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Across a range of empirical specifications, I find evidence that Celera’s IP led to
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Innovation is central to economic growth, but may be under-provided by competitive markets

- providing a rationale for public policies to promote innovation (Nelson, 1959; Arrow, 1962).

Intellectual property (IP) rights, such as patents and copyrights, are a widely-used policy lever.

Traditionally, academics have evaluated the effectiveness of IP in promoting innovation by fo-

cusing attention on whether IP successfully incentivizes the development of new technologies.

However, the overall effectiveness of IP in promoting innovation also depends on a second, less

studied question: do IP rights on existing technologies hinder subsequent innovation in markets

where technological progress is cumulative, in the sense that product development results from

several steps of invention and research? This paper provides empirical evidence on this ques-

tion by investigating how one form of intellectual property on the human genome influenced

subsequent scientific research and product development.

To fix ideas, suppose the firm Celera holds IP on a human gene, and Pfizer discovers a gene-

based diagnostic test that requires licensing that gene. Will Celera’s IP impede Pfizer’s research?

In a perfect contracting environment with no transaction costs, Celera and Pfizer would negotiate

a licensing agreement such that cumulative research is not hindered. However, transaction costs

may cause negotiations to break down, deterring some socially desirable research. Thus, a test of

whether IP on an existing discovery hinders subsequent research is a test of the null hypothesis

that property rights do not induce transaction costs. The theoretical literature in this area is

well developed (e.g. Green and Scotchmer (1995), Bessen (2004)), but there is little empirical

evidence on the question of whether IP on existing technologies hinders subsequent innovation.

Empirical study of this question requires addressing two key challenges. A first challenge is

to disentangle selection effects from treatment effects, because inventors may be more likely to

obtain IP on inventions that are more commercially valuable.1 A second challenge is to develop

measures of cumulative innovation, because it is often difficult to trace basic scientific discoveries

as they are translated into marketable products. The contribution of this paper is to identify

an empirical context in which there is variation in IP across a relatively large group of ex ante

similar technologies, and to construct a new dataset that can be used to trace the impacts of IP

on a range of subsequent scientific research and product development outcomes.

Figure 1 summarizes the key events analyzed in this paper. Two efforts, the public Human

Genome Project and the private firm Celera, aimed to sequence the human genome. The public

effort was launched in 1990, and required that data be placed in the public domain. Celera’s

sequencing effort was launched in 1999, and ended when Celera disclosed an incomplete draft

genome in 2001. The public effort continued, and by 2003 had sequenced all genes covered in

Celera’s 2001 draft. Between 2001 and 2003, Celera used a contract law-based form of IP to

protect genes that had been sequenced by Celera but not yet sequenced by the public effort. This

IP enabled Celera to sell its data for substantial fees, and required firms to negotiate licensing

agreements with Celera for any resulting commercial discoveries - even though it was publicly

known that all of Celera’s genes would be re-sequenced by the public effort, and thus be in the

public domain, by 2003.

1For example, Moser (2007) finds evidence that higher quality innovations are more likely to be patented.
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From this empirical context, I construct three research designs to investigate how Celera’s IP

influenced subsequent scientific research and product development. My first research design tests

whether Celera genes differ in subsequent innovation, as of 2009, from genes initially sequenced

by the public effort. If Celera’s IP had been as good as randomly assigned across genes, this

simple difference in means would isolate the causal effect of interest. However, a priori I expect

selection because part of the public effort focused on sequencing genes with known medical value.

I document empirical evidence consistent with this type of selection by constructing data on the

ex ante expected value of each gene. A basic sample restriction - comparing Celera genes to

non-Celera genes sequenced in the same year - reduces but does not eliminate observed selection.

This motivates my second and third research designs, which address selection more directly. My

second research design tests whether the removal of Celera’s IP affected within-gene measures of

subsequent innovation. My third research design limits the sample to Celera genes and tests how

variation in the length of time a gene was held with Celera’s IP affected subsequent innovation.

These second and third research designs appear to eliminate selection bias in the following sense:

within the sample of around 1,600 Celera genes, proxies for the ex ante expected value of a gene

do not predict the timing of when genes were re-sequenced by the public effort.

I implement these empirical tests using a newly-constructed dataset that traces out the timing

of gene sequencing and Celera’s IP across the human genome, linked to gene-level measures of

scientific research and product development. To trace sequenced genes as they transition into

marketable products, I construct data at the level of naturally occurring biologic molecules

that can be identified at various stages of the research process. Specifically, I trace cumulative

innovation by collecting data on links between genes and phenotypes, which are observable traits

or characteristics. For example, the link between variation on the HTT gene and Huntington’s

disease represents a genotype-phenotype link. For each gene, I collect data on publications

investigating genotype-phenotype links, on successfully generated knowledge about genotype-

phenotype links, and on the development of gene-based diagnostic tests available to consumers.

Results from all three specifications suggest Celera’s IP led to economically and statistically

significant reductions in subsequent scientific research and product development. Celera genes

had 20 percent fewer publications since 2001 (relative to a mean of 2 publications per gene).

Using two measures of successfully generated scientific knowledge about genotype-phenotype

links taken from a US National Institutes of Health database, I estimate a 16 percentage point

reduction in the probability of a gene having a known but scientifically uncertain genotype-

phenotype link (relative to a mean of 50 percent), and a 3 percentage point reduction in the

probability of a gene having a known and scientifically certain genotype-phenotype link (relative

to a mean of 6 percent). In terms of product development, Celera genes are 2.5 percentage

points less likely to be used in a currently available gene-based diagnostic test (relative to a

mean of 4.5 percent). Results from the second and third research designs suggest similarly sized

reductions. Taken together, these results suggest Celera’s short-term IP had persistent negative

effects on subsequent innovation relative to a counterfactual of Celera genes having always been

in the public domain.
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This analysis does not evaluate the overall welfare consequences of Celera’s entry. If Celera’s

entry spurred faster sequencing of the human genome, the overall timing of genome-related

innovation likely shifted earlier in time, which would have had welfare gains even if Celera’s

IP in isolation hindered innovation. Rather, these results suggest that, holding Celera’s entry

constant, an alternative lump-sum reward mechanism may have had social benefits relative to

Celera’s chosen form of IP.2

The paper proceeds as follows. Section 1 provides a brief scientific background and a descrip-

tion of my data construction. Section 2 describes the institutional context. Section 3 presents

the empirical results. Section 4 concludes with an interpretation of my results.

