitutional, collective-choice, or

operational) for two longitudinal stages. (For space reasons I decided not to include this

table in this paper). The important point to be made is that it is possible to do this.

Conclusions and Future Research

The take home message is that the OSGeo case study experience has convinced

me that it is possible to articulate more systematically the institutional designs of open

22

source software commons (and, by extension, other types of open, digital commons

where collaboration occurs). Related to the study of cultural commons, this is vitally

important, for increasingly we are seeing digital commons appear on the Internet where

people are trying to collaborate. In many cases, similar to what we have shown with

open source software commons, projects will be very small teams with extremely lean

institutional designs. One thing that we’ve learned from our quantitative work is in a very

large percentage of these, it is not about the building a large team of developers. Much

can get done, driven in part by user-or organizational-centered need if even two people

with a similar passion, interest and skills can find each other and begin to build a

working relationship.

At the same time, I would argue we are just at the cusp of a new period of open

collaboration that involves much more complicated organizational arrangements where

it is likely that institutional designs will be more complex and perhaps fluid over time.

The Debian Linux case described by O’Mahony and Ferrarro (2007) is a case in point.

Increasingly there is a need to understand the structure of institutional designs in these

larger, more complex commons, and a need to understand how they evolve. Our

empirical work on SF projects revealed some evidence that formalized institutions do

emerge as projects get larger, but our findings along these lines are limited because of

the large number of small projects in our SF dataset.

The question this leads me to is how to best analyze institutional structure and its

evolution in a comparative fashion? We need methods for systematically articulating

these structures and Ostrom’s IAD levels (operational, collective-choice, constitutional)

coupled with her seven rule categories provides an initial framework to do this. Our work

23

provides an existence proof that this is possible. However, I’ve found that even with

these common classification schemes, comparative analysis in table format between

cases or across time periods is still difficult.

I mentioned earlier that I gave a talk on this study recently at a U.S. Military open

source software conference (http://mil-oss.org/wg3-agenda). Sessions were devoted to

understanding various open source licenses as they apply to government and

government contracting situations (Wheeler, 2011) and issues related to government

policy related to the adoption of open source technologies. These examples provide

more proof in my view that we are moving toward a much more complicated open

source commons setting, and we need to develop analytic methodologies to document

project structure and evolution. In these examples, clearly, the legal scholarly

community has much insight to provide. It is my hope that some of the other discussions

in the Cultural Commons workshop might help to connect analytic approaches like

Ostrom’s to other methods and approaches in other disciplines like law to help us

articulate the evolution of these kinds of digital commons cases.

24

Acknowledgments

Support for this work was provided by a grant from the U.S. National Science

Foundation (NSFIIS 0447623). The findings, recommendations and opinions expressed

are those of the authors and do not necessarily reflect the views of the funding agency.

The work this paper builds upon is the result not just the author but a team of highly

capable individuals: Bob English, Sandra Haire, Meng-Shiou Shieh, and Meelis Kitsing.

Of course, any mistakes are my responsibility alone.

25

Figure 1: A simplified Institutional Analysis Frame work with independent
variables identified (adapted from Schweik and English, Forthcoming)

26

Figure 2: The Open Source Software Commons Ecosyste m
(from Schweik and English, forthcoming)

27

Figure 3.

28

Table 1. Success and Abandonment Classification Res ults for the
SF 2006 and 2009 Datasets

 SF 2006 Data SF 2009 Data

Class # of projects # of projects
Abandoned Initiation 37,320 67,126
Indeterminate Initiation 13,342 16,806
Indeterminate in
Growth

10,711 12,052

Abandoned Growth 30,592 53,450
Successful Growth 15,782 24,899
Total 107,747 174,333

Table 2. Developer Counts for the May 2009 Sourcefo rge Population for
Abandoned (AG) and Successful (SG) Growth Stage Pro jects

(percentage of total* in parentheses)

Developer
Count

SF
Population:

Class AG

SF
Population:

Class SG
1 37259 (48) 11765 (15)
2 8329 (11) 4420 (6)
3 3236 (4) 2380 (3)
4 1573 (2) 1515 (2)
5 921 (1) 1076 (1)
6 525 (1) 731 (1)
7 316 (0) 514 (1)
8 198 (0) 424 (0)
9 141 (0) 309 (0)
10 90 (0) 234 (0)

11–20 305 (0) 990 (1)
>20 53 (0) 457 (0)

Totals 52,946 (68) 24,815 (32)

29

Table 3: Ostrom’s Seven Rule Classes

(These can apply to any or all of the three nested levels:
operational, collective-choice or constitutional)

(Adapted from Ostrom, 2005: 193-210)

Position rules Articulate what roles people play in the project
Boundary rules Define who is eligible for a position, the process of how he

or she is assigned to that position, and rules related to
how the person leaves that position.