1 Preliminaries: Scientific primer and data construction

This section provides a brief scientific background and describes my data construction. An

online appendix discusses my data construction in more detail.

1.1 Scientific primer

A gene is a unit of inheritance. Genes are stretches of deoxyribonucleic acid (DNA), comprised

of nucleotide bases - adenine (A), cytosine (C), guanine (G), and thymine (T ). ‘Sequencing the

genome’ refers to the process of determining the exact order of these nucleotide bases in the

entire set of hereditary information for a given organism.

Genes affect health by generating proteins, which carry out functions in the human body.

More precisely, genes code for messenger ribonucleic acids (mRNAs), which code for proteins.

The intermediate step - mRNA - is important because genes can code multiple proteins by

coding multiple mRNAs. Reflecting this, sequencing the genome involved sequencing mRNAs.

Genetic variation can induce variation in observable traits or characteristics, known as phe-

notypes. Known genotype-phenotype links can be combined with sequenced genes to form the

basis for genetic tests. A gene can be involved in multiple genotype-phenotype links, and a

genotype-phenotype link can involve more than one gene.

I use genes as my unit of analysis. Genes are stable scientific units, whereas the number

of known mRNAs and known genotype-phenotype links in part reflects the amount of research

invested in a given gene. Table 1 presents summary statistics on the gene-level data.

1.2 Tracking the public and private genome sequencing efforts

I track the timing of the public sequencing effort using data from the US National Institutes of

Health’s RefSeq database. I define the year a gene was sequenced as the first year any mRNA

was disclosed for that gene. The median gene was sequenced in 2001 (Panel A of Table 1).3

2For example, under the patent buyout mechanism discussed by Kremer (1998), the public sector (or another
entity) could have paid Celera some fee to “buy out” Celera’s IP and place Celera genes in the public domain.
See Kremer and Williams (2010) for further discussion of other alternative mechanisms for rewarding innovation.

3The mean for this variable is left-censored, because 1999 is the first year coded in the RefSeq database.
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Istrail et al. (2004) compare Celera’s 2001 draft genome with a snapshot of the public data.

Building on their analysis, I am able to determine which genes were included in Celera’s 2001

draft genome and the dates at which those genes eventually appeared in the public data. I define

a Celera gene as a gene for which all known mRNAs were initially sequenced by Celera.4 Of

the 27,882 currently known genes, 1,682 - about 6 percent - were held with Celera’s IP for some

amount of time (Panel A of Table 1). Because Celera’s draft genome was disclosed in 2001, I

code Celera genes as having been sequenced in 2001.

1.3 Measuring scientific research and product development outcomes

I collect four outcome variables: three measures of scientific research, and one measure of prod-

uct development. My measures of scientific research are drawn from the Online Mendelian

Inheritance in Man (OMIM) database. OMIM aims to provide a comprehensive set of genotype-

phenotype records, which are annotated with citations to published scientific papers. From these

annotations, I collect data on the number of publications related to each gene in each year. I

use publications from 2001 to 2009 as an outcome; on average, genes had 2 publications over

that period, with a median of 0 (Panel B of Table 1).

OMIM assigns two classifications which I use as proxies for the level of scientific knowledge

about genotype-phenotype links. All genes involved in at least one genotype-phenotype link

classified by OMIM as meeting a high level of scientific certainty are coded as having a “known,

certain phenotype.” The set of genes classified by OMIM as meeting a lower threshold for

scientific certainty (including those meeting the higher threshold) are coded as having a “known,

uncertain phenotype.” I observe the former measure as of 2009, and the latter measure annually.

As of 2009, forty-five percent of genes have a known, uncertain phenotype link, and 8 percent

have a known, certain phenotype link (Panel B of Table 1).

My measure of product development is drawn from GeneTests.org, a self-reported, voluntary

listing of US and international laboratories offering genetic testing. Although not comprehen-

sive, GeneTests.org is the most frequently referenced genetic testing directory (Uhlmann and

Guttmacher, 2008). I construct an indicator for whether each gene is used in any genetic test

as of 2009. As of 2009, 6 percent of genes were used in a genetic test (Panel B of Table 1).5

The prior empirical literature investigating how IP affects subsequent innovation has been

constrained to examine only publication-related outcome variables, whereas in this paper I am

able to trace how IP affected the availability of commercial products. A priori, this distinction

is important: if academic and public researchers face higher incentives to disclose the results

of their research than do private researchers, and if IP induces an increase in the share of

research done by private researchers, then observed differences in publications could in part be

4The mean number of known mRNAs per gene is 1.67, and the median is 1. Thus, alternative definitions -
such as the share of known mRNAs that were Celera mRNAs, or an indicator for whether any mRNA on the gene
was a Celera mRNA - are identical for the majority of genes.

5These tests can be developed quite quickly; Cho et al. (2003) note it may only take weeks or months to go
from a research finding that a particular genetic variant is associated with a disease to a clinically validated test.
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explained by differences in disclosure.6 However, my product development outcome - diagnostic

test availability - should be invariant with respect to disclosure preferences of researchers. Figure

2 presents one set of descriptive statistics illustrating that, in my data, scientific research and

product development are strongly related. The dashed line (“no test as of 2009 ”) plots the

empirical cumulative distribution function of the number of publications between 1970-2000 for

genes that do not have a diagnostic test available as of 2009.7 The solid line (“test as of 2009 ”)

plots the empirical cumulative distribution function of the number of publications between 1970-

2000 for genes that do have a diagnostic test available as of 2009. Virtually all genes not used

in diagnostic tests had 10 or fewer publications, whereas about 70 percent of genes used in

diagnostic tests had more than 10 publications.

1.4 Data construction: An example

A brief example may help to clarify my data construction. The mRNA NM 032753.3 first

appeared in RefSeq in 2001, and was never held with Celera’s IP. This is the only known mRNA

for the RAX2 gene. I define RAX2 as sequenced in 2001, and never held by Celera.