Choice rules Define actions that can, cannot, or must be done.
Aggregation rules Articulate the process for how conflict should be resolved.

Within this category, there are three sub-classes:
symmetric (e.g., unanimity), non-symmetric (where a
leader can make decisions for a group) and lack-of-
agreement rules.

Information rules Specify how and what kind of information flows between
project members and other interested parties, as well as
how information is archived through the project life cycle.

Payoff rules Assign some kind of reward or sanction to specific actions
or outcomes.

Scope rules Specify which outcomes may, must or must not be
affected or produced in a given situation.

30

Table 4. Examples of rules at the OSGeo foundation level

Aggregation
rules

Symmetric: Consensus in committees;
Nonsymmetric: Board of Directors create
committees

Information rules Minutes meetings required.
Meeting notifications required.
Annual meetings required.
Financial statements required.

Pay-off rules Executive director and others can be paid.
BOD members cannot be paid.

Scope rules Specified to some extent in organizational and
committee mission statements.

31

Table 5. OSGeo Affiliated Projects and Some of thei r Associated Rules

Ostrom’s
Rule
Category Project A Project B Project C Project D Project E Project F Project G

Position rules Project leader

Project
steering
committee
member

Core
developer
(informal;
often overlaps
with the
committee
member)

Developer

Project leader

Project
steering
committee
member

Core
developer
(informal;
often overlaps
with the
committee
member)

Developer

No formal
project leader

Informal lead
team of three
people

Project
steering
committee
member

Committers

Project leader

Project
steering
committee
member

Core
developer
(informal;
often overlaps
with the
committee
member)

Developer

Project leader

Project
steering
committee
member

Core
developer
(informal;
often overlaps
with the
committee
member)

Developer

Project leader

Project steering
committee
member

Core developer
(informal; often
overlaps with
the committee
member)

Developer

No formal project
leader

Informal lead
team of four
people

Project
management
committee
member

Core developer
(informal; often
overlaps with the
committee
member)

Developer

Boundary
rules

Formal rules

Community
members elect
to PSC

No term limits

Formal rules. Formal rules
copied from
another
project

Formal rules
copied from
another
project

Almost never
consulted

Formal rules Formal rules
exist but
primarily
depend on
social norms

Formal rules, but
not necessarily
followed

Choice rules Some
formalized

Some
formalized

Some
formalized

Social norms Social norms Social norms Formalized rules
written down

32

Table 5. OSGeo Affiliated Projects and Some of thei r Associated Rules

Ostrom’s
Rule
Category Project A Project B Project C Project D Pr oject E Project F Project G

Program
steering
committee
makes some
major rules

Primarily
social norms

Open
exchange in
the list

Mutual
expectations

available in
the wiki

Primarily
social norms

available in
the wiki

Primarily
social norms

Program
management
acts if necessary

Social norms
important

Aggregation
rules

Informal-
symmetric:
consensus in
program
steering
committee and
discussion
including
developers
who are not in
the committee

Formal voting:
rarely occurs,
even though

Steering
committee:
almost all
developers are
on the
committee

Voting: if veto
vote is used,
discussion
follows

Informal-
symmetric:
consensus in
Program
steering
committee

Formal voting:
rarely occurs
even though
formal rules
stipulate it

Only PSC
members can

Steering
committee
makes
decision by
consensus or
voting

 All developers
can vote as
well but their
votes do not
count.

Informal-
symmetric:
consensus in
program
steering
committee

Formal voting:
rarely occurs
even though
formal rules
stipulate it

Only PSC
members can

Informal-
symmetric:
consensus in
program
steering
committee and
discussion but
often back
channels used
before the
decision is
reached

Voting is a last
resort

Program
management
committee votes

33

Table 5. OSGeo Affiliated Projects and Some of thei r Associated Rules

Ostrom’s
Rule
Category Project A Project B Project C Project D Pr oject E Project F Project G

formal rules
stipulate it

Only PSC
members can
vote

vote. vote

Information
rules

Social norm:
open
exchange of
information

Unwritten rule
that email list
is the main
communicatio
n tool

Limited formal
rules

Most decisions
are made in
Internet Relay
Chat and
mailing list is
used as well

Social norms

Talking over
email and
weekly
Internet Relay
Chat meetings

Social norms

Project
leaders
available on
Internet Relay
Chat almost
all the time

Social norms Social
norms

All
communication
is based on
writing

Social norms

Weekly Internet
Relay Chat
meetings;
otherwise no
clear rules

Pay-off rules No rules No rules No rules No rules No rules No rules No rules

Scope rules Design rules Design rules Design rules Design rules Design rules Design rules Design rules

34

References

Benkler, Y. 2006. The Wealth of Networks: How Social Production Transforms Markets
and Freedom. New Haven, CT: Yale University Press.