OMIM references RAX2 in two genotype-phenotypes, first appearing in 2006. Both reference

a 2004 publication in Human Molecular Genetics, and are classified by OMIM as known, certain

phenotypes. First, RAX2 is linked to age-related macular degeneration, a medical condition

arising in older adults that destroys the type of central vision needed for common tasks such

as driving, facial recognition, and reading. Second, RAX2 is linked to cone-rod dystrophy, an

eye disease tending to cause vision loss. I define RAX2 as having one publication in 2004; in a

known, uncertain phenotype link as of 2006; and in a known, certain phenotype link as of 2009.

GeneTests.org lists several testing facilities offering a genetic test for RAX2’s link to age-

related macular degeneration (including some academic medical centers as well as the for-profit

firm Quest Diagnostics). There are no listings for genetic tests for RAX2’s link to cone-rod

dystrophy. I define RAX2 as being used in a diagnostic test as of 2009.

2 Empirical context

This section briefly reviews the institutional context relevant for the empirical analysis.8

2.1 Timeline of sequencing efforts

The public sequencing effort - the Human Genome Project - was launched in 1990, and originally

aimed to finish sequencing the entire genome by 2005 (Collins and Galas, 1993). In May 1998,

6Of course, disclosure itself presumably has social value, and to the extent that IP induces reductions in
disclosure this effect is also relevant in measuring the welfare effects of IP. Moon (2011) provides an empirical
study of disclosure in the context of genetic research. Analyzing the discovery of a genotype-phenotype link in an
event study framework, he shows that non-academic research organizations become less likely to publish relative
to universities after the discovery of a phenotype link.

7There are very few pre-1970 publications cited in the OMIM data.
8For more details, see Cook-Deegan (1994), Shreeve (2005), Sulston and Ferry (2002), and Venter (2007).
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Celera - a new firm led by scientist Craig Venter - formed with the intention to sequence the

entire human genome within three years (Venter et al., 1998). The public effort subsequently

announced a revised plan to complete its sequencing efforts by 2003 (Collins et al., 1998), and

to release an earlier “draft” sequence of the human genome (Pennisi, 1999).9 Departing from its

previous goal of producing a near-perfect sequence, the aim of this draft sequence was to place

most of the genome in the public domain as soon as possible. The two efforts jointly published

draft genomes in February 2001, the public effort in Nature (Lander et al., 2001) and Celera in

Science (Venter et al., 2001).10 Celera’s sequencing effort stopped with this publication, whereas

the public effort continued and was declared complete in April 2003 (Wade, 2003).

2.2 Intellectual property: The Bermuda rules and Celera’s IP

As of 1996, genes sequenced by the public effort were covered by the “Bermuda rules,” requiring

data to be posted on an open-access website within twenty-four hours of sequencing.11 The

stated goal was “...to encourage research and development and to maximize [the data’s] benefit to

society.”12 Eisenberg (2000) argues the Bermuda rules also aimed to discourage gene patenting.

Between 2001 and 2003, Celera used a contract law-based form of IP to protect genes that

had been sequenced by Celera but not yet sequenced by the public effort. Celera’s IP had several

key features.13 First, Celera’s data were ‘disclosed’ in 2001 (Venter et al., 2001), in the sense

that any individual could view data on the assembled genome through Celera’s website, or by

obtaining a free data DVD from the company.14 Academic researchers were free to use Celera’s

data for non-commercial research and academic publications. Second, by placing restrictions

on redistribution, Celera was able to sell its data to larger institutions - including pharmaceu-

tical companies, universities, and research institutes. Although the terms of specific deals were

private, Service (2001) reports that pharmaceutical companies were paying between $5 million

and $15 million a year, whereas universities and nonprofit research organizations were paying

between $7,500 and $15,000 for each lab given access to the data. Third, any researcher wanting

to use the data for commercial purposes was required to negotiate a licensing agreement with

Celera. Celera was able to charge these data access and licensing fees even though all available

accounts suggest it was publicly known in 2001 that all of Celera’s genes would be re-sequenced

by the public effort, and thus move into the public domain, by 2003. Shreeve (2005) quotes

Craig Venter as saying: “Amgen, Novartis, and now Pharmacia Upjohn have signed up knowing

damn well the data was going to be in the public domain in two years anyways. They didn’t

want to wait for it.” In addition to this short-term IP, Shreeve (2005) documents that Celera

9Many observers attribute this scale-up to Celera’s entry (Marshall, 1998).
10Celera and a few “early subscriber” firms had access to intermediate data updates during late 1999 and 2000,

but my understanding is that the vast majority of Celera’s data were first released in the 2001 draft genome.
11The Bermuda Rules replaced a US policy that data be made available within six months (Marshall, 2001).
12These rules are described in various policy statements by the US National Human Genome Research Institute

(NHGRI). Non-adherence was expected to result in black marks on future grant reviews (Marshall, 2001).
13For details, see Celera’s data access agreement (Science Online, 2001), and Celera’s DVD user agreement. I

am very grateful to Mike Meurer, Robert Millman (then-Chief IP Counsel at Celera from 1999-2002), and Ben
Roin for discussions on Celera’s IP, but of course none of them is responsible for any errors in my descriptions.

14Viewing the data or obtaining the DVD required agreeing not to commercialize or redistribute the data.
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was actively pursuing gene patent applications for genes in its database; ex post most of these

applications were not granted patents, but given the contemporaneous and subsequent policy

uncertainty surrounding gene patenting it is difficult to know what researchers’ expectations

were at the time.15 Beyond database sales and licensing revenues, Celera’s business model

also included in-house research and profits from genes granted patents (Service, 2001). Celera

eventually grew into a healthcare firm that develops and manufactures gene-based technologies.

2.3 Sequencing strategies: Implications for selection into Celera’s IP

The public sequencing effort was a large consortium that, for the purposes of this paper, can be

conceptualized as two distinct efforts. A ‘targeted’ effort focused on sequencing genes with known

medical value, such as the gene linked to Huntington’s disease. A ‘large-scale’ effort focused on

the same type of large-scale sequencing undertaken by Celera. Large-scale sequencing by both

Celera and the public effort relied on the shotgun sequencing method, in which DNA is randomly

broken up into small segments that are sequenced and re-assembled (Lander et al., 2001). From

an empirical perspective, shotgun sequencing should have introduced some effectively random

variation in whether genes were initially sequenced by Celera or by the public effort.

The vast majority of genes were sequenced under the large-scale public effort, which started

in mid-1999 (Lander et al., 2001). However, because the targeted public effort focused on

sequencing genes that had high ex ante expected medical value, the targeted effort is important

for understanding gene-level selection into Celera’s IP. Based on discussions with scientists, one

reasonable proxy for the ex ante expected value of a gene is the number of scientific papers

published about the gene before it was sequenced. For example, a long scientific literature has

documented evidence that Huntington’s disease has a genetic basis. Many of these papers were

published prior to the development of gene sequencing techniques, and the evidence from these

papers likely led scientists to target the sequencing of genes related to Huntington’s disease more

than genes related to conditions that were less well-understood.

Figure 3 uses data on the number of OMIM publications about a gene from 1970 to 2000 to

investigate selection into Celera’s IP. The solid line (“all genes”) plots the difference in mean

publications on Celera genes and mean publications on non-Celera genes in each year from 1970

to 2000. All observations are less than zero, providing empirical evidence consistent with the

type of selection I described: genes initially sequenced by the public effort had higher ex ante

expected value than genes initially sequenced by Celera. One formal test for such selection is

to use an ordinary-least-squares model to predict the gene-level “celera” indicator as a function

of count variables for publications in each year from 1970-2000. In the full sample, the p-value

from an F -test for joint significance is less than 0.001.

Unfortunately, I do not observe which genes were sequenced by the targeted public effort, so I

cannot directly drop those genes from the sample. As an alternative, I limit the comparison group

15What the US Patent and Trademark Office has allowed to be covered by a “gene patent” has changed
dramatically over time; see, e.g. National Academy of Sciences (2006). There has also been substantial variation
over time in the judicial enforcement of existing gene patents.
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of non-Celera genes to those sequenced in 2001 (the year Celera’s draft genome was disclosed).

Because the number of genes sequenced under the targeted public effort was likely small in

2001 relative to the number of genes sequenced under the large-scale effort, selection should be

reduced in this sample. The dashed line in Figure 3 (“genes sequenced in 2001”) suggests this

sample restriction reduces but does not eliminate observed selection. In this restricted sample,

the p-value from an F -test for joint significance is 0.033. Selection will thus be a concern in my

first research design; this motivates my second and third research designs.

My second and third research designs rely on variation in the timing of when Celera genes

were resequenced by the public effort (either 2002 or 2003). The dotted line in Figure 3 (“Celera

genes”) plots the difference in mean publications on Celera genes resequenced in 2003 and mean

publications on Celera genes resequenced in 2002, in each year from 1970 to 2000. Here, I find

no evidence of selection: predicting a gene-level indicator for being resequenced in 2003 as a

function of these count variables for publications in each year, the p-value from an F -test for

their joint significance is 0.169. This result suggests that, post-2001, the public effort was either

not targeting or not successfully targeting the resequencing of more valuable Celera genes. This

evidence supports the validity of my second and third research designs.

3 Empirical results

3.1 Cross-section estimates

The basic comparison underlying my cross-section estimates can be a presented in a simple

cross-tabulation. Table 2 compares subsequent innovation outcomes for Celera genes and for

non-Celera genes sequenced in 2001. Taken at face value, these numbers suggest that Celera’s IP

led to economically and statistically significant reductions in subsequent scientific research and

product development. For example, about 3 percent of Celera genes were used in a gene-based

diagnostic test in 2009, relative to 5.4 percent of non-Celera genes sequenced in the same year.

Table 3 formalizes this basic comparison in a regression framework that allows me to explore

the robustness of these patterns. For gene g, I estimate the following:

(outcome)g = β(celera)g + λ′(covariates)g + εg.

The coefficient on the “celera” variable is the main estimate of interest. For the publication

count outcome, I show estimates from pseudo-maximum likelihood Poisson models. For the

binary outcomes, I show estimates from ordinary-least-squares (OLS) models. For all models, I

report heteroskedasticity-robust standard errors.

Column (1) of Table 3 replicates the cross-tabulation results, using non-Celera genes disclosed

in 2001 as the comparison group. Because all genes in this sample were sequenced in 2001, this

sample naturally controls for variation in innovation outcomes across genes as of 2009 that is a

function of the year in which genes were sequenced. When I expand the sample to include years

beyond 2001, I include indicator variables to control for this type of variation. However, because
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all Celera genes were sequenced in 2001, the “celera” variable only varies in 2001. Hence, re-

estimating the specification in Column (1) on the full sample, controlling for year of disclosure

but no other covariates, estimates identical coefficients (Column (2) of Table 3). I use the full

sample in subsequent robustness checks because the additional non-Celera genes are useful for

identifying the covariates.

Column (3) of Table 3 includes a set of count variables for the number of publications on

each gene in each year from 1970 to 2000. We saw in Section 2.3 that Celera genes looked less

valuable than non-Celera genes based on these proxies for ex ante expected value. As expected,

including these variables as covariates reduces the magnitude of the point estimates, although

they are not statistically distinguishable from the coefficients in Column (2).

Column (4) limits the sample to genes with non-missing data on location variables (n =

16, 485), and investigates whether the estimates are sensitive to conditioning on detailed location

variables. This robustness check addresses the possibility that scientists may have targeted

their sequencing efforts based on a gene’s ex ante known location on the genome. For example,

certain chromosomes (such as chromosome 19) were estimated to be more “gene-rich” than

others, and scientists may have targeted the sequencing of such chromosomes. To test for

this possibility, I collect detailed variables on both types of gene location descriptors used by

geneticists (cytogenetic location and molecular location). The results in Column (4) show that

these controls do not substantially alter the estimated coefficients.