Campbell-Kelly, M. 2003. From Airline Reservations to Sonic the Hedgehog: A History
of the Software Industry, Boston, MA: The MIT Press.

Courant, Paul N., and Rebecca J. Griffiths. 2006. Software and Collaboration in Higher
Education: A Study of Open Source Software. A Report Commissioned by the Andrew
W. Mellon Foundation and the William and Flora Hewlett Foundation. Accessed May 15,
2008, http://www.ithaka.org/strategic-services/oss/OOSS_Report_FINAL.pdf.

David, Paul A., and Joseph S. Shapiro. 2008. Community-Based Production of Open-
Source Software: What Do We Know about the Developers Who Participate?
Information Economics and Policy 20:364–398.

Deek, Fadi P., and James A. M. McHugh. 2007. Open Source Technology and Policy.
New York: Cambridge University Press.

English, Robert, and Charles M. Schweik. 2007. Identifying Success and Tragedy of
FLOSS Commons: A Preliminary Classification of Sourceforge.net Projects. Upgrade:
The European Journal for the Informatics Professional. VIII(6):54–59. URL:
http://www.cepis.org/upgrade/files/full-VI-07.pdf.

Feller, Joseph, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani. ed. 2005.
Perspectives on Free and Open Source Software. Cambridge, MA: The MIT Press.

Fogel, Karl. 2006. Producing Open Source Software: How to Run a Successful Free
Software Project. Sebastopol, CA: O'Reilly Media. URL: http://producingoss.com/.

FSF (Free Software Foundation). 2009. What is CopyLeft? Accessed November 30,
2009, http://www.gnu.org/copyleft/.

Hess, C., and Ostrom, E. eds. 2007. Understanding Knowledge as a Commons: From
Theory to Practice. Cambridge, MA: The MIT Press.

Howard, A. 2010. Connecting the Dots with Intellipedia. O’Reilly Radar.
http://radar.oreilly.com/2010/06/connecting-the-dots-with-intel.html. Accessed
September 8, 2011.

Howison, J., Conklin, M. and Crowston, K. 2006. FLOSSmole: A Collaborative
Repository for FLOSS Research Data and Analyses. International Journal of
Information Technology and Web Engineering 1(3):17–26.

Ja, S. K., and Nerurkar, A. 2010. Expanding Open Source Into Other Domains: Analysis
of Open Source Biomedical Research. In Shulman and Schweik (editors), Conference
Proceedings of JTIP 2010: The Politics of Open Source. Available at
http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1000&context=jitpc2010.
Accessed September 8, 2011.

Karpf, David. 2010. What Can Wikipedia Tell Us about Open Source Politics? In
Proceedings of JITP 2010: The Politics of Open Source, comp. Stuart W. Shulman and

35

Charles M. Schweik, 2–30 Accessed August 10, 2010,
http://scholarworks.umass.edu/jitpc2010/1/.

Krishnamurthy, Sandeep. 2002. Cave or Community? An Empirical Examination of 100
Mature Open Source Projects. First Monday 7(6) [online],
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/ fm/article/view/960/881.

Krishamurthy, Sandeep. 2005. An Analysis of Open Source Business Models. In
Perspectives on Free and Open Source Software, ed. Joseph Feller, Brian Fitzgerald,
Scott A. Hissam, and Karim R. Lakhani, 279–296. Cambridge, MA: The MIT Press.

Kuniholm, J. 2011. The Open Prosthetics Project. Presentation at the Military Open
Source Software Conference. Available at http://mil-oss.org/wg3-speakers-and-
presentations. August 31, 2011.

Lewis, James. 2010. Government Open Source Policies (Version 7). Accessed April 6,
2011, http://csis.org/files/publication/100416_Open_Source_Policies.pdf.

LocalMotors. 2011. How It Works. Accessed April 8, 2011, http://www.local-
motors.com/howItWorks.php.