For brevity, I focus on interpreting the magnitudes of the point estimates in Column (1). The

estimate in Panel A implies Celera genes had about 21 percent fewer publications from 2001 to

2009, relative to non-Celera genes sequenced in the same year.16 The estimate in Panel B implies

a 16 percentage point reduction in the probability of having a known, uncertain phenotype link,

relative to a mean of 50 percent. The estimate in Panel C implies a 2.7 percentage point

reduction in the probability of having a known, certain phenotype link, relative to a mean of 6

percent. The estimate in Panel D implies a 2.3 percentage point reduction in the probability of

a gene being used in any currently available diagnostic test, relative to a mean of 4.5 percent.

The addition of controls reduces these estimates slightly, but the estimated magnitudes do not

substantively change.

Of course, despite my attempts to control for selection, the lingering concern is that these

estimates could be driven by non-random selection into Celera’s IP. Sections 3.2 and 3.3 present

results from my second and third research designs, which address selection more directly.

3.2 Panel estimates

My second research design tests whether the the removal of Celera’s IP affected within-gene flow

measures of subsequent innovation. For gene-year gy, I estimate the following:

(outcome)gy = δg + γy + β(celera)gy + εgy.

16A Poisson estimate of βi on a binary independent variable can be interpreted as a (eβi − 1) · 100 percent
change in the dependent variable, given a change from 0 to 1 in the independent variable (Cameron and Trivedi,
1998).
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The “celera” variable is now an indicator for whether gene g had been sequenced only by Celera

as of that year. This “celera” variable varies within genes over time, and a transition from 1 to 0

represents the removal of Celera’s IP from a given gene. Year fixed effects control for year-specific

shocks that are common across genes, such as annual changes in the level of research funding

available from public sector agencies. Gene fixed effects control for time-invariant differences

across genes, such as a gene’s inherent commercial potential. I limit the years in the sample to

2001-2009, focusing on the time period in which all Celera genes had been sequenced, but vary

in their IP status over time.17 I show estimates from OLS models and report heteroskedasticity-

robust standard errors clustered at the gene level.

Table 4 presents estimates from the panel specification. Columns (1) and (2) are analogous

to the cross-section specifications from Table 3: both control for year fixed effects, Column

(1) includes indicator variables for the year of disclosure, and Column (2) adds count variables

for the number of publications in each year from 1970 to 2000. Column (3), my preferred

specification, retains the year fixed effects but replaces the time-invariant covariates with gene

fixed effects.

Panel A of Table 4 reports estimates for the gene-year publications outcome. As in the

cross-section specification, adding the publication variables does affect the estimated effect of

Celera’s IP. In addition, replacing the time-invariant covariates with gene fixed effects further

reduces the magnitude of the estimated effect. That said, the magnitudes of the coefficients

in Columns (2) and (3) are broadly similar, which I interpret as suggestive evidence that the

cross-section controls are at least somewhat effective in controlling for gene-specific variation in

the publications outcome. In terms of magnitudes, the coefficient in Column (3) in Panel A of

Table 4 suggests Celera’s IP was associated with 0.11 fewer publications per year, relative to a

mean of 0.24 publications per gene-year.

Panel B of Table 4 reports analogous estimates for the gene-year indicator for a gene having

any known, uncertain phenotype link. The coefficient in Column (3) suggests Celera’s IP was

associated with a 8.3 percentage point reduction in the probability that a gene had a known,

uncertain phenotype link, relative to a mean of 38 percent.

To explore the timing of the estimated effects, Figure 4 presents graphical versions of the

following event study specification:

(outcome)gy = δg + γy + Σzβz(celera)g ∗ 1(z) + εgy.

On the x axes are years z relative to a “zero” relative year that marks the last year the gene was

held with Celera’s IP (that is, year 1 marks the first year the gene was in the public domain).

The dotted lines show 95 percent confidence intervals.

Panel A of Figure 4 presents results for the gene-year level publications outcome. These

estimates suggest that in the first year a gene enters the public domain (t = 1 on the graph),

17As noted in Section 2.1, Celera’s sequencing began in 1999, and its draft genome was disclosed in 2001. My
understanding is that the vast majority of Celera’s data was first released in the 2001 draft genome, but I do not
observe the timing of sequencing from 1999-2001. In the absence of such data, I limit my panel specification to
include the years 2001-2009 since prior to 2001 I do not know whether or not Celera genes had yet been sequenced.
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there is a discrete level shift in the flow of publications related to that gene, which remains

relatively constant through the end of my data. In theory, the panel estimates in Table 4 could

have been driven by short-term shifts in the timing of when research takes place that may or

may not have persistent effects on welfare. In practice, the results show no clear “bunching” of

publications that would be predicted by stories in which researchers strategically wait until IP

is removed to publish scientific papers.

Panel B of Figure 4 presents results for the gene-year level indicator for a gene having any

known, uncertain phenotype link. This outcome increases in the first year a gene enters the

public domain (t = 1 on the graph), and continues to increase through the end of my data.

3.3 Focusing on Celera genes

Figure 5 presents results from my third research design. I limit the sample to include only

Celera genes, and rely solely on variation in how long genes were held with Celera’s IP - that

is, whether the Celera gene was re-sequenced by the public effort in 2002 (N = 1,047; “public

in 2002 ”) or in 2003 (N = 635; “public in 2003 ”). The evidence presented in Section 2.3 and

Figure 3 suggests that the year in which Celera genes were re-sequenced by the public effort

cannot be predicted with gene-level observables. Hence, this analysis should provide a clean test

for investigating the effect of being held with Celera’s IP for one additional year.

Figure 5 presents means by year for the two panel outcome variables. As expected, the mean

levels of both outcome variables are quite similar across the “public in 2002 ” and “public in

2003 ” groups in 2001, when both sets of genes were held with Celera’s IP. Panel A shows that

Celera genes re-sequenced in 2002 saw a relative uptick in publications in that year, while Celera

genes re-sequenced in 2003 show a similar uptick in 2003. Flow of scientific effort into these

two cohorts of genes appears to have converged over time: although the difference in means in

2002 is statistically significant at the 10 percent level, mean differences in other years are not

statistically significant.

Panel B shows that Celera genes re-sequenced in 2002 saw a relative increase in the proba-

bility of having a known, uncertain genotype-phenotype link in 2002. However, rather than the

“public in 2003 ” group catching up with their “public in 2002 ” counterparts one year later, the

“public in 2003 ” group has persistently lower levels of this outcome variable through the end

of my data. The difference in means is statistically significant in 2003 (at the 10 percent level),

2006 (at the 10 percent level), 2007 (at the 5 percent level), and 2008 (at the 5 percent level).