Madey, G. 2010. SourceForge.net Research Data. URL:
http://www.nd.edu/~oss/Data/data.html. Accessed September 1, 2011.

Madison, M., Frischman, B.M. and Strandburg, K.J. year needed. Constructing
Commons in the Cultural Environment. Cornell Law Review 95: 657-710.

Markus, M. Lynne. 2007. The Governance of Free/Open Source Software Projects:
Monolithic, Multidimensional, or Configurational? Journal of Management and
Governance. 11(2):151–163.

McQuillan, D. 2003. Open Source is on the Map.
http://www.icthubknowledgebase.org.uk/opensourceonthemap. Accessed September
10, 2011.

NOSI (Nonprofit Open Source Initiative). 2008. NOSI's Survey of FOSS Use in the
Nonprofit Sector. Accessed March 11, 2008, http://www.nosi.net/projects/survey.

O'Mahony, Siobhan. 2005. Nonprofit Foundations and Their Role in Community-Firm
Software Collaboration. In Perspectives on Free and Open Source Software, ed.
Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, 393–413.
Cambridge, MA: The MIT Press.

O'Mahony, Siobhan. 2007. The Governance of Open Source Initiatives: What Does it
Mean to be Community Managed? Journal of Management and Governance 11(2):139–
150.

O'Mahony, Siobhan, and Fabrizio Ferraro. 2007. The Emergence of Governance in an
Open Source Community. Academy of Management Journal 50(5):1079–1106.

OSGeo. 2009. OSGeo Mission Statement.
http://www.osgeo.org/content/foundation/about.html. Accessed March 10, 2009.

36

Ostrom, Elinor. 2005. Understanding Institutional Diversity. Princeton, NJ: Princeton
University Press

Raymond, E. 2000. Homesteading the Noosphere. Available at
http://catb.org/esr/writings/homesteading/homesteading/. Accessed September 8, 2011.

Raymond, E. 2001. The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. Sebastopol, CA: O'Reilly.

Riehle, Dirk. 2007. The Economic Motivation of Open Source Software: Stakeholder
Perspectives. IEEE Computer 40(4):25–32.

Robles-Martínez, Gregorio, Jesús M. González-Barahona, José Centeno-González,
Vicente Matellán-Olivera, and Luis Rodero-Merino. 2003. Studying the Evolution of
Libre Software Projects Using Publicly Available Data. Portland, OR: ICSE International
Conference on Software Engineering. May 3-11.

Schwarz, M. and Takhteyev, Y. 2009. Half a Century of Public Software Institutions:
Open Source as a Solution to Hold-Up Problem. Working paper 14946. National Bureau
of Economic Research. http://www.nber.org/papers/w14946.pdf?new_window=1.
Accessed 9/6/2011.

Schweik, C.M., and English, R. forthcoming. Successful Internet Collaboration: A Study
of Open Source Software Commons. Cambridge, MA: MIT Press.

Schweik, C., Tom P. Evans, and J. Morgan Grove. 2005. Open Source and Open
Content: A Framework for Global Collaboration in Social-Ecological Research. Ecology
and Society 10(1):33. http://www.ecologyandsociety.org/vol10/iss1/art33/.

Schweik, C. and Kitsing, M. 2010. “Applying Elinor Ostrom’s Rule Classification
Framework to the Analysis of Open Source Software Commons.”Journal of
Transnational Corporations Review. Available at http://www.tnc-
online.net/pic/2010032809124697.pdf.

Schweik, C. M., Mergel, I., Sandfort, J. and Zhao, Y. 2011. Toward Public
Administration Scholarship. Journal of Public Administration Research and Theory
21(2011):i175–i198.

Simon, Kimberly D. 2005. The Value of Open Standards and Open-Source Software in
Government Environments. IBM Systems Journal 44(2):227–238.

von Hippel, E. 2005a. Democratizing Innovation. Cambridge, MA: The MIT Press. URL:
http://web.mit.edu/evhippel/www/democ1.htm.

von Hippel, E. 2005b. Open Source Software Projects as User Innovation Networks. In
Perspectives on Free and Open Source Software, ed. Joseph Feller, Brian Fitzgerald,
Scott A. Hissam, and Karim R. Lakhani, 267–278. Cambridge, MA: The MIT Press.

Weber, Steven. 2004. The Success of Open Source. Cambridge, MA: Harvard
University Press.

Weiss, Dawid. 2005. Measuring Success of Open Source Projects Using Web Search
Engines. Paper presented at the First International Conference on Open Source
Systems, Genova, Italy, July 11–15.