The results in Figure 5 suggest that although the flow of scientific effort into these two

cohorts of genes (as measured by annual publications) converged over time, the average stock of

scientific knowledge about genes in these two cohorts (as measured by having a known, uncertain

phenotype) did not converge. If anything, the difference in the average stock of knowledge on

genes in the “public in 2002 ” and “public in 2003 ” samples appears to grow over time, with

differences that become slightly larger and more strongly statistically significant in later years.

These graphs provide clear evidence that even very temporary forms of intellectual property -

here, lasting only one year - can have persistent effects on subsequent innovation.
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4 Discussion

4.1 What kinds of transaction costs were relevant?

Return to the example from the introduction: suppose Pfizer discovered a gene-based diagnostic

test that required licensing one of Celera’s genes. Would Celera’s IP impede Pfizer’s research?18

For the purpose of evaluating potential transaction costs, both Celera’s short-term IP and the

expectation that Celera was pursuing patent applications on their genes are relevant.19

In a perfect contracting environment with no transaction costs, Celera and Pfizer would

negotiate a licensing agreement such that cumulative research is not hindered. Consider the

model of Green and Scotchmer (1995). Licensing agreements can occur at two stages: ex ante,

before Pfizer invests in the diagnostic test, or ex post, after Pfizer has invested in the test.

The key distinction is whether Pfizer has sunk its research costs at the time of the licensing

negotiation. The Green and Scotchmer (1995) framework delivers a strong prediction that ex

ante licenses are optimal and will always be negotiated. When negotiating ex ante, Pfizer has a

credible threat not to invest unless Celera is willing to share a positive fraction of the diagnostic

test profits. When negotiating ex post, Pfizer has diminished bargaining power and faces a

potential holdup problem.

Despite this strong theoretical prediction, transaction costs may prevent ex ante licensing

agreements from being successfully negotiated. For example, the Green and Scotchmer (1995)

framework assumes symmetric information, but in practice Celera may not have known Pfizer’s

cost of developing its gene-based diagnostic test. Bessen (2004) explores the implications of this

type of private information in the Green and Scotchmer (1995) framework, showing that private

information may cause negotiations to break down, deterring some socially desirable research.

Empirically, only a small share of licensing agreements appear to be set ex ante. Anand and

Khanna (2000) document that in SIC28 (chemicals and pharmaceuticals), only 23% of licensing

agreements were set ex ante. Consistent with this data, my understanding is that many of

Celera’s licensing agreements were negotiated ex post rather than ex ante.

Celera could have avoided transaction costs by conducting in-house research; indeed, Celera

developed and manufactured several gene-based technologies. However, ideas in this market

were likely scarce in the sense of Scotchmer (1991): Celera’s scientists did not know how to

develop the full set of possible subsequent innovations. Taken together, this suggests that a

scarcity of ideas together with asymmetric information about the costs of development may

have generated a first source of transaction costs.

A second source of potential transaction costs is a version of the classic disclosure problem

(Arrow, 1962), highlighted by Gallini and Wright (1990) and Gans and Stern (2000). To ne-

gotiate a licensing agreement with Celera, Pfizer had to disclose its idea. Because Celera was

developing gene-based technologies, Celera had a credible threat to engage in imitative R&D. Ei-

18See Merges and Nelson (1990), Scotchmer (1991), Heller and Eisenberg (1998), and Shapiro (2000).
19Jensen and Murray (2005) estimate that 20 percent of genes were covered by at least one patent as of 2005.

There is currently little empirical evidence that gene patents have hindered subsequent innovation (National
Academy of Sciences, 2006), but recent evidence suggests they may have (Huang and Murray, 2009).
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ther the expectation of Celera’s bargaining position, or the actual impact of Celera’s bargaining

power in licensing negotiations, may have generated a second source of transaction costs.

A final source of potential transaction costs is uncertainty over the academic research ex-

emption. Formally, Celera placed no restrictions on academic research. However, for at least

two reasons academic researchers may have nonetheless been deterred from using Celera’s data.

First, informal discussions with academic scientists suggested they faced uncertainty over some

of Celera’s contractual terms. For example, one scientist I spoke with expressed uncertainty

over whether the restrictions on redistribution implied she could not share Celera’s data with

her graduate students. Because accessing the data required agreeing to Celera’s terms of use,

perceived litigation risks may have deterred research even by academics who solely wanted to

use the data for non-commercial research. Second, given that the boundary between academic

and commercial research is often not clearly delineated, particularly for biomedical research

(Cohen and Walsh, 2008), the ‘exemption’ for academic research may not have been clear in

practice. Celera’s sequencing took place during the biotech boom, when many academics were

doing research with an eye towards commercial applications. Celera’s IP may have had a dis-

couragement effect on that type of academic research even in the absence of formal restrictions

on academic publications.

4.2 Interpreting these results in the context of existing empirical evidence

In evaluating potential sources of transaction costs, it is helpful to discuss my estimates in the

context of recent research by Murray et al. (2008), who analyze short-term IP rights the firm

DuPont held on certain types of genetically engineered mice. Using a dataset of matched mouse-

article pairs, they estimate that the removal of IP is associated with an increase in citations to

scientific papers on affected mice relative to papers on unaffected mice.20 Their estimates are

on the order of 20 to 40 percent - remarkably similar to my estimates.

In many respects, DuPont’s IP and Celera’s IP were very different. DuPont’s IP was widely

considered to be somewhat draconian: even for academic research, DuPont required annual dis-

closures on experimental progress. In contrast, Celera’s IP was widely considered to be fairly

benign: Celera’s data were made available without restrictions on resulting academic publica-

tions. On the other hand, some features are similar: both DuPont and Celera placed restrictions

on redistribution, and imposed reach through rights on resulting commercial applications. In

addition, with both DuPont’s IP and Celera’s IP, researchers were unable to access the technolo-

gies without acknowledging the IP rights. This feature is in sharp contrast to patents: it is often

unclear to scientists whether a given research input is patented, and relatively few academic

biomedical researchers report actively searching for patents (Walsh, Arora and Cohen, 2003;

Walsh, Cho and Cohen, 2005). Patents may also hinder cumulative innovation (see Murray and

Stern (2007) and Huang and Murray (2009)), but investigation of the consequences of ex ante

known IP relative to patents would be useful.

20Murray et al. (2008) also provide evidence, consistent with the model of Aghion, Dewatripont and Stein
(2008), that IP reduces the diversity of scientific experimentation.
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Why might both DuPont and Celera’s temporary IP rights have had such persistent effects

on scientific research? Consider research on a given gene that is building towards the discovery

of a genotype-phenotype link. In my data, most genes had no publications before they were

sequenced. For such genes, at the time they were sequenced scientists had few if any leads

about which genotype-phenotype links would be most promising to investigate - implying that

research might be very unproductive in the sense that many hypotheses would be investigated

only to learn that they were not supported by the data. A preliminary discovery might clarify

that the gene’s protein shares characteristics with other proteins known to be related to can-

cer. Once such a preliminary discovery is made, subsequent research might move more quickly

towards the goal of discovering a genotype-phenotype link than it would have otherwise. That

is, the preliminary discovery might narrow the set of subsequent hypotheses that warrant fur-

ther attention, increasing the productivity of subsequent research. This type of idea could be

formalized in a model where the stock of existing scientific knowledge on a gene provides ideas

that - over some range - increase the productivity of subsequent research. One could think of

this as ‘gene-specific increasing returns to research’ over the time before a genotype-phenotype

link has been identified. In such a model, temporarily lower levels of publications during the

time a gene is held with IP could slow the accumulation of new scientific knowledge even after

the IP is removed. While I do not formally test this type of model here, further investigation of

how IP affects the dynamic accumulation of scientific knowledge would be useful.

4.3 Investigating substitution versus reduction in innovative effort

The finding that Celera genes had less scientific research and product development than non-

Celera genes could reflect a net decrease in total innovation over the set of all genes, or could

reflect the substitution of innovative effort away from Celera genes towards non-Celera genes.

An analogous issue arises in Murray et al. (2008): the observed relative decrease in innovation

on technologies held with IP could be consistent with a zero net change in total innovation if

the relative decrease were completely driven by the substitution of effort towards technologies

not held with IP.

It is difficult to know whether such substitution was important in Celera’s case.21 If sub-

stitution is relevant and researchers optimally choose their line of research in the absence of

IP, quantifying the welfare costs of IP on cumulative innovation requires estimating the cost

of distorting research towards sub-optimal projects. In markets where more socially valuable

technologies are more likely to be held with IP, these welfare costs could be substantial.

The key issue I cannot address formally in my data is whether substitution of research effort

across genes is “similar to” substitution of research effort across other technologies. At first

glance, the ex ante similarity of genes might lead one to expect substitution across genes to

be very different from substitution across other technologies. However, many institutions were

21A priori, this depends on whether the number of researchers conducting gene-related research should be
considered relatively fixed or relatively flexible. In the case of academics, a relatively fixed supply of researchers
in the short run seems likely. However, private firms may have otherwise been working in alternative product
markets, implying a relatively flexible supply of private researchers.
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willing to pay large sums of money to access Celera’s data when the public data were freely

available, providing evidence that the two sets of data were not viewed as perfect substitutes.

Looking at a broader set of academic biomedical researchers, surveys by Walsh, Cho and Cohen

(2005) and Walsh, Cohen and Cho (2007) suggest some substitution is relevant: restricted access

to tangible research inputs (including information, data, and software) appear to shift scientists’

research project choices. I am unable to assess the similarity of substitution for genes relative to

substitution for other technologies, but further investigation of the importance of substitution

would be useful.

4.4 Concluding remarks

Intellectual property (IP) is a widely-used policy lever for promoting innovation, yet relatively

little is known about how IP on existing technologies affects subsequent innovation. The se-

quencing of the human genome provides a useful empirical context, generating variation in IP

across a relatively large group of ex ante similar technologies. Across a range of empirical speci-

fications, I find evidence that Celera’s IP led to reductions in subsequent scientific research and

product development on the order of 20 to 30 percent.

The overall welfare effects of IP depend on other factors, including the provision of dynamic

incentives for developing new technologies.22 From a policy perspective, these results suggest

that, holding Celera’s entry constant, an alternative lump-sum reward mechanism may have had

social benefits relative to Celera’s chosen form of IP.

22For recent discussions of the overall costs and benefits of IP systems, see Bessen and Meurer (2008), Boldrin
and Levine (2008), and Jaffe and Lerner (2006).
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Table 1: Summary Statistics for Gene-Level Data

standard
mean median deviation minimum maximum

Panel A: Sequencing & Celera’s IP
year sequence disclosed 2002.962 2001 3.551 1999 2009

1(Celera gene) 0.060 0 0.238 0 1

Panel B: Outcome variables
publications in 2001-2009 2.197 0 9.133 0 231

1(known, uncertain phenotype) 0.453 0 0.498 0 1
1(known, certain phenotype) 0.081 0 0.273 0 1

1(used in any diagnostic test) 0.060 0 0.238 0 1

N = 27,882

Notes: Gene-level observations. Note that the mean year of disclosure is affected by left-censoring since
a disclosure year of 1999 represents a gene sequenced in or before 1999 (1999 is the earliest year any observations
appear in the RefSeq database). See text and the online appendix for more detailed data and variable
descriptions.

Table 2: Innovation Outcomes for Celera & non-Celera Genes Sequenced in 2001

(1) (2) (3) (4)
Celera Non-Celera difference p-value of
mean mean [(1)-(2)] difference

publications in 2001-2009 1.239 2.116 -0.877 [0.000]
1(known, uncertain phenotype) 0.401 0.563 -0.162 [0.000]

1(known, certain phenotype) 0.046 0.073 -0.027 [0.000]
1(used in any diagnostic test) 0.030 0.054 -0.023 [0.000]

N 1,682 2,851

Notes: Gene-level observations. Sample in Column (1) includes all Celera genes; sample in Column (2)
includes all non-Celera genes sequenced in 2001. The p-value reported in Column (4) is from a t-test for a
difference in mean outcomes across Column (1) and Column (2). See text and online appendix for more detailed
data and variable descriptions.
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Table 3: Cross-Section Estimates: Impact of Celera’s IP on Innovation Outcomes

(1) (2) (3) (4)

Panel A: publications in 2001-2009
2001 sample mean = 1.791

full sample mean = 2.197

celera -0.535 -0.535 -0.499 -0.585
(0.117)*** (0.117)*** (0.107)*** (0.120)***

Panel B: 1(known, uncertain phenotype)

2001 sample mean = 0.503
full sample mean = 0.453

celera -0.162 -0.162 -0.158 -0.128
(0.015)*** (0.015)*** (0.015)*** (0.017)***

Panel C: 1(known, certain phenotype)

2001 sample mean = 0.063
full sample mean = 0.081

celera -0.027 -0.027 -0.017 -0.014
(0.007)*** (0.007)*** (0.006)*** (0.007)**

Panel D: 1(used in any diagnostic test)

2001 sample mean = 0.045
full sample mean = 0.060

celera -0.023 -0.023 -0.014 -0.013
(0.006)*** (0.006)*** (0.005)*** (0.006)**

sample includes genes sequenced in: 2001 all years all years all years

indicator variables for year of disclosure - yes yes yes
number of publications in each year 1970-2000 no no yes yes

detailed cytogenetic & molecular covariates no no no yes

N 4,533 27,882 27,882 16,485

Notes: Gene-level observations. Estimates in Panel A are from quasi-maximum likelihood Poisson mod-
els; estimates in Panels B-D are from ordinary-least-squares (OLS) models. Sample in Column (1) includes all
genes sequenced in 2001; samples in Columns (2) and (3) include all genes; sample in Column (4) includes all
genes with non-missing cytogenetic and molecular covariates. Robust standard errors shown in parentheses.
*: p< 0.10; **: p< 0.05; ***: p< 0.01. “Celera”: 0/1, =1 for a Celera gene. Indicator variables for year of
disclosure: 0/1 indicator variables for the year sequence for the gene was disclosed. Number of publications in
each year 1970-2000 : count variables for the number of publications on each gene in each year from 1970 to
2000. Detailed cytogenetic & molecular covariates: 0/1 indicator variables for the chromosome (1-22, X, or Y )
and arm (p or q) on which a gene is located; continuous variables for region, band, subband, start base pair,
and end base pair; and 0/1 indicator variables for the orientation of the gene on the genome assembly (plus or
minus). See text and the online appendix for more detailed data and variable descriptions.

20



Table 4: Panel Estimates: Impact of Celera’s IP on Innovation Outcomes

(1) (2) (3)

Panel A: publications

mean = 0.244

celera -0.160 -0.121 -0.109
(0.017)*** (0.011)*** (0.011)***

Panel B: 1(known, uncertain phenotype)

mean = 0.381

celera -0.163 -0.160 -0.083
(0.009)*** (0.008)*** (0.008)***

year fixed effects yes yes yes
indicator variables for year of disclosure yes yes no

number of publications in each year 1970-2000 no yes no
gene fixed effects no no yes

N 250,938 250,938 250,938

Notes: Gene-year-level observations. All estimates are from ordinary-least-squares (OLS) models. The
sample includes all gene-years from 2001 to 2009 (27,882 genes for 9 years implies N = 250,938 total gene-year
observations). Robust standard errors, clustered at the gene level, shown in parentheses. *: p< 0.10; **: p< 0.05;
***: p< 0.01. “Celera”: 0/1, =1 for a Celera gene. Indicator variables for year of disclosure: 0/1 indicator
variables for the year sequence for the gene was disclosed. Number of publications in each year 1970-2000 :
count variables for the number of publications on each gene in each year from 1970 to 2000. See text and online
appendix for more detailed data and variable descriptions.
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Figure 1: Timeline of Key Events

Notes: See Collins and Galas (1993), Venter et al. (1998), Venter (2000), Lander et al. (2001), Venter et al. (2001),
and Wade (2003).
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Figure 2: The Relationship Between Scientific Research & Product Development
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Notes: The dashed line plots the empirical cumulative distribution function of the number of publications between
1970-2000 for genes that do not have a diagnostic test available as of 2009. The solid line plots the empirical
cumulative distribution function of the number of publications between 1970-2000 for genes that do have a
diagnostic test available as of 2009. See text and online appendix for more detailed data and variable descriptions.

Figure 3: Investigating Selection into Celera’s IP
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Notes: The solid line (“all genes”) plots the difference in mean publications on Celera genes and mean publications
on non-Celera genes in each year from 1970 to 2000. The dashed line (“genes sequenced in 2001”) plots the
difference in mean publications on Celera genes and mean publications on non-Celera genes that were sequenced
in 2001 in each year from 1970 to 2000. The dotted line (“Celera genes”) plots the difference in mean publications
on Celera genes resequenced in 2003 and mean publications on Celera genes resequenced in 2002 in each year
from 1970 to 2000. See text and online appendix for more detailed data and variable descriptions.
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Figure 4: Panel Estimates: Impact of Celera’s IP on Innovation Outcomes
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Notes: These figures plot coefficients (and 95 percent confidence intervals) from the event study specification
described in Section 3.2. On the x axes are years z relative to a “zero” relative year that marks the last year
the gene was held with Celera’s IP (that is, year 1 marks the first year the gene was in the public domain). As
in the specifications in Table 4, this specification is based on gene-year level observations, the coefficients are
estimates from ordinary-least-squares (OLS) models, the sample includes all gene-years from 2001 to 2009, and
the standard errors are robust and clustered at the gene level. See text and online appendix for more detailed
data and variable descriptions.
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Figure 5: Average Innovation Outcomes for Celera Genes by Year,
by Year of Re-sequencing by the Public Effort
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Notes: Sample includes all Celera genes. Means are shown separately for Celera genes that were re-sequenced by
the public effort in 2002 (N = 1,047) and for Celera genes that were re-sequenced by the public effort in 2003 (N
= 635). See text and online appendix for more detailed data and variable descriptions.
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